5 research outputs found

    Review of Microscopic Image Processing techniques towards Malaria Infected Erythrocyte Detection from Thin Blood Smears

    Get PDF
    In order to diagnose malaria, the test that has traditionally been conducted is the gold standard test. The process mainly entails the preparation of a blood smear on glass slide, staining the blood and examining the blood through the use of a microscope so as to observe parasite genus plasmodium. Although these are several other kinds of diagnostic test solutions that are available and which can be adopted, there are numerous shortcomings which are always observed when microscopic analysis is carried out. Presently, the treatments are hugely conducted based on symptoms and upon the occurrence of false negatives, it might be fatal and may result into the creation of different kinds of implications. There have been a number of deaths which have been associated with malaria and as a result, there is the dire need to ensure that there is early detection of malarial infection among the people. This manuscript mainly provides a review of the current contributions regarding computer aided strategies, as well as microscopic image processing strategies for the detection of malaria. They are discussed based on the contemporary literature

    Rouleaux red blood cells splitting in microscopic thin blood smear images via local maxima, circles drawing, and mapping with original RBCs.

    Get PDF
    Splitting the rouleaux RBCs from single RBCs and its further subdivision is a challenging area in computer-assisted diagnosis of blood. This phenomenon is applied in complete blood count, anemia, leukemia, and malaria tests. Several automated techniques are reported in the state of art for this task but face either under or over splitting problems. The current research presents a novel approach to split Rouleaux red blood cells (chains of RBCs) precisely, which are frequently observed in the thin blood smear images. Accordingly, this research address the rouleaux splitting problem in a realistic, efficient and automated way by considering the distance transform and local maxima of the rouleaux RBCs. Rouleaux RBCs are splitted by taking their local maxima as the centres to draw circles by mid-point circle algorithm. The resulting circles are further mapped with single RBC in Rouleaux to preserve its original shape. The results of the proposed approach on standard data set are presented and analyzed statistically by achieving an average recall of 0.059, an average precision of 0.067 and F-measure 0.063 are achieved through ground truth with visual inspection

    Automated Low-Cost Malaria Detection System in Thin Blood Slide Images Using Mobile Phones

    Get PDF
    Malaria, a deadly disease which according to the World Health Organisation (WHO) is responsible for the fatal illness in 200 million people around the world in 2010, is diagnosed using peripheral blood examination. The work undertaken in this research programme aims to develop an automated malaria parasite-detection system, using microscopic-image processing, that can be incorporated onto mobile phones. In this research study, the main objective is to achieve the performance equal to or better than the manual microscopy, which is the gold standard in malaria diagnosis, in order to produce a reliable automated diagnostic platform without expert intervention, for the effective treatment and eradication of the deadly disease. The work contributed to the field of mathematical morphology by proposing a novel method called the Annular Ring Ratio transform for blood component identification. It has also proposed an automated White Blood Cell and Red Blood Cell differentiation algorithm, which when combined with ARR transform method, has wide applications not only for malaria diagnosis but also for many blood related analysis involving microscopic examination. The research has undertaken investigations on infected cell identification which aids in the calculation of parasitemia, the measure of infection. In addition, an automated diagnostic tool to detect the sexual stage (gametocytes) of the species P.falciparum for post-treatment malaria diagnosis was developed. Furthermore, a parallel investigation was carried out on automated malaria diagnosis on fluorescent thin blood films and a WBC and infected cell differentiation algorithm was proposed. Finally, a mobile phone application based on the morphological image processing algorithms proposed in this thesis was developed. A complete malaria diagnostic unit using the mobile phones attached to a portable microscope was set up which has enormous potential not only for malaria diagnosis but also for the blood parasitological field where advancement in medical diagnostics using cellular smart phone technology is widely acknowledged
    corecore