925 research outputs found

    Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person

    Full text link
    Face recognition (FR) with a single training sample per person (STSPP) is a very challenging problem due to the lack of information to predict the variations in the query sample. Sparse representation based classification has shown interesting results in robust FR, however, its performance will deteriorate much for FR with STSPP. To address this issue, in this paper we learn a sparse variation dictionary from a generic training set to improve the query sample representation by STSPP. Instead of learning from the generic training set independently w.r.t. the gallery set, the proposed sparse variation dictionary learning (SVDL) method is adaptive to the gallery set by jointly learning a projection to connect the generic training set with the gallery set. The learnt sparse variation dictionary can be easily integrated into the framework of sparse representation based classification so that various variations in face images, including illumination, expression, occlusion, pose, etc., can be better handled. Experiments on the large-scale CMU Multi-PIE, FRGC and LFW databases demonstrate the promising performance of SVDL on FR with STSPP.Department of ComputingRefereed conference pape

    Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary

    Full text link

    Dictionary Representation of Deep Features for Occlusion-Robust Face Recognition

    Get PDF
    Deep learning has achieved exciting results in face recognition; however, the accuracy is still unsatisfying for occluded faces. To improve the robustness for occluded faces, this paper proposes a novel deep dictionary representation-based classification scheme, where a convolutional neural network is employed as the feature extractor and followed by a dictionary to linearly code the extracted deep features. The dictionary is composed by a gallery part consisting of the deep features of the training samples and an auxiliary part consisting of the mapping vectors acquired from the subjects either inside or outside the training set and associated with the occlusion patterns of the testing face samples. A squared Euclidean norm is used to regularize the coding coefficients. The proposed scheme is computationally efficient and is robust to large contiguous occlusion. In addition, the proposed scheme is generic for both the occluded and non-occluded face images and works with a single training sample per subject. The extensive experimental evaluations demonstrate the superior performance of the proposed approach over other state-of-the-art algorithms

    Evaluation of dense 3D reconstruction from 2D face images in the wild

    Get PDF
    This paper investigates the evaluation of dense 3D face reconstruction from a single 2D image in the wild. To this end, we organise a competition that provides a new benchmark dataset that contains 2000 2D facial images of 135 subjects as well as their 3D ground truth face scans. In contrast to previous competitions or challenges, the aim of this new benchmark dataset is to evaluate the accuracy of a 3D dense face reconstruction algorithm using real, accurate and high-resolution 3D ground truth face scans. In addition to the dataset, we provide a standard protocol as well as a Python script for the evaluation. Last, we report the results obtained by three state-of-the-art 3D face reconstruction systems on the new benchmark dataset. The competition is organised along with the 2018 13th IEEE Conference on Automatic Face & Gesture Recognition
    corecore