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with 2D videos (e.g. [11], [12]). However there is no stan-
dard evaluation protocol, and very often synthetic renderings
of the 3D scans are used for evaluation, which do not contain
background (e.g. they are rendered on black background) or
any natural illumination variations (e.g. [13]), for the lack
of better data. Other methods (e.g. 3DDFA [7]) compare
their results against a ‘ground truth’ which is created by
another fitting algorithm, which is itself problematic as these
fitting algorithms have not yet been shown to be effective on
in-the-wild data, even after manual correction. There have
been a limited number of previous competitions which aimed
to improve the situation, but they only solved the problem
partially. For example the workshop organised by Jeni et
al. [14] used their own algorithm as ‘ground truth’ (see also
Section I-C). Other datasets have been recently proposed
like KF-ITW [15] but therein Kinect Fusion is used as 3D
ground truth, which does not consist of very high resolution
meshes, and also the videos are recorded in rather controlled
and similar scenarios (i.e. rotating around a chair in a lab).

In this paper, we report the results of a competition on
3D dense face reconstruction of in-the-wild 2D images,
evaluated with accurate and high-resolution 3D ground truth,
obtained from a 3D structured-light system. The competition
is co-located with a workshop1 of the 13th IEEE Conference
on Automatic Face & Gesture Recognition (FG 2018).

A. Outcomes

• The competition provides a benchmark dataset with
2000 2D images of 135 subjects as well as their high-
resolution 3D ground truth face scans. Alongside the
dataset we supply a standard benchmark protocol to
be used on the dataset, for future evaluations and
comparisons, beyond the competition.

• An independent, objective evaluation and comparison
of state-of-the art 3D face reconstruction algorithms.
The plan is to perform two sets of evaluations: One set
for single-image reconstruction, and another set where

1https://facer2vm.org/fg2018/

Abstract—This paper investigates the evaluation of dense 
3D face reconstruction from a single 2D image in the wild. 
To this end, we organise a competition that provides a new 
benchmark dataset that contains 2000 2D facial images of 
135 subjects as well as their 3D ground truth face scans. In 
contrast to previous competitions or challenges, the aim of this 
new benchmark dataset is to evaluate the accuracy of a 3D 
dense face reconstruction algorithm using real, accurate and 
high-resolution 3D ground truth face scans. In addition to the 
dataset, we provide a standard protocol as well as a Python 
script for the evaluation. Last, we report the results obtained 
by three state-of-the-art 3D face reconstruction systems on the 
new benchmark dataset. The competition is organised along 
with the 2018 13th IEEE Conference on Automatic Face & 
Gesture Recognition.

I. INTRODUCTION

3D face reconstruction from 2D images is a very active 
topic in many research areas such as computer vision, pattern 
recognition and computer graphics [1], [2], [3], [4], [5], [6]. 
While the topic has been researched for nearly two decades 
(with one of the seminal papers being Blanz & Vetter [1]), 
over the last two years, these methods have been growing 
out of laboratory-applications and have become applicable to 
in-the-wild images, containing larger pose variations, diffi-
cult illumination conditions, facial expressions, or different 
ethnicity groups and age ranges [7], [8], [9]. However, it 
is currently an ongoing challenge to quantitatively evaluate 
such algorithms: For 2D images captured in the wild, there 
is usually no 3D ground truth available. And, vice-versa, 
for 3D data, it is usually captured with a 3D scanner in a 
laboratory, and no in-the-wild 2D images of the same subject 
exist.

Thus, researchers often publish qualitative results, along-
side some effort of quantitative evaluation, which is often not 
ideal, for the lack of 3D ground truth. Also, people resort 
to using a proxy task, for example face recognition. For an 
example of the former, people are using the Florence 2D/3D 
hybrid face dataset (MICC) [10], which contains 3D data
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it is allowed to use all images of one particular person
to reconstruct the 3D shape, allowing algorithms to
leverage information from multiple images. Note that,
in this paper, we only report results of the single image
fitting protocol.

B. Impact

This is the first challenge in 3D face reconstruction from
single 2D in-the-wild images with real, accurate and high-
resolution 3D ground truth.

The provided benchmark dataset is publicly available, so
that it can become a benchmark and reference point for
future evaluations in the community.

The multi-image challenge allows to test algorithms that
can work with multiple videos as well, having far-reaching
impact, for example also in the face recognition community
(e.g. for set-to-set matching, and recent 2D face recognition
benchmarks such as the IARPA Janus Benchmark face
challenge2).

In addition to that, one of the baseline 3D reconstruction
algorithms and the Surrey Face Model (SFM) is publicly
available too [16].

C. Relationship to previous workshops (competitions)

The topic of evaluating 3D face reconstruction algorithms
on 2D in-the-wild data has gained much traction recently.
The 1st Workshop on 3D Face Alignment in the Wild
(3DFAW) Challenge3 [14] was held at ECCV 2016. The
benchmark consisted of images from Multi-PIE, syntheti-
cally rendered images, and some in-the-wild images from
the internet. The 3D ‘ground truth’ was generated by an
automatic algorithm provided by the organisers.

As part of ICCV 2017, the iBUG group from Imperial
College, UK, held a workshop 1st 3D Face Tracking in-
the-wild Competition4. It improved upon the ECCV 2016
challenge in some respects, but the ‘ground truth’ used was
still from an automatic fitting algorithm, introducing bias,
and resulting in the other algorithms being evaluated against
the performance of another algorithm, and not against real
3D ground truth. Also, the evaluation is only done on a set
of sparse 2D and 3D landmarks and not over a dense 3D
mesh, leaving much room for further improvements on the
benchmarking methodology.

The remaining of this paper outlines the data, protocol,
evaluation metrics and results of the competition. The aim of
the competition is to evaluate 3D face shape reconstruction
performance of participants on true 2D in-the-wild images,
with actual 3D ground truth available from 3D face scanners.
The data is released to the public, together with a well-
defined protocol, to provide a standard and public bench-
mark to the 3D face reconstruction community.

2https://www.nist.gov/programs-projects/face-challenges
3http://mhug.disi.unitn.it/workshop/3dfaw/
4https://ibug.doc.ic.ac.uk/resources/1st-3d-face-tracking-wild-competition/

(a) high quality images

(b) low quality images

Figure 1. Some examples of the 2D images in the test set, selected from
the Stirling ESRC 3D face dataset.

II. DATASETS

In general, the data used for the evaluation of a 3D face
reconstruction algorithm should consist of a number of high-
resolution 3D face scans, obtained from a 3D face imaging
device, like for example the 3dMDface5 system. Together
with these 3D face ground truth, associated with each subject
are multiple 2D images that have been captured in-the-wild,
with a variety of appearance variations in pose, expression,
illumination and occlusion. The aim is to measure the
accuracy of an algorithm in reconstructing a subject’s neutral
3D face mesh from unconstrained 2D images. To this end,
the Stirling ESRC 3D face dataset6 is used to create the test
set and the JNU [6] 3D face dataset is used to form the
validation set. For training, any 2D or 3D face dataset is
allowed except for the Stirling ESRC and JNU datasets.

A. Test set

The test set is a subset of the Stirling ESRC face database
that contains a number of 2D images, video sequences as
well as 3D face scans of more than 100 subjects. The 2D
and 3D faces in the Stirling ESRC dataset were captured
under 7 different expression variations. To create the test
set, 2000 2D neutral face images, including 656 high-quality
and 1344 low-quality images, of 135 subjects were selected
from the Stirling ESRC 3D face database. The high quality
images were captured in constrained scenarios with good
lighting conditions. The resolution of a high quality face
image is higher than 1000×1000. In contrast, the low quality

5http://www.3dmd.com/
6http://pics.stir.ac.uk/



images or video frames were captured with a variety of
image degradation types such as image blur, low resolution,
poor lighting, large scale pose rotation etc. Some examples
of the selected 2D face images are shown in Fig. 1.

B. Validation set

Participants are allowed to use the validation set to fine-
tune the hyper-parameters of their 3D face reconstruction
systems, if required. The validation set contains 161 2D in-
the-wild images of 10 subjects and their ground-truth 3D
face scans. The validation set is a part of the JNU 3D
face dataset collected by the Jiangnan University using a
3dMDface system. The full JNU 3D face dataset has the
high resolution 3D face scans of 774 Asian subjects. For
more details of the JNU 3D face dataset, please refer to [6].

III. PROTOCOL & EVALUATION METRICS

This section details the exact protocol, rules, and evalua-
tion metrics to be used for the competition.

A. Protocol

The task of the competition is to reconstruct a subject’s
neutral 3D face shape from a single 2D input image. Multi-
image fitting that allows the use of multiple input images
of the same subject for the task of reconstruction of the
subject’s neutral face is not included in this competition.
However, we leave this potential evaluation protocol as our
future work.

For single image reconstruction, an algorithm is expected
to take as input a single 2D image and output a neutral 3D
face shape of the subject’s identity. An algorithm should be
run on each of the images of each subject individually. In
addition, one set of parameters has to be used for all images
of all subjects. No fine-tuning is allowed on a per-image or
per-subject basis.

B. Evaluation metrics

Given an input 2D image or a set of 2D images, we
use the 3D Root-Mean-Square Error (3D-RMSE) between
the reconstructed 3D face shape and the ground truth 3D
face scan calculated over an area consisting of the inner
face as the evaluation metric. The area is defined as each
vertex in the ground truth scan that is inside the radius
from the face centre. The face centre is computed as the
point between the annotated nose bottom point and the
nose bridge (which is computed as the middle of the two
annotated eye landmarks): face centre = nose bottom +
0.3× (nose bridge− nose bottom). The radius is computed
as the average of the outer-eye-distance and the distance
between nose bridge and nose bottom, times a factor of 1.2:
radius = 1.2× (outer eye dist+nose dist)/2. The radius is
defined in a relative way because it is desired that the radius
covers roughly the same (semantic) area on each scan, and
we would like to avoid that e.g. with a very wide face, the

Figure 2. Left: The pre-defined seven landmarks used for the rigid
alignment of the predicted face mesh with its ground-truth. In order: 1)
right eye outer corner, 2) right eye inner corner, 3) left eye inner corner,
4) left eye outer corner, 5) nose bottom, 6) right mouth corner, and 7) left
mouth corner. Right: The area over which face reconstruction is evaluated
is defined for each ground-truth 3D scan by a radius around the face centre.
This radius is relative to the subject’s inter-ocular and eye-nose distance
(see Section III-B for details).

evaluated area would cover a smaller part of that particular
face. Typically, the resulting radius is around 80 mm. The
area is depicted for an example scan in Figure 2.

The following steps are performed to compute the 3D-
RMSE between two meshes:

1) The predicted and ground truth meshes will be rigidly
aligned (by translation, rotation, and scaling). Scal-
ing is compensated for because participants’ resulting
meshes might be in a different coordinate system,
whereas the ground truth scans are in the unit of
millimetres. The rigid alignment is based on seven
points: both inner and outer eye corners, the nose
bottom and the mouth corners (see Fig. 2). The ground
truth scans have been annotated with these seven
points, whereas participants are expected to specify
those on their resulting meshes.

2) For each vertex in the ground truth 3D face scan,
the distance is computed to the closest point on the
surface of the predicted mesh. These distances are
used to compute the 3D-RMSE as well as more
specific analysis of a 3D face reconstruction system,
e.g. the distribution of errors across different face
regions.

A Python script is provided7, performing the alignment
and distance computations. The output of the script is an
ordered list of distances.

IV. SUMMARY OF APPROACHES

Three 3D face reconstruction systems have been evaluated
for the competition, including the system submitted by
the Biometrics Research Lab at the Sichuan University
(SCU-BRL) [17] and two baseline systems implemented by
the competition organisers from the University of Surrey.
Results were provided in the form of text files with per-
vertex errors. In addition, participants were asked to provide

7https://github.com/patrikhuber/fg2018-competition



a brief summary of their approach. The descriptions below
are based upon these provided summaries. A thorough
comparison will then be presented in Section V.

A. University of Surrey

The baseline systems developed by the Centre for Vision,
Speech and Signal Processing (CVSSP) from the University
of Surrey have three main stages: face detection, facial
landmark localisation and 3D face reconstruction.

1) Face detection: For face detection, the Multi-Task
CNN (MTCNN) face detector was adopted to obtain the
bounding box for each input 2D face image [18]. However,
the faces of some low resolution images with extreme pose
variations were missed by MTCNN. For those face images,
a bounding box regression approach was used to obtain the
face bounding box, as described in [19], [20].

2) Facial landmark detection: To perform facial land-
mark localisation, the CNN6 model [21], a simple CNN-
based facial landmark localisation algorithm, was adopted.
The model was trained on multiple in-the-wild face datasets,
including the HELEN [22], LFPW [23], ibug [24] and
AFW [25] datasets. These datasets have 3837 2D face
images and each image has 68 facial landmarks annotated by
the iBUG group from Imperial College London. In addition,
a subset of the Multi-PIE [26] face dataset was also used
for the CNN6 model training. This Multi-PIE subset has
25,200 2D face images and each face image was manually
annotated using 68 facial landmarks [27]. Some examples
from the Stirling low quality subset with the detected 68
facial landmarks using the CNN6 are shown in Fig. 3.

3) 3D face reconstruction: Given an input 2D image as
well as its 2D facial landmarks, the eos fitting algorithm
is used to recover the 3D face of the input [16]. The eos
fitting algorithm reconstructs the 3D face shape based on
the landmarks, using a 3D morphable shape and expression
model. It consists of shape identity and blendshapes fitting, a
scaled orthographic projection camera model, and a dynamic
face contour fitting. For this evaluation, the SFM 3448
shape-only model was used, with the 6 standard Surrey
expression blendshapes. The fitting was run for 5 iterations,
fitting all shape coefficients of the model, and with a shape
regularisation parameter of λ = 30. We use the term
‘MTCNN-CNN6-eos’ for this system.

The eos fitting algorithm is tailored for real-time 3D face
fitting applications with a speed of more than 100 fps on
a single CPU. It only relies on 2D facial landmarks, and
does not use any texture information. Therefore, it would
be interesting to explore more complicated 3D face model
fitting algorithms exploiting textural information. To this
end, we also evaluated the 3DDFA 3D face model fitting
algorithm [7]. To be more specific, we first use the MTCNN
and CNN6 to obtain the same 68 facial landmark for an
input 2D image. Then the 68 landmarks are used to initialise

Figure 3. Some examples of the detected 68 landmarks by CNN6.

the 3DDFA fitting algorithm provided by its authors8. As
face model, the 3DDFA fitting uses a modified Basel Face
Model [28] with expressions. We use the term ‘MTCNN-
CNN6-3DDFA’ for this system.

B. Sichuan University (SCU-BRL)

The system developed by the Biometrics Research Lab at
the Sichuan University is based on a novel method that is
able to reconstruct 3D faces from arbitrary number of 2D im-
ages using 2D facial landmarks. The method is implemented
via cascaded regression in shape space. It can effectively
exploit complementary information in unconstrained images
of varying poses and expressions. It begins with extracting
2D facial landmarks on the images, and then progressively
updates the estimated 3D face shape for the input subject via
a set of cascaded regressors, which are off-line learned based
on a training set of pairing 3D face shapes and unconstrained
face images.

1) Facial landmark detection: For 2D facial landmark
detection, the state-of-the-art Face Alignment Network
(FAN) [8] was adopted by in the system developed by SCU-
BRL. For some low quality images, FAN failed, and they
manually annotated the 68 landmarks for them.

2) 3D face reconstruction: Given an arbitrary number
of unconstrained face images {Ii}pi=1, 1 ≤ p ≤ N of a
subject, the goal is to reconstruct the person-specific frontal
and neutral 3D face shape of the subject. We represent the
3D face shape by S ∈ R3×q based on the 3D coordinates
of its q vertices, and denote a subset of S with columns
corresponding to l annotated landmarks (l = 68 in our
implementation) as SL. The projection of SL on 2D planes
are represented by Ui ∈ R2×l. The relationship between 2D
facial landmarks Ui and its corresponding 3D landmarks SL

8http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm



Table I
A COMPARISON OF DIFFERENT SYSTEMS IN TERMS OF 3D-RMSE.

Method HQ LQ Full
MTCNN-CNN6-eos 2.70±0.88 2.78±0.95 2.75±0.93
MTCNN-CNN6-3DDFA 2.04±0.67 2.19±0.70 2.14±0.69
SCU-BRL 2.65±0.67 2.87±0.81 2.81±0.80

can be described as:

Ui ≈ fiPiRi(SL + ti), (1)

where fi is the scale factor, Pi is the orthographic projection
matrix, Ri is the 3×3 rotation matrix and ti is the translation
vector. Here, we employ weak perspective projection Mi

to approximate the 3D-to-2D mapping. To fully utilize the
correlation between the landmarks on all the images, we
concatenate them to form a unified 2D facial landmark
vector U = (U1,U2, · · · ,Up,Up+1, · · · ,UN ), where Ui

are zero vectors for (p+ 1) ≤ i ≤ N .
We reconstruct S from the given ‘ground truth’ landmarks

U∗ (either manually marked or automatically detected by a
standalone method) for the unconstrained image set {Ii}pi=1.
Let Sk−1 be the currently reconstructed 3D shape after
k − 1 iterations. The corresponding landmarks Uk−1 can
be obtained by projecting Sk−1 onto the image according to
Eqn. (1). Then the updated 3D shape Sk can be computed
by

Sk = Sk−1 +Wk(U∗ −Uk−1), (2)

where Wk is the regressor in kth iteration.
The K regressors {Wk}K1 involved in the reconstruction

process can be learned via optimising the following objective
function over the m training samples (each sample contains
up to N annotated 2D images and one ground truth 3D face
shape):

argmin
Wk

m∑
j=1

‖ (S∗
j − Sk−1

j )−Wk(U∗
j −Uk−1

j ) ‖22, (3)

where {S∗
j ,U

∗
j} is one training sample consisting of ground

truth landmarks U∗
j on the images of a subject and the

subject’s ground truth frontal and neutral 3D face shape S∗
j .

A comprehensive description of the SCU-BRL system can
be found in the paper Tian et al. [17].

V. EVALUATION RESULTS

We first compare the average RMSE of different systems
on the benchmark dataset. The results are reported in Table I.

It is clear that the low quality subset is more challenging
than the high quality subset. All the three methods have
higher reconstruction errors on the low quality subset. How-
ever, this difference is minor for all the three systems. The
reason is two-fold. First, the high quality subset contains
many 2D face images with extreme pose variations, up to

(a) High quality set

(b) Low quality set

(c) Full set

Figure 4. A comparison of different systems in their CED curves. The
results were evaluated on the (a) high quality subset, (b) low quality subset,
and (c) full set of the test set selected from the Stirling ESRC dataset. The
evaluation metric is RMSE in millimetre.

±90◦, as well as strong lighting changes thus makes the
task more challenging. Second, both MTCNN+CNN6+eos
and SCU-BRL systems are landmark-only 3D face recon-
struction methods and their performance only relies on the
accuracy of the detected 2D facial landmarks. The area of
2D facial landmark detection has already been very well
developed for unconstrained facial images in the presence



of a variety of image degradation types. Thus the results
of these two landmark-only fitting algorithms measured on
the high quality and low quality subsets do not have very
big difference. For the MTCNN+CNN6+3DDFA system, it
uses the same state-of-the-art CNN-based face detector and
landmark detector, but as initialisation of the 3D face fitting
stage of 3DDFA, which is also CNN-based and trained on
a large number of unconstrained faces. In addition, 3DDFA
has multiple iterations cascaded for 3D face reconstruction
using textural information. This is also why it performs
significantly better than the other two landmark-only fitting
systems. In this scenario, the 3DDFA algorithm benefits
immensely from the detected 2D facial landmarks by the
state-of-the-art CNN6 model.

To better understand the performance of different systems,
we also plot the Cumulative Error Distribution (CED) curves
of the three systems in Fig. 4. The MTCNN+CNN6+3DDFA
outperforms the other two systems that only fit a 3D shape
model to 2D facial landmarks. This is an interesting result
for the community. It means that the textural information
plays a very important role for high-performance 3D face
reconstruction. However, it should be noted that the fitting
of 3DDFA involves multiple iterations with cascaded CNN
networks hence the speed of such a system cannot satisfy
the requirement of a real-time application. The speed of the
3DDFA implementation provided by its authors is around
1.5 fps tested on a Intel Core i7 6700HQ CPU @ 3.2GHz.
In contrast, the speed of eos is more than 100 fps, which is
orders of magnitude faster than 3DDFA.

It should be noted that the SCU-BRL group also con-
ducted multi-image fitting that used all the input 2D image
of a subject for 3D face reconstruction. On average, their
system reduces the 3D-RMSE from 2.81±0.80 to 2.26±0.72
on the benchmark dataset by fitting all the input 2D images
together for a subject. This result shows that the SCU-BRL
system can effectively utilise the complementary information
in multiple images for 3D face reconstruction. For more
details of their multi-image fitting method, please refer
to [17].

VI. CONCLUSION

A new benchmark dataset was presented in this paper,
used for the evaluation of 3D face reconstruction from single
2D face images in the wild. To this end, a subset of the
Stirling ESRC 3D face dataset has been used to create the
test set. The competition was conducted on the real 2D face
images of 135 subjects and the evaluation was performed
based on their real 3D face ground truth scans. To facilitate
the competition, an evaluation protocol as well as a Python
script were provided.

We have compared three state-of-the-art 3D face re-
construction systems on the proposed benchmark dataset,
including a system submitted by the Sichuan University
and two baseline approaches implemented by the organisers

from the University of Surrey. From the performance dif-
ference between purely landmark based and texture based
reconstruction methods one main conclusion is that texture
bolsters a significant amount of extra information about 3D
shape. The exploitation of this, however, comes at a price
of increased computational time.

The presented benchmark with evaluation data and pro-
tocol, together with a comprehensive analysis of different
competing algorithms, support future evaluation in the com-
munity.
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