499 research outputs found

    Color Constancy Convolutional Autoencoder

    Full text link
    In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.Comment: 6 pages, 1 figure, 3 table

    Color Constancy Adjustment using Sub-blocks of the Image

    Get PDF
    Extreme presence of the source light in digital images decreases the performance of many image processing algorithms, such as video analytics, object tracking and image segmentation. This paper presents a color constancy adjustment technique, which lessens the impact of large unvarying color areas of the image on the performance of the existing statistical based color correction algorithms. The proposed algorithm splits the input image into several non-overlapping blocks. It uses the Average Absolute Difference (AAD) value of each block’s color component as a measure to determine if the block has adequate color information to contribute to the color adjustment of the whole image. It is shown through experiments that by excluding the unvarying color areas of the image, the performances of the existing statistical-based color constancy methods are significantly improved. The experimental results of four benchmark image datasets validate that the proposed framework using Gray World, Max-RGB and Shades of Gray statistics-based methods’ images have significantly higher subjective and competitive objective color constancy than those of the existing and the state-of-the-art methods’ images

    MIMT: Multi-Illuminant Color Constancy via Multi-Task Learning

    Full text link
    The assumption of a uniform light color distribution, which holds true in single light color scenes, is no longer applicable in scenes that have multiple light colors. The spatial variability in multiple light colors causes the color constancy problem to be more challenging and requires the extraction of local surface/light information. Motivated by this, we introduce a multi-task learning method to estimate multiple light colors from a single input image. To have better cues of the local surface/light colors under multiple light color conditions, we design a multi-task learning framework with achromatic-pixel detection and surface-color similarity prediction as our auxiliary tasks. These tasks facilitate the acquisition of local light color information and surface color correlations. Moreover, to ensure that our model maintains the constancy of surface colors regardless of the variations of light colors, we also preserve local surface color features in our model. We demonstrate that our model achieves 47.1% improvement compared to a state-of-the-art multi-illuminant color constancy method on a multi-illuminant dataset (LSMI). While single light colors are not our main focus, our model also maintains a robust performance on the single illuminant dataset (NUS-8) and provides 18.5% improvement on the state-of-the-art single color constancy method.Comment: 10 pages, 6 figure

    Algorithms for the enhancement of dynamic range and colour constancy of digital images & video

    Get PDF
    One of the main objectives in digital imaging is to mimic the capabilities of the human eye, and perhaps, go beyond in certain aspects. However, the human visual system is so versatile, complex, and only partially understood that no up-to-date imaging technology has been able to accurately reproduce the capabilities of the it. The extraordinary capabilities of the human eye have become a crucial shortcoming in digital imaging, since digital photography, video recording, and computer vision applications have continued to demand more realistic and accurate imaging reproduction and analytic capabilities. Over decades, researchers have tried to solve the colour constancy problem, as well as extending the dynamic range of digital imaging devices by proposing a number of algorithms and instrumentation approaches. Nevertheless, no unique solution has been identified; this is partially due to the wide range of computer vision applications that require colour constancy and high dynamic range imaging, and the complexity of the human visual system to achieve effective colour constancy and dynamic range capabilities. The aim of the research presented in this thesis is to enhance the overall image quality within an image signal processor of digital cameras by achieving colour constancy and extending dynamic range capabilities. This is achieved by developing a set of advanced image-processing algorithms that are robust to a number of practical challenges and feasible to be implemented within an image signal processor used in consumer electronics imaging devises. The experiments conducted in this research show that the proposed algorithms supersede state-of-the-art methods in the fields of dynamic range and colour constancy. Moreover, this unique set of image processing algorithms show that if they are used within an image signal processor, they enable digital camera devices to mimic the human visual system s dynamic range and colour constancy capabilities; the ultimate goal of any state-of-the-art technique, or commercial imaging device
    corecore