15,248 research outputs found

    Developing satellite ground control software through graphical models

    Get PDF
    This paper discusses a program of investigation into software development as graphical modeling. The goal of this work is a more efficient development and maintenance process for the ground-based software that controls unmanned scientific satellites launched by NASA. The main hypothesis of the program is that modeling of the spacecraft and its subsystems, and reasoning about such models, can--and should--form the key activities of software development; by using such models as inputs, the generation of code to perform various functions (such as simulation and diagnostics of spacecraft components) can be automated. Moreover, we contend that automation can provide significant support for reasoning about the software system at the diagram level

    Geometry in the Transition from Primary to Post-Primary

    Get PDF
    This article is intended as a kind of precursor to the document Geometry for Post-primary School Mathematics, part of the Mathematics Syllabus for Junior Certicate issued by the Irish National Council for Curriculum and Assessment in the context of Project Maths. Our purpose is to place that document in the context of an overview of plane geometry, touching on several important pedagogical and historical aspects, in the hope that this will prove useful for teachers.Comment: 19 page

    Decoupling of brain function from structure reveals regional behavioral specialization in humans

    Full text link
    The brain is an assembly of neuronal populations interconnected by structural pathways. Brain activity is expressed on and constrained by this substrate. Therefore, statistical dependencies between functional signals in directly connected areas can be expected higher. However, the degree to which brain function is bound by the underlying wiring diagram remains a complex question that has been only partially answered. Here, we introduce the structural-decoupling index to quantify the coupling strength between structure and function, and we reveal a macroscale gradient from brain regions more strongly coupled, to regions more strongly decoupled, than expected by realistic surrogate data. This gradient spans behavioral domains from lower-level sensory function to high-level cognitive ones and shows for the first time that the strength of structure-function coupling is spatially varying in line with evidence derived from other modalities, such as functional connectivity, gene expression, microstructural properties and temporal hierarchy

    Knowledge From Pictures (KFP)

    Get PDF
    The old maxim goes: 'A picture is worth a thousand words'. The objective of the research reported in this paper is to demonstrate this idea as it relates to the knowledge acquisition process and the automated development of an expert system's rule base. A prototype tool, the Knowledge From Pictures (KFP) tool, has been developed which configures an expert system's rule base by an automated analysis of and reasoning about a 'picture', i.e., a graphical representation of some target system to be supported by the diagnostic capabilities of the expert system under development. This rule base, when refined, could then be used by the expert system for target system monitoring and fault analysis in an operational setting. Most people, when faced with the problem of understanding the behavior of a complicated system, resort to the use of some picture or graphical representation of the system as an aid in thinking about it. This depiction provides a means of helping the individual to visualize the bahavior and dynamics of the system under study. An analysis of the picture augmented with the individual's background information, allows the problem solver to codify knowledge about the system. This knowledge can, in turn, be used to develop computer programs to automatically monitor the system's performance. The approach taken is this research was to mimic this knowledge acquisition paradigm. A prototype tool was developed which provides the user: (1) a mechanism for graphically representing sample system-configurations appropriate for the domain, and (2) a linguistic device for annotating the graphical representation with the behaviors and mutual influences of the components depicted in the graphic. The KFP tool, reasoning from the graphical depiction along with user-supplied annotations of component behaviors and inter-component influences, generates a rule base that could be used in automating the fault detection, isolation, and repair of the system
    corecore