607 research outputs found

    Identity-based encryption with hierarchical key-insulation in the standard model

    Get PDF
    A key exposure problem is unavoidable since it seems human error can never be eliminated completely, and key-insulated encryption is one of the cryptographic solutions to the problem. At Asiacrypt\u2705, Hanaoka et al. introduced hierarchical key-insulation functionality, which is attractive functionality that enhances key exposure resistance, and proposed an identity-based hierarchical key-insulated encryption (hierarchical IKE) scheme in the random oracle model. In this paper, we first propose the hierarchical IKE scheme in the standard model (i.e., without random oracles). Our hierarchical IKE scheme is secure under the symmetric external Diffie–Hellman (SXDH) assumption, which is a static assumption. Particularly, in the non-hierarchical case, our construction is the first IKE scheme that achieves constant-size parameters including public parameters, secret keys, and ciphertexts. Furthermore, we also propose the first public-key-based key-insulated encryption (PK-KIE) in the hierarchical setting by using our technique

    Efficient Identity-Based Encryption with Hierarchical Key-Insulation from HIBE

    Get PDF
    Hierarchical key-insulated identity-based encryption (HKIBE) is identity-based encryption (IBE) that allows users to update their secret keys to achieve (hierarchical) key-exposure resilience, which is an important notion in practice. However, existing HKIBE constructions have limitations in efficiency: sizes of ciphertexts and secret keys depend on the hierarchical depth. In this paper, we first triumph over the barrier by proposing simple but effective design methodologies to construct efficient HKIBE schemes. First, we show a generic construction from any hierarchical IBE (HIBE) scheme that satisfies a special requirement, called MSK evaluatability introduced by Emura et al. (Designs, Codes and Cryptography, 2021). It provides several new and efficient instantiations since most pairing-based HIBE schemes satisfy the requirement. It is worth noting that it preserves all parameters\u27 sizes of the underlying HIBE scheme, and hence we obtain several efficient HKIBE schemes under the kk-linear assumption in the standard model. Since MSK evaluatability is dedicated to pairing-based HIBE schemes, the first construction restricts pairing-based instantiations. To realize efficient instantiation from various assumptions, we next propose a generic construction of an HKIBE scheme from any plain HIBE scheme. It is based on Hanaoka et al.\u27s HKIBE scheme (Asiacrypt 2005), and does not need any special properties. Therefore, we obtain new efficient instantiations from various assumptions other than pairing-oriented ones. Though the sizes of secret keys and ciphertexts are larger than those of the first construction, it is more efficient than Hanaoka et al.\u27s scheme in the sense of the sizes of master public/secret keys

    Identity-based Hierarchical Key-insulated Encryption without Random Oracles

    Get PDF
    Key-insulated encryption is one of the effective solutions to a key exposure problem. At Asiacrypt\u2705, Hanaoka et al. proposed an identity-based hierarchical key-insulated encryption (hierarchical IKE) scheme. Although their scheme is secure in the random oracle model, it has a ``hierarchical key-updating structure,\u27\u27 which is attractive functionality that enhances key exposure resistance. In this paper, we first propose the hierarchical IKE scheme without random oracles. Our hierarchical IKE scheme is secure under the symmetric external Diffie-Hellman (SXDH) assumption, which is known as the simple and static one. Particularly, in the non-hierarchical case, our construction is the first IKE scheme that achieves constant-size parameters including public parameters, secret keys, and ciphertexts. Furthermore, we also propose the first public-key-based key-insulated encryption (PK-KIE) in the hierarchical setting by using our technique

    Group Selection and Key Management Strategies for Ciphertext-Policy Attribute-Based Encryption

    Get PDF
    Ciphertext-Policy Attribute-Based Encryption (CPABE) was introduced by Bethencourt, Sahai, and Waters, as an improvement of Identity Based Encryption, allowing fine grained control of access to encrypted files by restricting access to only users whose attributes match that of the monotonic access tree of the encrypted file. Through these modifications, encrypted files can be placed securely on an unsecure server, without fear of malicious users being able to access the files, while allowing each user to have a unique key, reducing the vulnerabilites associated with sharing a key between multiple users. However, due to the fact that CPABE was designed for the purpose of not using trusted servers, key management strategies such as efficient renewal and immediate key revocation are inherently prevented. In turn, this reduces security of the entire scheme, as a user could maliciously keep a key after having an attribute changed or revoked, using the old key to decrypt files that they should not have access to with their new key. Additionally, the original CPABE implementation provided does not discuss the selection of the underlying bilinear pairing which is used as the cryptographic primitive for the scheme. This thesis explores different possibilites for improvement to CPABE, in both the choice of bilinear group used, as well as support for key management that does not rely on proxy servers while minimizing the communication overhead. Through this work, it was found that nonsupersingular elliptic curves can be used for CPABE, and Barreto-Naehrig curves allowed the fastest encryption and key generation in CHARM, but were the slowest curves for decryption due to the large size of the output group. Key management was performed by using a key-insulation method, which provided helper keys which allow keys to be transformed over different time periods, with revocation and renewal through key update. Unfortunately, this does not allow immediate revocation, and revoked keys are still valid until the end of the time period during which they are revoked. Discussion of other key management methods is presented to show that immediate key revocation is difficult without using trusted servers to control access

    Efficient signature verification and key revocation using identity based cryptography

    Get PDF
    Cryptography deals with the development and evaluation of procedures for securing digital information. It is essential whenever multiple entities want to communicate safely. One task of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires trustworthy authentication and authorization. This is achieved by deploying cryptographic keys. When dynamic membership behavior and identity theft come into play, revocation of keys has to be addressed. Additionally, in use cases with limited networking, computational, or storage resources, efficiency is a key requirement for any solution. In this work we present a solution for signature verification and key revocation in constraned environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive overheads, we achieve revocation through a single multicast message without significant computational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the approach with efficient creation and verification of signatures. Our solution offers a framework for transforming a suitable signature scheme to a so-called Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical conditions for transformation and precise security notions. Thereby, the framework allows a novel combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms originally designed for confidentiality in group communications. Practical applicability of our framework is demonstrated by transforming four well-established IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Security. We design and implement a testbed for evaluating these kind of cryptographic schemes on different computing- and networking hardware, typical for constrained environments. Measurements on this testbed provide evidence that the transformations are practicable and efficient. The revocation complexity in turn is significantly reduced compared to existing solutions. Some of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital Signature Algorithm (ECDSA). The presented transformations allow future application on schemes beyond IBS or ECC. This includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is similarly relevant. Our work provides the basis for such solutions currently under investigation.Die Kryptographie ist ein Instrument der Informationssicherheit und beschäftigt sich mit der Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist für die sichere Kommunikation zwischen mehreren Entitäten unerlässlich. Ein Bestandteil sind digitale Signaturen, für deren Erstellung man kryptographische Schlüssel benötigt. Bei der Verifikation muss zusätzlich die Authentizität und die Autorisierung des Unterzeichners gewährleistet werden. Dafür müssen Schlüssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kommunikationssystemen mit häufig wechselnden Teilnehmern zum Einsatz kommen, müssen die Schlüssel auch widerruflich sein. In Anwendungsfällen mit eingeschränkter Netz-, Rechen- und Speicherkapazität ist die Effizienz ein wichtiges Kriterium. Diese Arbeit liefert ein Rahmenwerk, mit dem Schlüssel effizient widerrufen und Signaturen effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermöglicht unser Ansatz den Widerruf von Schlüsseln mit einer einzelnen Nachricht innerhalb einer Kommunikationsgruppe. Dabei fällt nur geringer zusätzlicher Rechen- oder Speicheraufwand an. Ferner vervollständigt die Verwendung von Identitätsbasierter Kryptographie (IBC, Identity Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen. Hierfür liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Signaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer präzisen Definition der Sicherheitsziele werden für jeden Schritt mathematische Vorbedingungen zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von Identitätsbasierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen zum Schlüsselaustausch, die ursprünglich für vertrauliche Gruppenkommunikation entwickelt wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBSVerfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryptography (ECC) erlaubt es, den geringen Kapazitäten der Zielgeräte gerecht zu werden. Eine Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicherheitsziele erreicht werden. Zur praktischen Evaluierung unserer und ähnlicher kryptographischer Verfahren wird in dieser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen bestückt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als auch eine deutliche Reduktion der Komplexität gegenüber anderen Lösungsansätzen. Einige der von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen. Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits von IBS und ECC. Dadurch können auch Anwendungsfälle aus dem Bereich der Post-Quanten-Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen Grundlagen für solche Erweiterungen, die aktuell diskutiert und entwickelt werden

    An Efficient V2I Authentication Scheme for VANETs

    Get PDF

    Intrusion-Resilient Integrity in Data-Centric Unattended WSNs

    Get PDF
    Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security

    Key-updatable public-key encryption with keyword search (Or: How to realize PEKS with efficient key updates for IoT environments)

    Get PDF
    Security and privacy are the key issues for the Internet of Things (IoT) systems. Especially, secure search is an important functionality for cooperation among users\u27 devices and non-trusted servers. Public-key encryption with keyword search (PEKS) enables us to search encrypted data and is expected to be used between a cloud server and users\u27 mobile devices or IoT devices. However, those mobile devices might be lost or stolen. For IoT devices, it might be difficult to store keys in a tamper-proof manner due to prohibitive costs. In this paper, we deal with such a key-exposure problem on PEKS and introduce the concept of PEKS with key-updating functionality, which we call key-updatable PEKS (KU-PEKS). Specifically, we propose two models of KU-PEKS: the key-evolution model and the key-insulation model. In the key-evolution model, a pair of public and secret keys can be updated if needed (e.g., the secret key is exposed). In the key-insulation model, the public key remains fixed while the secret key can be updated if needed. The former model makes a construction simple and more efficient than the latter. On the other hand, the latter model is preferable for practical use since a user never updates their public key. We show constructions in each model in a black-box manner. We also give implementation results on Raspberry Pi 3, which can be regarded as a reasonable platform of IoT devices

    Generic Constructions of Parallel Key-Insulated Encryption: Stronger Security Model and Novel Schemes

    Get PDF
    Exposure of a secret key is a significant threat in practice. As a notion of security against key exposure, Dodis et al. advocated key-insulated security, and proposed concrete key-insulated encryption (KIE) schemes in which secret keys are periodically updated by using a physically ``insulated\u27\u27 helper key. For significantly reducing possibility of exposure of the helper key, Hanaoka et al. further proposed the notion of parallel KIE (PKIE) in which multiple helper keys are used in alternate shifts. They also pointed out that in contrast to the case of the standard KIE, PKIE cannot be straightforwardly obtained from identity-based encryption (IBE). In this paper, we first discuss that previous security models for PKIE are somewhat weak, and thus re-formalize stronger security models for PKIE. Then we clarify that PKIE can be generically constructed (even in the strenghthened security models) by using a new primitive which we call one-time forward secure public key encryption (OTFS-PKE) and show that it is possible to construct OTFS-PKE from arbitrary IBE or hierarchical IBE (without degenerating into IBE). By using our method, we can obtain various new PKIE schemes which yield desirable properties. For example, we can construct first PKIE schemes from lattice or quadratic residuosity problems (without using bilinear maps), and PKIE with short ciphertexts and cheaper computational cost for both encryption and decryption. Interestingly, the resulting schemes can be viewed as the partial solutions to the open problem left by Libert, Quisquarter and Yung in PKC\u2707

    A survey on smart grid communication system

    Get PDF
    published_or_final_versio
    • …
    corecore