384 research outputs found

    Identity-Based Directed Signature Scheme from Bilinear Pairings

    Get PDF
    In a directed signature scheme, a verifier can exclusively verify the signatures designated to himself, and shares with the signer the ability to prove correctness of the signature to a third party when necessary. Directed signature schemes are suitable for applications such as bill of tax and bill of health. This paper studies directed signatures in the identity-based setting. We first present the syntax and security notion that includes unforgeability and invisibility, then propose a concrete identity-based directed signature scheme from bilinear pairings. We then prove our scheme existentially unforgeable under the computational Diffie-Hellman assumption, and invisible under the decisional Bilinear Diffie-Hellman assumption, both in the random oracle model

    An efficient ID- based directed signature scheme from bilinear pairings

    Get PDF
    A directed signature scheme allows a designated verifier to directly verify a signature issued to him, and a third party to check the signature validity with the help of the signer or the designated verifier as well. Directed signatures are applicable where the signed message is sensitive to the signature receiver. Due to its merits, directed signature schemes are suitable for applications such as bill of tax and bill of health. In this paper, we proposed an efficient identity based directed signature scheme from bilinear pairings. Our scheme is efficient than the existing directed signature schemes. In the random oracle model, our scheme is unforgeable under the Computational Diffie-Hellman (CDH) assumption, and invisible under the Decisional Bilinear Diffie-Hellman (DBDH)

    Exclusion-intersection encryption

    Get PDF
    Identity-based encryption (IBE) has shown to be a useful cryptographic scheme enabling secure yet flexible role-based access control. We propose a new variant of IBE named as exclusion-intersection encryption: during encryption, the sender can specify the targeted groups that are legitimate and interested in reading the documents; there exists a trusted key generation centre generating the intersection private decryption keys on request. This special private key can only be used to decrypt the ciphertext which is of all the specified groups' interests, its holders are excluded from decrypting when the documents are not targeted to all these groups (e.g., the ciphertext of only a single group's interest). While recent advances in cryptographic techniques (e.g., attribute-based encryption or wicked IBE) can support a more general access control policy, the private key size may be as long as the number of attributes or identifiers that can be specified in a ciphertext, which is undesirable, especially when each user may receive a number of such keys for different decryption power. One of the applications of our notion is to support an ad-hoc joint project of two or more groups which needs extra helpers that are not from any particular group. © 2011 IEEE.published_or_final_versionThe 1st IEEE International Workshop on Security in Computers, Networking and Communications (SCNC 2011) in conjuntion with IEEE INFOCOM 2011, Shanghai, China, 10-15 April 2011. In Conference Proceedings of INFOCOM WKSHPS, 2011, p. 1048-1053The 1st IEEE International Workshop on Security in Computers, Networking and Communications (SCNC 2011) in conjuntion with IEEE INFOCOM 2011, Shanghai, China, 10-15 April 2011. In Conference Proceedings of INFOCOM WKSHPS, 2011, p. 1048-105

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    An Observation about Variations of the Diffie-Hellman Assumption

    Get PDF
    We generalize the Strong Boneh-Boyen (SBB) signature scheme to sign vectors; we call this scheme GSBB. We show that if a particular (but most natural) average case reduction from SBB to GSBB exists, then the Strong Diffie-Hellman (SDH) and the Computational Diffie-Hellman (CDH) have the same worst-case complexity

    Cryptographic Key Distribution In Wireless Sensor Networks Using Bilinear Pairings

    Get PDF
    It is envisaged that the use of cheap and tiny wireless sensors will soon bring a third wave of evolution in computing systems. Billions of wireless senor nodes will provide a bridge between information systems and the physical world. Wireless nodes deployed around the globe will monitor the surrounding environment as well as gather information about the people therein. It is clear that this revolution will put security solutions to a great test. Wireless Sensor Networks (WSNs) are a challenging environment for applying security services. They differ in many aspects from traditional fixed networks, and standard cryptographic solutions cannot be used in this application space. Despite many research efforts, key distribution in WSNs still remains an open problem. Many of the proposed schemes suffer from high communication overhead and storage costs, low scalability and poor resilience against different types of attacks. The exclusive usage of simple and energy efficient symmetric cryptography primitives does not solve the security problem. On the other hand a full public key infrastructure which uses asymmetric techniques, digital signatures and certificate authorities seems to be far too complex for a constrained WSN environment. This thesis investigates a new approach to WSN security which addresses many of the shortcomings of existing mechanisms. It presents a detailed description on how to provide practical Public Key Cryptography solutions for wireless sensor networks. The contributions to the state-of-the-art are added on all levels of development beginning with the basic arithmetic operations and finishing with complete security protocols. This work includes a survey of different key distribution protocols that have been developed for WSNs, with an evaluation of their limitations. It also proposes Identity- Based Cryptography (IBC) as an ideal technique for key distribution in sensor networks. It presents the first in-depth study of the application and implementation of Pairing- Based Cryptography (PBC) to WSNs. This is followed by a presentation of the state of the art on the software implementation of Elliptic Curve Cryptography (ECC) on typical WSNplatforms. New optimized algorithms for performing multiprecision multiplication on a broad range of low-end CPUs are introduced as well. Three novel protocols for key distribution are proposed in this thesis. Two of these are intended for non-interactive key exchange in flat and clustered networks respectively. A third key distribution protocol uses Identity-Based Encryption (IBE) to secure communication within a heterogeneous sensor network. This thesis includes also a comprehensive security evaluation that shows that proposed schemes are resistant to various attacks that are specific to WSNs. This work shows that by using the newest achievements in cryptography like pairings and IBC it is possible to deliver affordable public-key cryptographic solutions and to apply a sufficient level of security for the most demanding WSN applications

    Pairing-based authentication protocol for V2G networks in smart grid

    Full text link
    [EN] Vehicle to Grid (V2G) network is a very important component for Smart Grid (SG), as it offers new services that help the optimization of both supply and demand of energy in the SG network and provide mobile distributed capacity of battery storage for minimizing the dependency of non-renewable energy sources. However, the privacy and anonymity of users¿ identity, confidentiality of the transmitted data and location of the Electric Vehicle (EV) must be guaranteed. This article proposes a pairing-based authentication protocol that guarantees confidentiality of communications, protects the identities of EV users and prevents attackers from tracking the vehicle. Results from computing and communications performance analyses were better in comparison to other protocols, thus overcoming signaling congestion and reducing bandwidth consumption. The protocol protects EVs from various known attacks and its formal security analysis revealed it achieves the security goals.Roman, LFA.; Gondim, PRL.; Lloret, J. (2019). Pairing-based authentication protocol for V2G networks in smart grid. Ad Hoc Networks. 90:1-16. https://doi.org/10.1016/j.adhoc.2018.08.0151169
    corecore