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AN OBSERVATION ABOUT VARIATIONS OF THE

DIFFIE-HELLMAN ASSUMPTION

Raghav Bhaskar, Karthekeyan Chandrasekaran, Satyanaryana V. Lokam,
Peter L. Montgomery, Ramarathnam Venkatesan, Yacov Yacobi

Abstract. We generalize the Strong Boneh-Boyen (SBB) signature scheme
to sign vectors; we call this scheme GSBB. We show that if a particular (but
most natural) average case reduction from SBB to GSBB exists, then the
Strong Diffie-Hellman (SDH) and the Computational Diffie-Hellman (CDH)
have the same worst-case complexity.

1. Introduction. Many researchers have looked at the Boneh-Boyen

signature scheme for Anonymous Credentials applications. In credential systems

the credentials are usually represented as vectors. One can easily sign a vector

using any ordinary digital signature scheme, by first hashing the vector into a

relatively short message and then signing it. However, credential systems are very

intricate, and have many additional requirements. The ability to sign vectors
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without destroying the algebraic structure may help accomplish some of those

difficult requirements (but may also open the doors to new attacks, so one must

be careful). Our complexity-theoretic result may be of interest in such cases.

In complexity theory, we argue about relations between the computational

complexities of two problems using reductions. That problem A is efficiently

reducible to problem B, means that we could use B as a subroutine (oracle) in

an algorithm that solves A efficiently. An algorithm is efficient if it runs in a

time polynomial in the length of its input. A reduction can be worst-case or

average-case. The former implies only that the most difficult instances of A

are at least as hard as the most difficult instances of B for a given probability

distribution. The latter establishes that the average instances of A are at least as

hard as the average instances of B. Such reductions are more interesting and more

difficult to establish. The Computational Diffie-Hellman (CDH) assumption was

introduced in 1976 [4] and is assumed to be hard. It is the basis for the classic

Diffie-Hellman cryptosystems. The Strong Diffie-Hellman assumption (SDH) was

introduced in [3], and is the foundation for modern pairing-based cryptosystems

initially introduced in that paper and subsequently used in many others. It is

known that SDH is reducible to CDH, but it is not known whether CDH is

reducible to SDH even in the worst case.

We generalize the Strong Boneh-Boyen (SBB) signature scheme to sign

vectors (GSBB). There is a trivial worst-case polynomial time reduction from

SBB to GSBB. We show that if a particular average case reduction exists then

the Strong Diffie-Hellman (SDH) and the Computational Diffie-Hellman (CDH)

have the same worst case complexity.

2. The modified Weil pairings. Let p be a prime and F = Zp the

finite field of order p. Let E be an elliptic curve of order p over F. Let P ∈ E

be a generator of E. The modified Weil-pairing function ê : E ×E → F
∗ satisfies

the following properties:

1. ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ E and all a, b ∈ F.

2. If P is a generator of E then g = ê(P,P ) is a generator of F.

For more details on general bilinear groups see [3, Section 2.2].
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3. The Strong BB system. We start from a special case of [3], which

is as strong as the general SBB, and then generalize it to sign vectors.

Global public parameters: An elliptic curve group E over field F, both

of a large prime order p, and a bilinear pairing function ê : E × E → F; P ∈ E

a generator of E.

Secret key: x, y, random integers mod p.

Public key: P ∈ E, U = xP , V = yP , z = ê(P,P ) ∈ F, z 6= 1.

Signing: To sign an integer message m mod p, pick a random r mod p.

The signature is (σ, r), where

σ =
1

x + m + yr
P ∈ E.

Verification:

ê(σ,U + mP + rV ) = z.

4. Generalization. A variation of the above signature system may be

useful for signing vectors of credentials (a person has a vector of credentials; each

entry in the vector is a credential). Suppose that the message is a vector m =

(m1,m2, . . . ,mt) ∈ Z
t
p. Let the secret key be x, y, where now x = (x0, x1, . . . xt),

xi, y are integers mod p and the public key is P ∈ E, Ui = xiP , i = 0, 1, 2, . . . , t,

V = yP , z = ê(P,P ) ∈ F, z 6= 1. The signature is (σ, r), where

σ =
1

x0 +
∑t

i=1
(ximi) + yr

P ∈ E.

Verification:

ê(σ,U0 +

t∑

i=1

miUi + rV ) = z.

5. Reductions. To simplify the discussion we look at the case t = 2.

The claims hold for t > 2 as well. Let α be the reduction from the SBB system,

with message=m, to the GSBB generalized system where the message is a vector

(1,m1,m2)). Throughout this paper, r ∈R T means that element r is picked at
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random from finite set T with uniform distribution. Here is a concise description

of the systems, which hints at a natural reduction:

SBB GSBB

Secret x, y ∈R Zp x0, x1, x2, y ∈R Zp

Public
P ∈ E, U = xP, V = yP,

z = ê(P,P ) 6= 1
P ∈ E, Ui = xiP, i = 0, 1, 2

V = yP, z = ê(P,P ) 6= 1

Sign r ∈R Zp, σ =
1

x + m + yr
P r ∈R Zp, σ =

1

x0 + m1x1 + m2x2 + yr
P

Verify ê(σ,U + mP + rV ) = z? ê(σ,U0 + m1U1 + m2U2 + rV ) = z?

5.1. The restricted reduction. In the following assignments, variables

of any SBB instance appear on the left and are mapped (→) onto variables of

GSBB.

P → P , U → U0, V → V (these assignments imply z → z, x → x0,

y → y). Pick any x1, x2, m1, m2 subject to the constraint: m = x1m1 + x2m2.

The signature returned by oracle GSBB is the signature needed in the SBB

instance. This restricted reduction is a worst case reduction. It says nothing

about average case complexity [7], [5], [2], [8].

An average case reduction from problem A to problem B should be valid,

efficient, and the domination property should hold. Roughly speaking, Valid

means that the given reduction algorithm with oracle B usually solves A. Effi-

cient means that on the average it runs in polynomial time in the input length.

Domination assures that instances of A map “evenly” into the space of instances

of B (i.e., that they do not all map into a small subset of all instances of B).

In the previous reduction, validity and efficiency hold, but domination

does not hold. We elaborate on the latter. The following definition of Distribu-

tional Decision Problem is taken from [2] (where it is likewise defined for search

problems).

Definition 1. A Distributional Decision Problem is a pair (D,µ) where

D : {0, 1}∗ → {0, 1} and µ : {0, 1}∗ → [0, 1] is a probability distribution function.
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Let (R,µ1) and (S, µ2) denote the distributional decision problems cor-

responding to SBB and GSBB, respectively. Here µi is the distribution function

(and µ′
i is the corresponding density function). Let M be a probabilistic or-

acle Turing Machine that reduces (R,µ1) to (S, µ2), The probability Pr[v :=

M(u)] is taken over M ′s internal coin flips (the corresponding notation in [2] is

AskM (u, v)).

Definition 2. [2] Domination holds if there exists a constant, c > 0,

such that for every v ∈ {0, 1}∗,

µ′
2
(v) ≥

1

|v|c
·

∑

u∈{0,1}∗

Pr[v := M(u)] · µ′
1
(u).

In our restricted reduction, the machine, M, maps short strings to longer

strings, they are longer by roughly a factor t ≥ 2. Let r > 1 be the exact factor

of expansion. Let |u| = n. Then M : {0, 1}n → {0, 1}rn.

Here is an example of a uniform distribution µ:

∀x ∈ {0, 1}∗, µ′(x) = |x|−22−|x|.

We show that (S, µ2) does not dominate (R,µ1) with respect to the re-

stricted reduction (playing the role of M) if both µ1 and µ2 are uniform (as

above).

In the restricted reduction, for every v ∈ S, there is exactly one u ∈ R,

such that Pr[v := M(u)] = 1, and for all other values of u, Pr[v := M(u)] = 0.

This simplifies the domination condition to µ′
2
(v) ≥

1

|v|c
µ′

1
(u), where u is the

particular value for which Pr[v := M(u)] = 1. For r > 1 it is impossible that

lim
|x|→∞

r−2|x|−22−r|x| ≥
1

rc|x|c
|x|−22−|x|,

since for large enough |x|, the exponentials are the dominant factors. We sum-

marize these observations as follows:

Lemma 1. Let (R,µ1) and (S, µ2) be distributional decision problems,

and let M : {0, 1}n → {0, 1}rn be a reduction from (R,µ1) to (S, µ2)with r > 1,

such that for every v ∈ S there is exactly one u ∈ R, such that Pr[v := M(u)] = 1,
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and for all other values of u Pr[v := M(u)] = 0. Then domination does not hold

for this reduction when both µ1 and µ2 are uniform.

We can hope for domination, and hence for average case reduction, if

Pr[v := M(u)] = o(exp(−r|u|)). This happens if we can choose u and v inde-

pendently. This calls for a non-restricted reduction.

5.2. A hypothetical non-restricted reduction. Given an arbitrary

GSBB signature (i.e., without the previous restriction m =
t∑

i=1

ximi) the Ran-

domized Turing Machine, M , that reduces SBB to GSBB has to efficiently com-

pute an SBB signature for a given message m. The machine M is given m, it

tosses its internal coins, and picks pairs (xi,mi), i = 1, 2, . . . , t, with uniform

distribution. It then computes b, s.t. m = b +
t∑

i=1

ximi. Given

σ2 =
1

x0 +
∑t

i=1
ximi + yr

P.

it computes

σ1 =
1

x + m + yr
P.

The above reduction can be summarized as follows:

Given: P, b,
1

z + b
P,

Find:
1

z
P.

To make it fully general (subject only to the restriction that the two

problems are over the same elliptic curve group, and using the same generator)

we should allow multiple oracle calls, so the input becomes P, bi,
1

z + bi

P , i =

1, 2, . . . f(), where f() is polynomial in the security parameter. The output stays

the same. Then in the reduction we invoke the oracle γ := 1-SDH f() times. The

oracle γ is probabilistic, so each time it produces a new bi.

5.3. Proof of security. To show that GSBB is secure we need to con-

sider the setting of Strong Existential Un-forgeability ([3, Section 2.1]). It allows

multiple challenges to the signer, after which an attacker computes a signature

on a new message. SBB is existentially unforgeable. A random Turing reduc-

tion from SBB to GSBB would prove the same for GSBB, where both problems
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allow multiple challenges. Let the number of challenges of SBB be nSBB, and

the number of challenges to GSBB (in a reduction) be nGSBB = f(nSBB), where

f() is any polynomial. If a reduction M exists for any nSBB , then it exists for

nSBB = 0. We show that if a particular form of the latter exists then there is

a reduction from Computational Diffie-Hellman (CDH) to Strong Diffie-Hellman

(SDH) that succeeds with the same probability. We proceed to define that special

reduction, for the identity polynomial f(). The case of a general polynomial f()

is only slightly more complex. This is the most general reduction subject to the

restriction that the two problems are over the same elliptic curve group, and

using the same generator.

Let z = x + m + yr mod p, and define b ∈ [0, p) such that z + b = x0 +
t∑

i=1

ximi + yr mod p. The machine that performs the reduction has a subroutine

M with the following basic input/output relations:

Given: P, b,
1

z + b
P,

Find:
1

z
P.

It is very unusual to use a reduction or a subroutine of a reduction (M) as

a problem to which we reduce another problem. Usually we draw directed graphs

that describe reduction relations among problems, where the problems are nodes

and the reductions are directed edges. But a reduction can also be defined as a

problem, to and from which we make other reductions. It is also unusual to have

the OR/AND of problems as nodes1. We are about to do all of the above.

5.4. Strong Diffie-Hellman vs. Computational Diffie-Hellman.

The q-Strong Diffie-Hellman (q-SDH) problem was defined in [3] with all the

trappings of average case complexity, and SBB was proven there as hard to forge

as q-SDH. Moreover, [3] proved a high lower bound on its complexity for a generic

(“blackbox”) group. Still, it is not known if an SDH oracle can help solving the

much more mature Computational Diffie-Hellman (CDH) problem, published in

1976 (a reduction the other way exists).

We show that the existence of an average case reduction from (R,µ1) to

(S, µ2) implies the worst-case equivalence of CDH and SDH.

Let M be a non-restricted reduction, as defined in the previous subsection.
We use 1-SDH as a short-hand for 1-SDH with ǫ = 1 (a special case of q-SDH,

1Joux [6] has done OR before.
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but sufficient for worst case reductions). I = inversion in the elliptic curve group.
In the following short problem description, the group orders are given, but we
omit them from the descriptions. The I/O relations defining these problems are:

Given Find

M P, b,
1

z + b
P

1

z
P

CDH R,uR, vR uvR

1-SDH
with ε = 1

P, zP

(
c,

1

z + c
P

)

Inversion P, zP 1

z
P

Problem M is an average case reduction. Yet we can view it as a function
(a problem defined by input/output) and analyze worst case reductions to it and
from it. In the list below, all the reductions are worst case reductions. We show
that:

1. Oracles M and 1-SDH together solve I (Lemma 2 below, see also [3], last
paragraph of sec. 2.3),

2. Problem 1-SDH is reducible to problem CDH (well-known, see also Lemma
3 below),

3. Problems I and CDH are reducible to each other (see Lemma 4, and [1]),

4. We conclude from the above observations that if M is efficiently computable
then problems CDH and 1-SDH are worst case reducible to each other in
polynomial time. This problem has been open for a few years now.

Lemma 2. Using oracles M and 1-SDH we can solve I.

P r o o f. Given I’s input call oracle 1-SDH to find

(
c,

1

z + c
P

)
. Then

call oracle M to find
1

z
P. �

For the sake of self-containment here is a reduction from 1 − SDH to
CDH. Notation: Let A = w1R, B = w2R. Define βR(A,B) = w1w2R.

Lemma 3. There exists a worst-case reduction from problem 1-SDH to
problem CDH.
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P r o o f. Given 1-SDH’s input, compute R = P + zP = (1 + z)P.

βR(P,P ) = βR(
1

1 + z
R,

1

1 + z
R) =

1

(1 + z)2
R =

1

1 + z
P.

This solves 1-SDH for c = 1. �

Lemma 4. CDH and I are polynomially reducible to each other.

P r o o f. (a) CDH is polynomially reducible to I: Given oracle I, which
constructs (1/z)P from P and zP , first construct z2P . We do it as follows:
Compute (1/z)P , (1+z)P , (1/(1+z))P , (1/z)P − (1/(1+z))P = (1/(z +z2))P ,
(z + z2)P, z2P .

To get CDH (given R, uR, vR, find uvR) we use the above squarer
oracle twice as follows: Compute (u + v)R, and (u− v)R. Call the squarer twice
to compute (u+v)2R, and (u−v)2R. Their difference is 4uvR. 4−1 exists modulo
the known odd group order hence we can find uvR.

(b) I is polynomially reducible to CDH: To solve I, where we are given
P and zP and want to find (1/z)P , let R = zP , and let u = v = 1/z. This
is an unknown value, but we know uR = vR = (1/z)zP = P . Call oracle
βR(uR, vR) = uvR = (1/z)(1/z)zP = (1/z)P . �

6. Open problems.

1. Is there an average case reduction from SBB to GSBB?
2. Can there be an average case reduction from SBB to GSBB (subject only

to the restriction that the two problems are over the same elliptic curve
group, and using the same generator) that would not imply that problem
M is easy?
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