2,764 research outputs found

    REARRANGE BASED ON IDENTITY AND APPLICATION IN EMAIL IN THE CLOUD

    Get PDF
    Within a CIBPRE system, a trusted key generation center initializes the CIBPRE machine parameters and generates private keys for users. To securely share files to multiple recipients, a sender can secure the files by using the recipients' identities and file discussion conditions. If the sender later wishes to talk about some files related to a similar condition together with other receivers, the sender can delegate a tagged re-encrypted encryption key using the condition for the proxy, as well as the parameters to create the encryption secret of re-archiving. It is beyond the original recipients of these files. Conditional PREs, based on identity and transmission PREs, are suggested for flexible applications. CIBPRE allows a sender to secure a note to multiple receivers by indicating the identities of those receivers, and can also delegate a re-encryption encryption response to a proxy to convert the first encrypted text into a substitute for a different group of recipients. Recipients by CPRE, IPRE and BPRE, this document proposes a flexible primitive known as conditional emission based on PRE identity and formalizes its semantic security. In addition, the re-encryption encryption key can be connected with a condition so that only the corresponding encryption texts can be encrypted again, allowing the initial sender to enforce access control of their remote encryption texts in a very detailed. Finally, we show a credit card application on our CIBPRE to protect the cloud email system that is beneficial to existing secure email systems according to very good privacy protocol or file-based encryption identity

    Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security

    Get PDF
    Recently, a variant of proxy re-encryption, named conditional proxy re-encryption (C-PRE), has been introduced. Compared with traditional proxy re-encryption, C-PRE enables the delegator to implement fine-grained delegation of decryption rights, and thus is more useful in many applications. In this paper, based on a careful observation on the existing definitions and security notions for C-PRE, we reformalize more rigorous definition and security notions for C-PRE. We further propose a more efficient C-PRE scheme, and prove its chosenciphertext security under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. In addition, we point out that a recent C-PRE scheme fails to achieve the chosen-ciphertext security

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Validating a Web Service Security Abstraction by Typing

    Get PDF
    An XML web service is, to a first approximation, an RPC service in which requests and responses are encoded in XML as SOAP envelopes, and transported over HTTP. We consider the problem of authenticating requests and responses at the SOAP-level, rather than relying on transport-level security. We propose a security abstraction, inspired by earlier work on secure RPC, in which the methods exported by a web service are annotated with one of three security levels: none, authenticated, or both authenticated and encrypted. We model our abstraction as an object calculus with primitives for defining and calling web services. We describe the semantics of our object calculus by translating to a lower-level language with primitives for message passing and cryptography. To validate our semantics, we embed correspondence assertions that specify the correct authentication of requests and responses. By appeal to the type theory for cryptographic protocols of Gordon and Jeffrey's Cryptyc, we verify the correspondence assertions simply by typing. Finally, we describe an implementation of our semantics via custom SOAP headers.Comment: 44 pages. A preliminary version appears in the Proceedings of the Workshop on XML Security 2002, pp. 18-29, November 200

    PRE+: dual of proxy re-encryption for secure cloud data sharing service

    Get PDF
    With the rapid development of very large, diverse, complex, and distributed datasets generated from internet transactions, emails, videos, business information systems, manufacturing industry, sensors and internet of things etc., cloud and big data computation have emerged as a cornerstone of modern applications. Indeed, on the one hand, cloud and big data applications are becoming a main driver for economic growth. On the other hand, cloud and big data techniques may threaten people and enterprises’ privacy and security due to ever increasing exposure of their data to massive access. In this paper, aiming at providing secure cloud data sharing services in cloud storage, we propose a scalable and controllable cloud data sharing framework for cloud users (called: Scanf). To this end, we introduce a new cryptographic primitive, namely, PRE+, which can be seen as the dual of traditional proxy re-encryption (PRE) primitive. All the traditional PRE schemes until now require the delegator (or the delegator and the delegatee cooperatively) to generate the re-encryption keys. We observe that this is not the only way to generate the re-encryption keys, the encrypter also has the ability to generate re-encryption keys. Based on this observation, we construct a new PRE+ scheme, which is almost the same as the traditional PRE scheme except the re-encryption keys generated by the encrypter. Compared with PRE, our PRE+ scheme can easily achieve the non-transferable property and message-level based fine-grained delegation. Thus our Scanf framework based on PRE+ can also achieve these two properties, which is very important for users of cloud storage sharing service. We also roughly evaluate our PRE+ scheme’s performance and the results show that our scheme is efficient and practica for cloud data storage applications.Peer ReviewedPostprint (author's final draft

    Offline privacy preserving proxy re-encryption in mobile cloud computing

    Get PDF
    This paper addresses the always online behavior of the data owner in proxy re- encryption schemes for re-encryption keys issuing. We extend and adapt multi-authority ciphertext policy attribute based encryption techniques to type-based proxy re-encryption to build our solution. As a result, user authentication and user authorization are moved to the cloud server which does not require further interaction with the data owner, data owner and data users identities are hidden from the cloud server, and re-encryption keys are only issued to legitimate users. An in depth analysis shows that our scheme is secure, flexible and efficient for mobile cloud computing

    Controlled secure social cloud data sharing based on a novel identity based proxy re-encryption plus scheme

    Get PDF
    Currently we are witnessing a rapid integration of social networks and cloud computing, especially on storing social media contents on cloud storage due to its cheap management and easy accessing at any time and from any place. However, how to securely store and share social media contents such as pictures/videos among social groups is still a very challenging problem. In this paper, we try to tackle this problem by using a new cryptographic primitive: identity based proxy re-encryption plus (IBPRE ), which is a variant of proxy re-encryption (PRE). In PRE, by using re-encryption keys, a ciphertext computed for Alice can be transferred to a new one for Bob. Recently, the concept of PRE plus (PRE) was introduced by Wang et al. In PRE, all the algorithms are almost the same as traditional PRE, except the re-encryption keys are generated by the encrypter instead of the delegator. The message-level based fine-grained delegation property and the weak non-transferable property can be easily achieved by PRE , while traditional PRE cannot achieve them. Based on the 3-linear map, we first propose a new IBE scheme and a new IBPRE scheme, we prove the security of these schemes and give the properties and performance analysis of the new IBPRE scheme. Finally, we propose a new framework based on this new primitive for secure cloud social data sharingPeer ReviewedPostprint (author's final draft
    • …
    corecore