4 research outputs found

    Identity based proxy re-encryption scheme (IBPRE+) for secure cloud data sharing

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In proxy re-encryption (PRE), a proxy with re-encryption keys can transfer aciphertext computed under Alice's public key into a new one, which can be decrypted by Bob only with his secret key. Recently, Wang et al. introduced the concept of PRE plus (PRE+) scheme, which can be seen as the dual of PRE, and is almost the same as PRE scheme except that the re-encryption keys are generated by the encrypter. Compared to PRE, PRE+ scheme can easily achieve two important properties: first, the message-level based fine-grained delegation and, second, the non-transferable property. In this paper, we extend the concept of PRE+ to the identity based setting. We propose a concrete IBPRE+ scheme based on 3-linear map and roughly discuss its properties. We also demonstrate potential application of this new primitive to secure cloud data sharing.Peer ReviewedPostprint (author's final draft

    Offline privacy preserving proxy re-encryption in mobile cloud computing

    Get PDF
    This paper addresses the always online behavior of the data owner in proxy re- encryption schemes for re-encryption keys issuing. We extend and adapt multi-authority ciphertext policy attribute based encryption techniques to type-based proxy re-encryption to build our solution. As a result, user authentication and user authorization are moved to the cloud server which does not require further interaction with the data owner, data owner and data users identities are hidden from the cloud server, and re-encryption keys are only issued to legitimate users. An in depth analysis shows that our scheme is secure, flexible and efficient for mobile cloud computing

    Towards an auditable cryptographic access control to high-value sensitive data

    Get PDF
    We discuss the challenge of achieving an auditable key management for cryptographic access control to high-value sensitive data. In such settings it is important to be able to audit the key management process - and in particular to be able to provide verifiable proofs of key generation. The auditable key management has several possible use cases in both civilian and military world. In particular, the new regulations for protection of sensitive personal data, such as GDPR, introduce strict requirements for handling of personal data and apply a very restrictive definition of what can be considered a personal data. Cryptographic access control for personal data has a potential to become extremely important for preserving industrial ability to innovate, while protecting subject's privacy, especially in the context of widely deployed modern monitoring, tracking and profiling capabilities, that are used by both governmental institutions and high-tech companies. However, in general, an encrypted data is still considered as personal under GDPR and therefore cannot be, e.g., stored or processed in a public cloud or distributed ledger. In our work we propose an identity-based cryptographic framework that ensures confidentiality, availability, integrity of data while potentially remaining compliant with the GDPR framework

    Identity based proxy re-encryption scheme (IBPRE+) for secure cloud data sharing

    No full text
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In proxy re-encryption (PRE), a proxy with re-encryption keys can transfer aciphertext computed under Alice's public key into a new one, which can be decrypted by Bob only with his secret key. Recently, Wang et al. introduced the concept of PRE plus (PRE+) scheme, which can be seen as the dual of PRE, and is almost the same as PRE scheme except that the re-encryption keys are generated by the encrypter. Compared to PRE, PRE+ scheme can easily achieve two important properties: first, the message-level based fine-grained delegation and, second, the non-transferable property. In this paper, we extend the concept of PRE+ to the identity based setting. We propose a concrete IBPRE+ scheme based on 3-linear map and roughly discuss its properties. We also demonstrate potential application of this new primitive to secure cloud data sharing.Peer Reviewe
    corecore