19,931 research outputs found

    Challenges in identifying and interpreting organizational modules in morphology

    Get PDF
    Form is a rich concept that agglutinates information about the proportions and topological arrangement of body parts. Modularity is readily measurable in both features, the variation of proportions (variational modules) and the organization of topology (organizational modules). The study of variational modularity and of organizational modularity faces similar challenges regarding the identification of meaningful modules and the validation of generative processes; however, most studies in morphology focus solely on variational modularity, while organizational modularity is much less understood. A possible cause for this bias is the successful development in the last twenty years of morphometrics, and specially geometric morphometrics, to study patters of variation. This contrasts with the lack of a similar mathematical framework to deal with patterns of organization. Recently, a new mathematical framework has been proposed to study the organization of gross anatomy using tools from Network Theory, so‐called Anatomical Network Analysis (AnNA). In this essay, I explore the potential use of this new framework—and the challenges it faces in identifying and validating biologically meaningful modules in morphological systems—by providing working examples of a complete analysis of modularity of the human skull and upper limb. Finally, I suggest further directions of research that may bridge the gap between variational and organizational modularity studies, and discuss how alternative modeling strategies of morphological systems using networks can benefit from each other

    From Network Structure to Dynamics and Back Again: Relating dynamical stability and connection topology in biological complex systems

    Full text link
    The recent discovery of universal principles underlying many complex networks occurring across a wide range of length scales in the biological world has spurred physicists in trying to understand such features using techniques from statistical physics and non-linear dynamics. In this paper, we look at a few examples of biological networks to see how similar questions can come up in very different contexts. We review some of our recent work that looks at how network structure (e.g., its connection topology) can dictate the nature of its dynamics, and conversely, how dynamical considerations constrain the network structure. We also see how networks occurring in nature can evolve to modular configurations as a result of simultaneously trying to satisfy multiple structural and dynamical constraints. The resulting optimal networks possess hubs and have heterogeneous degree distribution similar to those seen in biological systems.Comment: 15 pages, 6 figures, to appear in Proceedings of "Dynamics On and Of Complex Networks", ECSS'07 Satellite Workshop, Dresden, Oct 1-5, 200

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    Brain Modularity Mediates the Relation between Task Complexity and Performance

    Full text link
    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model (Chen & Deem, 2015) suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole brain organization from network neuroscience to cognitive processing.Comment: 47 pages; 4 figure
    • 

    corecore