72,150 research outputs found

    TOOL SUPPORT FOR CAPTURING THE ESSENCE OF A CONCERN IN SOURCE CODE

    Get PDF
    Software evolves constantly to adapt to changing user needs. As it evolves, it becomes progressively harder to understand due to accumulation of code changes, increasing code size, and the introduction of complex code dependencies. As a result, it becomes harder to maintain, exposing the software to potential bugs and degradation of code quality. High maintenance costs and diminished opportunities for software reusability and portability lead to reduced return on investment, increasing the likelihood of the software product being discarded or replaced. Nevertheless, we believe that there is value in legacy software due to the amount of intellectual efforts that have been invested in it. To extend its value, we utilize the common practice of identifying the pieces of code relevant to a given concern. Identifying relevant code is a manual process and relies on domain and code expertise. This makes it difficult to scale to large and complex code. In this thesis, we propose several automated approaches for capturing the essential code that represents a concern of interest. We utilize dynamic program analysis of execution traces to identify a relevant code subset. Information retrieval techniques are then utilized to improve the accuracy of the capture, refine the process, and verify the results

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    A document-like software visualization method for effective cognition of c-based software systems

    Get PDF
    It is clear that maintenance is a crucial and very costly process in a software life cycle. Nowadays there are a lot of software systems particularly legacy systems that are always maintained from time to time as new requirements arise. One important source to understand a software system before it is being maintained is through the documentation, particularly system documentation. Unfortunately, not all software systems developed or maintained are accompanied with their reliable and updated documents. In this case, source codes will be the only reliable source for programmers. A number of studies have been carried out in order to assist cognition based on source codes. One way is through tool automation via reverse engineering technique in which source codes will be parsed and the information extracted will be visualized using certain visualization methods. Most software visualization methods use graph as the main element to represent extracted software artifacts. Nevertheless, current methods tend to produce more complicated graphs and do not grant an explicit, document-like re-documentation environment. Hence, this thesis proposes a document-like software visualization method called DocLike Modularized Graph (DMG). The method is realized in a prototype tool named DocLike Viewer that targets on C-based software systems. The main contribution of the DMG method is to provide an explicit structural re-document mechanism in the software visualization tool. Besides, the DMG method provides more level of information abstractions via less complex graph that include inter-module dependencies, inter-program dependencies, procedural abstraction and also parameter passing. The DMG method was empirically evaluated based on the Goal/Question/Metric (GQM) paradigm and the findings depict that the method can improve productivity and quality in the aspect of cognition or program comprehension. A usability study was also conducted and DocLike Viewer had the most positive responses from the software practitioners

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    COBOL to Java and Newspapers Still Get Delivered

    Full text link
    This paper is an experience report on migrating an American newspaper company's business-critical IBM mainframe application to Linux servers by automatically translating the application's source code from COBOL to Java and converting the mainframe data store from VSAM KSDS files to an Oracle relational database. The mainframe application had supported daily home delivery of the newspaper since 1979. It was in need of modernization in order to increase interoperability and enable future convergence with newer enterprise systems as well as to reduce operating costs. Testing the modernized application proved to be the most vexing area of work. This paper explains the process that was employed to test functional equivalence between the legacy and modernized applications, the main testing challenges, and lessons learned after having operated and maintained the modernized application in production over the last eight months. The goal of delivering a functionally equivalent system was achieved, but problems remained to be solved related to new feature development, business domain knowledge transfer, and recruiting new software engineers to work on the modernized application.Comment: 4 pages, Accepted to be Published in: Proceedings of the 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), September 23-29, 2018, Madrid, Spai

    An Empirical Study of a Repeatable Method for Reengineering Procedural Software Systems to Object- Oriented Systems

    Get PDF
    This paper describes a repeatable method for reengineering a procedural system to an object-oriented system. The method uses coupling metrics to assist a domain expert in identifying candidate objects. An application of the method to a simple program is given, and the effectiveness of the various coupling metrics are discussed. We perform a detailed comparison of our repeatable method with an ad hoc, manual reengineering effort based on the same procedural program. The repeatable method was found to be effective for identifying objects. It produced code that was much smaller, more efficient, and passed more regression tests than the ad hoc method. Analysis of object-oriented metrics indicated both simpler code and less variability among classes for the repeatable method
    corecore