5 research outputs found

    An approach to resource-aware coscheduling for cmps.

    Get PDF
    ABSTRACT We develop real-time scheduling techniques for improving performance and energy for multiprogrammed workloads that scale nonuniformly with increasing thread counts. Multithreaded programs generally deliver higher throughput than single-threaded programs on chip multiprocessors, but performance gains from increasing threads decrease when there is contention for shared resources. We use analytic metrics to derive local search heuristics for creating efficient multiprogrammed, multithreaded workload schedules. Programs are allocated fewer cores than requested, and scheduled to space-share the CMP to improve global throughput. Our holistic approach attempts to co-schedule programs that complement each other with respect to shared resource consumption. We find application co-scheduling for performance and energy in a resource-aware manner achieves better results than solely targeting total throughput or concurrently co-scheduling all programs. Our schedulers improve overall energy delay (E*D) by a factor of 1.5 over time-multiplexed gang scheduling

    Machine Learning in Compiler Optimization

    Get PDF
    In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements

    Identifying Energy-Efficient Concurrency Levels Using Machine Learning

    Get PDF
    Abstract — Multicore microprocessors have been largely motivated by the diminishing returns in performance and the increased power consumption of single-threaded ILP microprocessors. With the industry already shifting from multicore to many-core microprocessors, software developers must extract more thread-level parallelism from applications. Unfortunately, low power-efficiency and diminishing returns in performance remain major obstacles with many cores. Poor interaction between software and hardware, and bottlenecks in shared hardware structures often prevent scaling to many cores, even in applications where a high degree of parallelism is potentially available. In some cases, throwing additional cores at a problem may actually harm performance and increase power consumption. Better use of otherwise limitedly beneficial cores by software components such as hypervisors and operating systems can improve system-wide performance and reliability, even in cases where power consumption is not a main concern. In response to these observations, we evaluate an approach to throttle concurrency in parallel programs dynamically. We throttle concurrency to levels with higher predicted efficiency from both performance and energy standpoints, and we do so via machine learning, specifically artificial neural networks (ANNs). One advantage of using ANNs over similar techniques previously explored is that the training phase is greatly simplified, thereby reducing the burden on the end user. Using machine learning in the context of concurrency throttling is novel. We show that ANNs are effective for identifying energy-efficient concurrency levels in multithreaded scientific applications, and we do so using physical experimentation on a state-of-the-art quad-core Xeon platform. I

    Performance Analysis of Complex Shared Memory Systems

    Get PDF
    Systems for high performance computing are getting increasingly complex. On the one hand, the number of processors is increasing. On the other hand, the individual processors are getting more and more powerful. In recent years, the latter is to a large extent achieved by increasing the number of cores per processor. Unfortunately, scientific applications often fail to fully utilize the available computational performance. Therefore, performance analysis tools that help to localize and fix performance problems are indispensable. Large scale systems for high performance computing typically consist of multiple compute nodes that are connected via network. Performance analysis tools that analyze performance problems that arise from using multiple nodes are readily available. However, the increasing number of cores per processor that can be observed within the last decade represents a major change in the node architecture. Therefore, this work concentrates on the analysis of the node performance. The goal of this thesis is to improve the understanding of the achieved application performance on existing hardware. It can be observed that the scaling of parallel applications on multi-core processors differs significantly from the scaling on multiple processors. Therefore, the properties of shared resources in contemporary multi-core processors as well as remote accesses in multi-processor systems are investigated and their respective impact on the application performance is analyzed. As a first step, a comprehensive suite of highly optimized micro-benchmarks is developed. These benchmarks are able to determine the performance of memory accesses depending on the location and coherence state of the data. They are used to perform an in-depth analysis of the characteristics of memory accesses in contemporary multi-processor systems, which identifies potential bottlenecks. However, in order to localize performance problems, it also has to be determined to which extend the application performance is limited by certain resources. Therefore, a methodology to derive metrics for the utilization of individual components in the memory hierarchy as well as waiting times caused by memory accesses is developed in the second step. The approach is based on hardware performance counters, which record the number of certain hardware events. The developed micro-benchmarks are used to selectively stress individual components, which can be used to identify the events that provide a reasonable assessment for the utilization of the respective component and the amount of time that is spent waiting for memory accesses to complete. Finally, the knowledge gained from this process is used to implement a visualization of memory related performance issues in existing performance analysis tools. The results of the micro-benchmarks reveal that the increasing number of cores per processor and the usage of multiple processors per node leads to complex systems with vastly different performance characteristics of memory accesses depending on the location of the accessed data. Furthermore, it can be observed that the aggregated throughput of shared resources in multi-core processors does not necessarily scale linearly with the number of cores that access them concurrently, which limits the scalability of parallel applications. It is shown that the proposed methodology for the identification of meaningful hardware performance counters yields useful metrics for the localization of memory related performance limitations
    corecore