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ABSTRACT
We develop real-time scheduling techniques for improving perfor-
mance and energy for multiprogrammed workloads that scale non-
uniformly with increasing thread counts. Multithreaded programs
generally deliver higher throughput than single-threaded programs
on chip multiprocessors, but performance gains from increasing
threads decrease when there is contention for shared resources.
We use analytic metrics to derive local search heuristics for cre-
ating efficient multiprogrammed, multithreaded workload sched-
ules. Programs are allocated fewer cores than requested, and sched-
uled to space-share the CMP to improve global throughput. Our
holistic approach attempts to co-schedule programs that comple-
ment each other with respect to shared resource consumption. We
find application co-scheduling for performance and energy in a
resource-aware manner achieves better results than solely targeting
total throughput or concurrently co-scheduling all programs. Our
schedulers improve overall energy delay (E*D) by a factor of 1.5
over time-multiplexed gang scheduling.

Categories and Subject Descriptors
D.4.1 [Software]: Operating Systems—Process Management

General Terms
Performance, Algorithms

Keywords
CMP, Scheduling, Performance, Energy Efficiency

1. INTRODUCTION
Processor frequencies no longer increase at historical rates, and

thus architects have focused on placing more processor cores on
chip to increase parallelism and throughput. This has led to a prolif-
eration of single chip multiprocessors (CMPs) with multiple levels
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of cache [14]. Multithreaded programs leverage shared-memory ar-
chitectures by partitioning workloads and distributing them among
different virtual threads, which are then allocated to available cores.
However, memory speeds still greatly lag behind processor speeds,
and observed memory latencies may increase further over unipro-
cessor chips due to cache coherence checks. This can result in poor
performance scaling with increasing thread counts.
Current high-performance scientific computing benchmarks ex-

hibit sub-linear performance gains with increasing numbers of threads
due to memory constraints. The standard convention has been to
use as many threads as possible, but this may not be the most
energy- or performance-efficient solution for multiprogrammed work-
loads of multithreaded programs. Even if devoting the entire CMP
to each application were to deliver best performance, that solution
remains infeasible without as many CMPs as applications in the
workload. In general, resources must be time-shared among appli-
cations.
There are three main types of job scheduling: time sharing, space

sharing, and space-time sharing. Many high-performance scientific
and commercial workloads running on shared-memory systems use
time-sharing of programs, gang-scheduling their respective threads
(in an effort to obtain best performance from less thrashing and
fewer conflicts for shared resources). This scheduling policy thus
provides the baseline for previous studies [3, 24, 6]. In contrast,
we discover that for several multithreaded programs better per-
formance results from space-sharing rather than time-sharing the
CMP. For cloud computing services, where customers are billed
based on compute cycles consumed, running programs in isola-
tion can cost more for cooling and energy than scheduling them
together.
We examine memory behavior to derive efficient runtime pro-

gram schedules for cases where the lack of sufficiently many pro-
cessors requires that programs be time-shared. In particular, we use
performance counters to identify when programs fail to scale. We
explore several local-search heuristics for scheduling multithreaded
programs concurrently and for choosing the number of threads per
program. Our approach improves use of computing resources and
reduces energy costs. We make several contributions:

1. We present an approach to power-aware thread scheduling
for multithreaded programs;

2. We introduce a space-sharing algorithm that holistically al-
locates processors based on resource consumption;

3. We introduce processor allocation based on the gain and loss
of neighboring applications;

4. We infer software behavior by monitoring execution, requir-
ing no hardware modification, user intervention, or recompi-
lation; and
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5. We verify our energy and performance benefits via real hard-
ware.

In effect, we perform a case study to elucidate scheduling trade-
offs due to workload interactions with respect to resource utiliza-
tion on CMPs. Our class of co-schedulers (HOLISYN) takes a
holistic, synergistic approach to scheduling: we co-schedule appli-
cations to achieve better energy and performance than when run-
ning them in isolation. We improve total CMP throughput by bal-
ancing hardware resource requirements of individual applications.
Applications selected to run concurrently complement one another
to reduce the probability of resource conflicts. The advantage of
our approach is that we can infer software behavior from hardware
performance counters, without requiring user knowledge or recom-
pilation. Our methodology asymptotically iterates to find efficient
configurations without having to sample the entire solution space of
application thread counts and programs that can be co-scheduled.
Since we monitor performance at runtime, we revert back to time-
sharing the CMPwhen co-scheduling reduces performance. We ex-
amine the power and energy advantages of adaptive co-scheduling
and space sharing based on each application’s resource consump-
tion. We test our approach on real hardware CMPs, chiefly an
eight-core SMP system composed of several dual-core CMPs. We
use the PARSEC benchmark suite [4] to illustrate scheduling trade-
offs for emerging multithreaded applications. For poorly scaling
programs, we deliver significant performance improvements over
both time-sharing and resource-oblivious, space-sharing methods.
Our schedulers improve overall performance by 19%, and reduce
energy consumption by 26%.

2. RELATEDWORK
There has been a large body of work on scheduling for shared re-

sources and quantitatively scaling applications and resources with
memory bottlenecks. We briefly cover each of these areas.

2.1 Thread Scheduling for Multiprogrammed
Parallel Applications

Prior studies have examined thread scheduling for parallel ap-
plications on large systems (composed of 32 or more processors).
These are either large shared-memory systems or discrete comput-
ers that use MPI for communication among program threads. Sev-
erance and Enbody [20] investigate hybrid time and space shar-
ing of single-threaded and multithreaded codes. They recommend
no particular scheduling algorithm, but their results indicate there
are performance advantages to dynamic space scheduling single-
threaded codes with multithreaded codes. Frachtenberg et al. [11]
devise a method of co-scheduling badly scaling programs at run-
time. They monitor MPI calls at run-time to determine when a
thread is blocked, which unfortunately requires applications to use
MPI calls to know when a thread is executing inefficiently. How-
ever, an application can be running inefficiently and never block
(software synchronization stall), which would not get co-scheduled
with their scheduler. Additionally, their implementation of adaptive
parallel co-scheduling fails to account for contention between co-
scheduling different programs concurrently. Corbalan et al. [6] ex-
amine the gains of space-sharing, time-sharing, and time and space-
sharing hybrid models. This work evaluates scheduling in the pre-
CMP era, with little sharing of resources, resulting in no contention
from co-scheduling of applications. The authors use Performance-
Driven Processor Allocation (PDPA) to allocate processors based
on program efficiency. Pre-determined high and low efficiency
points are used to decide whether thread allocation should be in-
creased, decreased, or remain unchanged. Decisions on expand-

ing or reducing a program’s processor allocation are taken without
considering the resource consumption of other programs on the sys-
tem, or the resource contention among programs. We extend this
work by improving on several such aspects of the scheduling algo-
rithm design. PDPA requires a performance analyzer that attempts
to guess program run time by examining loop iteration counts and
times. Also, since PDPA has no concept of fairness, efficiency is
maintained, but enforcing a fair balance of core allocations is not
possible. Unfortunately, since interactions among programs are not
accounted for, allocations for one program might degrade perfor-
mance for neighboring applications. PDPA also fails to account for
power, which has become a critical server design issue. We apply
and compare our work to the prior PDPA algorithm, highlighting
the problem of contention between programs when they are sched-
uled obliviously.
Corbalan et al. [7] leverage the malleability of programs to change

thread counts based on load, reducing context-switching and pro-
gram fragmentation. McGregor et al. [15] find methods of schedul-
ing programs that complement each other for CMPs composed of
SMT processors. Their solutions target workloads with fixed thread
counts for each program. Unfortunately, this work requires applica-
tions to have static thread counts, which is rarely the assumption of
software programmers who design their codes to work for a variety
of systems. Our work has no such limitation.

2.2 Thread Scheduling for Multiprogrammed
Serial Applications

There is significant work on scheduling threads and applications
on simultaneous multithreading (SMT) CPUs that execute multiple
threads on a single processor [25]. Scheduling for SMTs is com-
plex, since threads share the cache and all underlying resources
of the processor. All threads on an SMT compete for resources,
but throughput is not as sensitive to latency as on CMPs: when
one thread is bottlenecked, another thread can be swapped into the
processor. This is the premise behind the architecture of the Sun
Niagara, an eight-core CMP [14]. Parekh et al. [19] predict and
exploit resource requirements of individual threads to increase per-
formance on an SMT. De Vuyst et al. [26] look at varying numbers
of threads to reduce power consumption of less actively used cores,
Several research efforts [17, 18, 22] seek to identify and combat

the negative effects of parallel job scheduling of different applica-
tions together. They identify metrics for choosing single threaded
programs to execute together, attempting to reduce contention for
shared resources. Nesbit et al. [17, 18] implement policies that
ensure fair resource allocation across applications while trying to
minimize performance degradation. Suh et al. [22] promote schedul-
ing program combinations based solely on last-level cache misses.
They also propose memory-aware scheduling for multiprogrammed
workloads, consisting of single-threaded programs that share the
cache [23]. Fedorova et al. [10] estimate the L2 cache miss rates
and use their estimates to schedule suitable threads together on a
CMP of SMT cores. Their work on mitigating performance degra-
dation is orthogonal to ours. The scheduling, cache, and DRAM
channel allocation policies they describe can be leveraged by our
scheduler to enforce resource fairness or to reduce contention of
co-scheduled programs.

2.3 Thread Scaling
Significant work has been done on scaling of resources when per-

formance counters predict the processor will be resource limited.
Isci et al. [13] and Herbert et al. [12] examine scaling frequency
when the processor is constrained by memory bottlenecks. Bhadau-
ria and McKee [3] find that memory constraints often render the
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optimal thread count to be fewer than the total number of proces-
sors on a CMP. Curtis-maury et al. [8] predict efficient concurrency
levels for parallel regions of multithreaded programs. Suleman et
al. [24] examine the most efficient numbers of threads in the pres-
ence of bandwidth limitations and data-synchronization. We use
their bandwidth-aware threading (BAT) method as our baseline for
comparison. None of these studies explores scheduling for several
multithreaded programs simultaneously, which we specifically ad-
dress.

3. RESOURCE-AWARE CO-SCHEDULING
APPROACH

Multithreaded programs scale poorly with processor counts for
many reasons, including data contention, work partitioning over-
heads, large serial portions, and contention for shared architec-
tural resources. We focus on mitigating poor scaling from shared-
resource contention through co-scheduling. When executing a mix
of parallel workloads, time-sliced gang-scheduling improves av-
erage job response time, allows processor resource requests to be
completely satisfied, provides mutual prefetching among threads
sharing memory values via shared caches, and increases sharing
of the current working set across threads [16] (reducing contention
at all levels of memory). Scheduling and context-switching over-
heads are generally negligible with respect to the time slice interval.
Gang-scheduling all threads of a program ensures that it will not
halt at synchronization points (such as barriers and critical sections)
waiting for suspended threads. Gang-scheduling CMP resources
to each program in equal time quanta enforces fairness. Figure 1
shows how time-sliced gang-scheduling works for three applica-
tions on a four-core CMP. Program “App 1” runs at its maximum
thread count (here four), with other threads being gang-scheduled
on available cores in the first time quantum. At the next timeslice,
program “App 2” runs, after which program “App 3” runs, and the
process repeats with program “App 1”. This repeats until a program
finishes and is removed from scheduling, and remaining programs
continue to swap in and out.
Figure 2 is one example of symbiotic time- and space-scheduling,

with some applications being co-scheduled, and others being run
in isolation. In this hybrid policy, program “App 1” and program
“App 2” are each allocated half the number of threads requested.
This means each program runs about twice as long as normal, but
on half the cores. Program “App 3” executes as normal on all cores
during its time quantum. This hybrid scheduling is equally fair to
all the programs, since in one round-robin of time quanta (1-3),
each program receives an equal amount of all CPU resources. In
our hybrid scheduling, fairness is only defined to be true for CPU
utilization and not with respect to other resources such as network,
file system or memory bandwidth.
For our heuristics to co-schedule programs efficiently, we re-

quire applications to satisfy several conditions. These conditions
are the need for more cores than are available, sub-linear scaling,
malleable thread counts, constant and long application phases (pro-
gram phases should be long enough for heuristics to converge on
a solution within that time), and varied consumption of shared re-
sources. HPC applications designed for large multicore systems
often meet these requirements, since they need to ensure the par-
allel portion of work is greater than the overheads of thread schro-
nization. HPC applications also are designed to work with varying
amounts of resources available and generally involve large stable
loop structures, such as those seen in the NAS benchmark suite [1].

3.1 Quantifying Shared Resource Activity

If programs share a common resource that cannot be pipelined,
such as communication buses or off-chip memory, performance
will suffer when they are co-scheduled. To avoid such scenar-
ios, we quantify two different indicators of thread contention for
shared resources: cache miss rates and data bus contention. Unfor-
tunately, lack of on-chip performance counters limits the informa-
tion available at run-time on the resources a thread uses outside its
own core. Bus and cache use statistics provide some insight, but
not the complete picture, since programs contend for resources in
main memory, at the memory controller, and even at the network
interface. Heuristics, by their nature, cannot guarantee that every
co-scheduled set gives better performance, since they cannot eval-
uate all possible schedules.
Suh et al. [23] propose cache miss rates for program scheduling

and cache allocation. Last-level cache miss rates indicate what per-
centage of accesses result in off-chip traffic. Equation 1 defines the
last level cache miss rate as the number of misses normalized to the
total number of accesses to the last-level cache. Programs with a
higher percentage of misses increase communication bus utilization
and increase main memory accesses if requests are not satisfied by
other processors’ caches. For our CMP, each core’s L2 cache is the
last level cache before requests are relayed to neighboring cores’ L2
caches, and then to main-memory if requests are still not satisfied.

Last Level Cache Miss Rate=
Number of Cache Misses

Number of Cache Accesses
(1)

We quantify data bus contention by a vector composed of data
bus occupancy and data bus wait times. We order and number
applications in relation to each other, removing the scalar differ-
ence in magnitude between the two metrics (data bus communica-
tion and data bus wait times). We choose these metrics because all
processors share the bus, which is the last shared resource before
requests go off chip (we do not have access to performance moni-
toring counters on the memory controller). Our eight-core system
is composed of four dual-core CMPs, where even the two cores
on each die use the bus to communicate with each other (snoopy
broadcast based coherence protocol). Data bus occupancy repre-
sents the time the bus is busy transferring data. Equation 2 defines
data bus occupancy as the number of cycles data are transferred on
the bus normalized to the total number of program cycles. Suleman
et al. [24] use this metric to find the appropriate number of threads
for their Bandwidth Aware Threading (BAT) heuristic. Equation 3
shows data bus queue time as data bus wait time normalized to total
clock cycles.

Data Bus Occupancy =
Cycles Data Transferred Over Bus

Total Cycles Program Executes
(2)

Data Bus Queue Time=
Cycles Queued For Bus

Total Cycles Program Executes
(3)

We profile the PARSEC suite to gather average data communica-
tion, wait times, and cache miss rates. Table 1 orders applications
by increasing bus contention, and Table 2 orders applications by
increasing cache miss rates. Table 3 shows the thread counts for
lowest theoretical ED for each application.
Cache and bus contention metrics (Table 1 and Table 2) might be

expected to give the same orderings, but in practice this is not the
case. Some applications, such as bodytrack, feature prominently
near the top of both lists. Other applications, such as vips, are or-
dered differently. Data bus communication represents the ratio of
cycles spent computing versus spent transferring data. This is not
absolute, since in our super-scalar processor with prefetching, data
transfers can be pipelined with independent computation. The sec-
ond metric, bus wait queue sizes, depends on whether threads are
trying to access the shared bus simultaneously. Miss rates are inde-
pendent of absolute time spent transferring data, and are indepen-
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Figure 1: Time-Shared Gang-Scheduling of Three Parallel Appli-
cations on a Four Core CMP
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Figure 2: Time- and Space-Shared Gang-Scheduling of Three Par-
allel Applications on a Four Core CMP

Application
blackscholes
swaptions
bodytrack
vips
x264
freqmine
fluidanimate
dedup
ferret
facesim
canneal
streamcluster

Table 1: Applications Ordered by In-
creasing Bus Contention

Application Miss Rate
vips 1%
bodytrack 1%
blackscholes 2%
facesim 3%
swaptions 3%
x264 4%
freqmine 6%
dedup 9%
ferret 10%
streamcluster 21%
fluidanimate 38%
canneal 50%

Table 2: Applications Ordered by In-
creasing L2 Cache Miss Rate

Application Threads
blackscholes 8
bodytrack 5
canneal 3
dedup 2
facesim 4
ferret 8
fluidanimate 8
freqmine 8
streamcluster 2
swaptions 8
vips 8
x264 8

Table 3: Optimal Thread Concurrency
Based on Lowest ED

dent of program execution time, therefore programs with high miss
rates but relatively few memory operations are not actually bound
by communication or memory. For example, swaptions performs
relatively simple swapping operations, requiring little computation,
and resulting in data transfers consuming a larger portion of to-
tal execution time (in spite of its miss rate). blackscholes, a
floating-point intensive benchmark, spends more time computing
than accessing memory, and therefore its miss rate does not notice-
ably affect its thread scaling. canneal has a high miss rate, and
most of these misses are off-chip memory accesses. While these
data requests do not keep the bus very busy, off-chip accesses take
longer to satisfy, resulting in different orderings for different met-
rics.

3.2 Methodology and Metrics for Hardware
Aware Scheduling

We present a framework composed of a software performance
monitoring unit (PMU) and a performance monitoring scheduler
(PMS) that runs as a user-level process. We use this meta-scheduler
as a non-invasive proof of concept (as in Banikazemi et al. [2]).
Obviously, production systems would incorporate heuristics such
as ours into the kernel scheduler (as in Boneti et al. [5]). The PMU
examines performance scaling during execution by sampling sys-
tem performance during an application’s time quantum. We feed

this information to our scheduler, which reconfigures application
mappings as needed.
The PMS supervises executing programs, dictating how many

threads they can use. The scheduler incorporates feedback from
software/hardware interactions to make future scheduling decisions.
Figure 3 shows how hardware and software components interact. A
performance monitoring unit (PMU) tracks data from performance
counters. Specifically, the PMU tracks thread throughput for each
program, number of threads allocated per program, and resource
usage (cache miss rates and bus usage). The PMS queries the PMU
to discern whether throughput for the current application set is suf-
ficiently high, or if rescheduling is needed. The PMU also calls the
PMS when it detects an application phase change.
Scheduling application threads via time and space sharing re-

quires that the PMS know whether co-scheduling is beneficial for
an application, where beneficial is defined as improving thread through-
put. Improving thread throughput, however, is not a sufficient con-
dition for improving application performance, since an applica-
tion’s increase in time allocated may not be equivalent (in terms
of performance) to the space (processors) it forfeits. We define the
conditions for fairness and performance improvement below.

Fairness = New Cores
Old Cores

∗
New Time Quantum Size
Old Time Quantum Size

(4)
If a program gives up cores during its quantum, it should be re-
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Figure 3: Performance Monitoring Scheduler Overview Figure 4: Flowchart of Application Chooser Process

warded with extra time equal in clock cycles to space (cores) for-
feited. This extra time should come from the time quanta of the
application using the forfeited cores. This idea of fairness is quan-
tified in Equation 4, where fairness > 1 is more than fair, and fair-
ness< 1 is unfair. NewCores is the number an application has af-
ter it shares its space, and OldCores is how many were originally
scheduled. OldT imeQuantumSize is the original timeslice for
each application, and NewTimeQuantumSize is the timeslice
once programs are co-scheduled: time quanta are merged, and co-
scheduled applications share the same time quantum.

NTT = Instructions Retired
Threads ∗ ExecutionTime

(5)

We define a program’s Normalized Thread Throughput (NTT)
in Equation 5 as the number of instructions retired normalized by
the product of threads and execution time, where higher values are
better. The scaling efficiency of a program is determined by num-
ber of instructions retired per second divided by number of threads.
Programs that scale badly retire fewer instructions as the number of
threads increases (execution time fails to decrease proportionally).
We use this equation to compare thread counts because PARSEC
exhibits negligible instruction overhead with increasing numbers
of threads. In contrast, when parallelization does increase instruc-
tion counts, codes can be instrumented not to count synchroniza-
tion instructions [8], so instruction overheads of scaling numbers
of threads does not distort performance metrics.
Unless an application scales perfectly, it will always increase in

thread throughput at lower thread counts. However, co-scheduling
may increase contention, which can degrade thread throughput.
We quantify thread throughput gain (TTG) (Equation 6) as im-
provement from using a lower thread count when co-scheduling
programs, normalized to throughput at the maximum number of
threads for a given co-scheduling candidate. Both the lower thread
throughput and maximum thread throughput are computed using
Equation 5. Gains of less than one indicate a loss in thread through-
put at the lower thread count with co-scheduling. We define local
speedup (Equation 7) for an application as the product of fairness
and TTG. If a program receives less than a fair resource allocation,
but the thread throughput gain is very high, it can still experience
a speedup. If speedup is greater than one (Equation 7), then co-
scheduling improves performance for the application.

TTG = T hroughput At Lower T hread Count W ith Co−scheduling
Max T hread T hroughput

(6)

Speedup= Fairness∗(Thread Throughput Gain) (7)
The PMU tracks Performance Monitoring Counters (PMCs) and

calls the PMS when a phase change occurs, since thread throughput
can change based on the application’s current phase. We analyze

phase changes by examining events external to the core. We use
cache miss rates to indicate actual phase changes, since we are only
interested in processor activity that changes the stress put on shared
resources. For example, a program may change phases, but if these
different phases are not observable outside of the core, they should
not change the scaling behavior of that program. We assume our
programs are limited by the hardware and not by software design.

4. CO-SCHEDULING POLICIES
We formulate schedulers that choose programs to be run jointly,

also choosing the thread counts for each of the programs being co-
scheduled. Programs that are not co-scheduled are gang-scheduled.
Our goal is to retain the thread throughput that a program exhibits
at low thread counts even when it is co-scheduled. For fairness, we
assume that each program has equal priority, so our schedules try to
improve performance of the overall workload while not overtly pe-
nalizing any application (Equation 7 ≥ 1). We explore two heuris-
tics for creating schedules to space-share CMP resources. They
take different approaches in choosing applications and concurrency
levels. The first strives for fairness, optimizing for both local and
global ED. It first chooses applications to co-schedule, and then ap-
plication concurrency levels. The second optimizes for global ED
throughput by co-scheduling jobs at their best local thread counts
in a resource-oblivious manner. It first chooses good concurrency
levels for each application, and then chooses applications to co-
schedule.

4.1 HOLISYN Schedulers
The HOLISYN fair (symbiotic) scheduler improves overall through-

put per watt of the entire workload, while guaranteeing local through-
put per watt of individual programs composing that workload. To
choose appropriate programs to co-schedule, it samples each to
gather communication ratios at the highest thread counts, and then
suspends them to main memory. This phase takes place after data
is loaded into memory and tasks begin executing in parallel. The
approach requires no additional hardware, since current schedulers
already require memory and hard drive resources to swap programs
when their respective time quanta elapse. Programs that scale al-
most linearly are removed from the co-scheduling queue and run
in isolation since they scale well. We define a term α to indicate
how close to ideal scaling is sufficient for a program to not be co-
scheduled. There are two main components to our local search
heuristic, an application chooser and a thread chooser. The ap-
plication chooser picks which programs to co-schedule based on
resource consumption and co-scheduling interference. The thread
chooser picks which concurrency level to use for co-scheduled pro-
grams.
After initial application performance sampling, we create a list

sorted by resource consumption. The application chooser uses this
information to create co-schedules. The doubly linked list is sorted
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in ascending order with a pointer to the head (list A) as well as a
pointer to the tail (for a descending order list B). The application
chooser takes the following steps (and is depicted graphically in
Figure 4):
1. It chooses the high resource-usage program closest to the top
of list B, and adds it to (an initially empty) co-scheduling list
C, removing it from the original list.

2. It chooses the low resource-usage program closest to the top
of list A, adds it to list C, removing it from the original list.
It divides the number of cores round-robin (sorted by lowest
resource use) until no more unassigned cores remain. Thus,
if N is the number of cores available, each process receives
N/2 cores.

3. If the EDs for all applications co-scheduled are less than
what they were before co-scheduling, then Step 2 repeats.
If the ED for any application is worse after co-scheduling,
and if this is the first failed co-scheduling attempt, then the
co-scheduler proceeds to the next step. If this is the second
time co-scheduling has failed, it proceeds to Step 5. It lim-
its the number of unsuccessful application co-scheduling at-
tempts to two, since the probability of successful scheduling
decreases with applications in the middle of the list(s), due
to their putting greater pressure on shared resources.

4. The program at the head of list C is removed and returned to
the head of list A. The second program in list A is moved to
list C. It divides the number of cores round-robin (sorted by
lowest resource use) until no more unassigned cores remain.
Step 3 repeats.

5. The program at the head of list C is removed and returned to
list A. The programs in list C are sent to the thread chooser,
and the application chooser repeats Step 1 with the set of
programs remaining in lists A and C.

The thread chooser takes the following steps:
1. It records the throughput of each program from the appli-
cation chooser (at equivalent thread counts). Again, for two
programs, wemeasure throughput from equally dividing cores
among applications.

2. It increases or decreases thread counts for each program in
the list, alternating among applications. This creates two
lists, a list containing the reduction in ED of each application
from increasing its thread count (list 1), and a list containing
the increase in ED of each application from decreasing its
thread count (list 2). This requires two time quanta if there
are an even number of applications, and three time quanta
if an odd number. Generally, a program scales differently,
depending on which of its neighboring applications donates
the thread it uses for scaling up. We make the simplify-
ing assumption that applications scale independently of other
programs with which they are co-scheduled, so the thread
chooser does not need to sample C( A

A/2
) (i.e., A choose

A/2) different combinations.
3. Numbers of threads are increased for applications in list 1,
and decreased for applications in list 2. The process re-
peats until the applications in list 2 show worse ED than
the baseline case of gang-scheduling, or until the overall ED
from selectively increasing numbers of application threads
decreases. Since the process could potentially continue for
N iterations with N cores, we limit the iterations to two to
reduce the time quanta required to arrive at a solution.

When increasing thread counts, we must ensure that scaling up
an application does not significantly penalize performance of the
application being scaled down (i.e., the application whose thread
is “stolen”). In the outlined procedure for the thread chooser, each
application is only checked against time-shared gang-scheduling to
see if it should lose a thread. However, an application may end
up losing most of its threads when co-scheduled against a program
that scales almost linearly, since we do not enforce Equation 4.
We therefore extend Equation 5 to derive Inequality 8. This lets
us compute delay when comparing equal time intervals in which
different thread counts are used for each application.
Inequality 8 specifies the condition that must be satisfied for one

application to usurp processor resources, using the previously de-
fined term α to specify how close potential solutions must be to

ideal scaling. N is the number of cores before scaling, and N + 1
is the number of cores after scaling up. Irt is the total number
of CMP instructions retired before scaling (over some time inter-
val), and Irt+1 is the total number of CMP instructions retired af-
ter scaling (over an equal time interval). Inequality 8 serves as an
additional condition when populating list 2 in Step 2 of the thread
chooser. This is a secondary constraint, and is not required for the
thread chooser stage to function. We limit the value of α via In-
equality 9 to ensure that increasing the number of cores does not
appear to deliver speedups when there are none.

Irt+1

Irt∗(1−α)
< N+1

N
(8)

α<1− N
N+1

(9)

We experiment with two variations of HOLISYN schedulers that
try to ensure fairness: FAIRMIS co-schedules applications by rank-
ing them according to cache miss-rates, whereas FAIRCOM ranks
applications according to bus communication.

4.2 Greedy Scheduler
Our next scheduler uses a greedy bin-packing heuristic to maxi-

mize average system throughput in a resource-oblivious manner. It
schedules applications at their most energy-efficient thread counts.
Applications are time-sampled at different thread counts, and counts
at which they exhibit highest throughput per watt are recorded.
Throughput per thread (Equation 5) is divided by total system power
consumption, yielding Equation 10. Highest throughput per watt
determines the optimal concurrency level for an application. These
applications are co-scheduled with others until no unscheduled cores
remain.

NTT /Watt =
Number of Instructions Retired

Threads ∗ ExecutionTime ∗ Watts
(10)

If any cores are left idle, and no applications can fit on the re-
maining cores, the application with the best scaling properties is
allocated more cores so that idle processors are not wasted. Once
applications are scheduled to cores, they are removed from the
scheduling queues. Unlike the prior complementary algorithm, this
heuristic does not try to balance fairness. Programs are scheduled
in a resource-oblivious manner, where behavior is assumed to be
independent of other applications with which they share the CMP.
The drawback of this method is that it requires extensive applica-
tion profiling in advance (to try multiple numbers of threads and
to determine the ED at each thread count). However, most multi-
threaded applications lend themselves well to profiling since they
often consist of loops, where only a few of the loop iterations need
to be run to profile the entire application [8, 24]. This allows the
exploration time to be amortized over a longer work span. The
greedy scheduler takes the following steps:

1. It chooses the best-scaling program (highest concurrency level)
from our set of sampled programs, and schedules it on the
CMP. If there are no remaining idle cores, it is through schedul-
ing for this program, and repeats Step 1 for the next program
(and time quantum). If there are remaining cores, it proceeds
to the next step.

2. If the set of unscheduled applications is empty, scheduling is
finished. Otherwise, the scheduler chooses the next highest
scaling program from the set whose minimum processor re-
quirement is met by the available idle cores on the CMP, and
schedules it concurrently.

3. If there are unscheduled cores remaining, Step 2 repeats, oth-
erwise co-scheduling is finished for this set. If there are in-
sufficiently many idle cores for any unscheduled application,
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then thread counts of the currently scheduled programs are
increased. The best scaling program’s thread count is in-
creased until performance ceases to improve. The scheduler
chooses the best scaling program since it has higher through-
put with increasing numbers of threads, and is less likely to
overtly consume shared resources.

4.3 Oracle Scheduler
The oracle scheduler finds the best case solution when every

possible combination of space- and time-sharing applications in
the workload is considered, assuming an application cannot be co-
scheduled more than once during a round of time quanta. This is
the upper-bound on the best performance that can be expected from
any scheduler (except cases where applications are co-scheduled
within multiple time quanta, i.e., application “A" would be paired
with application “B" within one time quantum, and then paired with
application “C" within a different time quantum). Note that these
results are merely for comparison: the oracle scheduler cannot be
employed in real systems because no polynomial-time algorithm
exists for finding the best co-scheduling solution. Only a brute
force search can guarantee the best solution (and verifying the so-
lution takes just as long as finding the solution). In the case of our
eight-core CMP with just eight applications, finding optimal sched-
ules required examining over ten thousand samples.

5. SETUP
We use the PARSEC multithreaded benchmark suite to evaluate

our work. They represent a diverse set of commercial and emerging
workloads. These benchmarks divide the workload evenly among
threads, with theoretical linear speedups based on functional in-
struction traces [4]. We use these programs to illustrate scheduling
benefits, since they represent emerging multithreaded workloads
that are of increasing importance in a multicore era. We use pub-
licly available tools and hardware to ensure reproducible results.
We compile the benchmarks with the GCC 4.2 C and C++ compil-
ers on Linux kernel 2.6.25.4 or later. We use the native input sets
(the largest available) to make the workloads as realistic as possi-
ble.
We run all benchmarks to completion on an eight core 2.3 GHz

dual SMP system with four GB of FB-DIMM main memory. Ta-
ble 4 indicates relevant hardware parameters. We use the pfmon
3.2 utility from the perfmon2 library to gather data. The Linux
time command accurately measures execution times of our bench-
marks to within tenths of a second. The smallest time granularity
used is seconds, since our power meter samples energy consump-
tion per second. We use a Watts Up Pro [9] power meter to gather
system power consumption. When running multiprogrammed mul-
tithreaded workloads, we use performance counter data to account

Frequency 2.3 GHz

Process Technology 65 nm

Processor Intel Xeon E5320 CMP

Number of Cores 8, dual-core SMP

L1 (Instruction) Size 32 KB 8-Way Set Associative

L1 (Data) Size 32KB 8-Way Set Associative

L2 Cache Size (Shared) 4 MB 16-Way Set Associative

Memory Controller Off-Chip, 4 channel

Main Memory 4 GB FB-DIMM (DDR2-800)

Front Side Bus 1066 MHz

Table 4: CMP Machine Configuration Parameters

for each application’s per-thread power consumption. We use the
Linux taskset command to bind applications to specific cores, and
to set and change the CPU affinity for new or already running appli-
cations. Our power model has been hardware-verified to estimate
per-core power with very low error [21].
We use time quanta of two seconds (determined empirically), to

ensure each time quantum encompasses a stable period of appli-
cation behavior. Larger quantum sizes (greater than two seconds)
results in longer times until the heuristic converges to a solution
(this does not increase the number of reconfigurations performed or
change the schedules created). If the sampling quantum for phase
detection is very short (i.e. at the microsecond level), a stable phase
will never be detected, and reconfiguration will never be attempted.
We loop shorter running applications until the longest running ap-
plication completes (so every application completes at least once).
This prevents shorter running programs from skewing results.

6. EVALUATION
We apply our HOLISYN fair schedulers to the PARSEC bench-

marks, assuming average resource usage based on the data from
Tables 1 and 2, from which we derive Tables 5 and 6. The Greedy
scheduler uses the thread counts for lowest theoretical ED for each
application from Table 3, yielding schedules in Table 7. We define
an efficiency scaling threshold which an application needs to meet
to be considered sufficiently scaling such that co-scheduling is not
required. Since very few programs scale perfectly, we conserva-
tively choose scaling to be 10% of the ideal value (linear scaling
with numbers of cores) at eight or more cores to be the reasonable
threshold. blackscholes, ferret, freqmine, swaptions and
vips are omitted from concurrent scheduling, since they are within
10% of ideal performance scaling at maximum thread counts. Re-
sults on the list sorted by miss rates are denoted as FAIRMIS schedul-
ing, and results on the list sorted by bus contention are denoted as
FAIRCOM scheduling.
We compare the performance of our schedulers with our baseline

performance, which consists of running benchmarks at the maxi-
mum number of threads. We choose the highest thread count for
several reasons:

• the programs are designed to use the highest thread counts
possible;

• this is the optimal number of threads based on their BAT [24]
characteristics;

• the programs generally exhibit performance improvements
with increasing threads; and

• this is the standard operating procedure in many computing
environments.

We next compare against PDPA (Performance-Driven Processor
Allocation) [6], which Corbalan et al. [7] find to perform better than
several other policies. The PDPA heuristic dynamically adjusts
numbers of threads based on scaling at runtime. It uses a resource-
oblivious, hill-climbing algorithm to re-evaluate processor-to-thread
mappings, and increases or decreases the processors allocated based
on the application’s meeting a scaling metric. In other words, it ex-
amines application performance, making allocation decisions based
on the application’s scaling efficiency and the fraction of processors
allocated, all in isolation of other applications. Based on this algo-
rithm, we give perfectly scaling applications their own time quan-
tum to reduce contention (much like our baseline). Applications
that do not scale linearly are allocated processors based on scal-
ing efficiency. Note that the original PDPA co-schedules all appli-
cations concurrently, and cannot perform time- and space-sharing.
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Workload Threads Allocated
Bodytrack, Facesim, Canneal 3, 3, 2
Dedup, Fluidanimate, Streamcluster 2, 3, 3

Table 5: Workload Configuration with FAIRMIS Scheduling for
One Phase

Workload Threads Allocated
Bodytrack, Fluidanimate, Streamcluster 3, 3, 2
Canneal, Dedup, Facesim 3, 2, 3

Table 6: Workload Configuration with FAIRCOM Scheduling for
One Phase

Workload Threads Allocated
Bodytrack, Canneal 5, 3
Dedup, Facesim, Streamcluster 2, 4, 2

Table 7: Workloads and Threads Allocated with Greedy Schedul-
ing for One Phase

Workload Threads Allocated
Bodytrack, Canneal, Dedup, Facesim, Streamcluster 2, 2, 2, 1, 1

Table 8: Workloads and Threads Allocated with PDPA Scheduling
for One Phase

We modify the algorithm to time-share linearly scaling programs,
improving performance.

6.1 Performance
Figure 5 shows thread throughput of co-scheduling strategies

normalized to single-thread throughput. Higher thread through-
put illustrates improvement in efficiency. Figure 5(a)-(d) graph
scheduling throughput for FAIRMIS, FAIRCOM, Greedy, and PDPA.
Programs not co-scheduled are omitted.Bars labeled Co-schedule
illustrate throughput per thread for each application co-scheduled,
and those labeled Co-schedule Ideal show throughput for each ap-
plication run in isolation on the CMP using the same thread count
as the co-scheduled configuration. This shows what the ideal best
case result without contention would look like. Max Thread shows
throughput per thread when all cores are used. The difference be-
tween Co-schedule and Co-schedule Ideal shows the degradation
from resource contention when co-scheduling. With no contention,
throughput per thread for co-scheduling is close to Co-Schedule
Ideal. Differences in throughput between the single-thread and
max-thread bars shows the potential speedup that can be achieved
by retaining the efficiency of lower thread counts and allocating
spare cores to other applications. All results are normalized to
the single-thread cases, since they represent the upper-bounds for
throughput, unless programs scale super-linearly with increasing
threads (which never happens with our benchmarks).
Figure 5(a) graphs thread throughput for FAIRMIS, where cache

miss-rates are used to choose programs to co-schedule. Figure 5(a)
shows performance degrades minimally for facesim, fluidanimate,
and canneal from being co-scheduled with other programs. This
is noteworthy for facesim, and canneal since there is a signifi-
cant difference in throughput between the ideal and maximum thread
cases for those two benchmarks. Other benchmarks degrade notice-
ably from their ideal values, but still remain a healthy margin above
the maximum thread cases.
Figure 5(b) graphs thread throughput for FAIRCOM, where co-

schedules are chosen based on data bus usage. FAIRCOM shows
results similar to FAIRMIS. Performance degrades from the ideal
cases, but remains significantly better than for the maximum thread
cases. These improvements lead to better performance due to dis-
proportionate time quanta. For example, in Figure 5(b), fluidanimate
improves by 16% over the baseline, even though thread efficiency
is only 3% better; this is because time gains compensate for fewer
processors. Similarly, streamcluster is 2.09 times more efficient
when co-scheduled, but only exhibits a speedup of 1.54, because
time gains do not compensate for forfeited processors.
Figure 5(c) graphs thread throughput for the Greedy scheduler.

facesim degradation from contention is worse than the maximum
thread case, and even if it receives a fair allocation of time for
resources given, its performance is also worse than the baseline.

Table 7 shows that when scheduled greedily, its time quantum in-
creases by a factor of three, but its loss in processors is less than
a factor of three; in this case performance improves by 37% over
the baseline. The degradation from contention shows that while in
isolation, an application might be the most efficient at one concur-
rency level, when the application is co-scheduled with others, that
concurrency level may no longer be optimal. Other programs re-
main a healthy margin above the maximum thread case, keeping
Greedy competitive with other scheduling methods.
Figure 5(d) graphs thread throughput for the PDPA scheduler.

All benchmarks suffer some performance degradation from coschedul-
ing. bodytrack suffers severe contention, with thread throughput
dropping to the level of the maximum thread case. facesim and
streamcluster are only allocated one processor. facesim loses
performance when co-scheduled, since its efficiency over the max-
imum thread case does not compensate for the unfair resource dis-
tribution it receives for sharing its time quantum. The PDPA al-
gorithm cannot account for fairness in the presence of thread con-
tention, thus it can generate inefficient or unfair schedules.
Figure 6 shows overall speedups of the different schedulers nor-

malized to the baseline case of time-shared gang-scheduling. Bars
labeled Scheduled show speedups for applications chosen for co-
scheduling, and those labeled Overall Average show speedups for
the entire suite, including programs not chosen for co-scheduling.
The number of programs chosen for co-scheduling is shown next
to each scheduler. The more programs co-scheduled, the smaller
the difference is between Scheduled and Overall Average. Co-
scheduling delivers results close to Oracle scheduling. FAIRCOM
performs as well as the Oracle, and FAIRMIS is very competi-
tive. Greedy and PDPA show lower gains due to higher contention
among co-scheduled programs. While the differences in speedup
across co-schedulers are not significant, the performances of indi-
vidual applications vary greatly, since most of the schedulers do
not guarantee fairness for co-scheduled applications. FAIRCOM
and FAIRMIS co-schedule more programs, since Greedy is more
conservative about choosing applications to schedule together. The
PDPA equal-partition variant tries to co-schedule as many appli-
cations together as possible, resulting in too many co-scheduled
programs, leading to the highest contention levels.
The HOLISYN fair algorithm underlying FAIRCOM and FAIR-

MIS has several benefits. First, it is simpler than the Greedy sched-
uler, because the application’s optimal concurrency level is not re-
quired, therefore we need not profile applications at all concurrency
levels. Second, using the fair algorithm requires only the perfor-
mance, cache, and off-chip characteristics to be calculated for one
thread count (the largest). Additionally, we find that the fair algo-
rithm can improve performance for more programs. For example,
while Greedy, FAIRCOM, and FAIRMIS achieve similar perfor-
mance improvements, the fair schedulers co-schedule more pro-
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(a) FAIRMIS (b) FAIRCOM

(c) Greedy (d) PDPA

Figure 5: Thread Throughput Normalized to Single-Thread Configuration (Higher is Better)

Figure 6: Speedup Normalized to Standalone Execution
(Higher is Better)

grams, leading to higher overall performance.
FAIRCOMperforms better for a fewmore benchmarks than FAIR-

MIS. Monitoring communication latencies provides more insight
for creating co-schedules than tracking cache misses: the bus con-
tention vector is a better indicator of sharing contention, since its
values are normalized to program run times, while memory misses
are normalized to cache misses (which fails to fully convey an ap-
plication’s dependence on memory for performance). For exam-
ple, the three programs that scale almost linearly also exhibit the
least bus contention. Both HOLISYN schedulers demonstrate that
co-scheduling helps programs retain their low thread-count ED ef-
ficiency on larger, multicore CMPs by efficiently leveraging idle
resources for other tasks.

6.2 Power and Energy
We examine the total system power consumed by each thread

of the different workload configurations. While single-threaded
benchmarks have the highest throughput, running them results in
total system power being amortized over only a single thread. To-
tal system power does not scale linearly with increasing numbers of
active cores on the CMP, since static power of off-chip components
(memory, interconnect) and on-chip memories is consumed while
cores are idle. For example, our test system idles at 180W and

reaches 300W (depending on the benchmark) when all eight cores
are active. As the number of threads increases, the static power of
components is amortized over a greater number of threads.
Figure 7 graphs power consumption per thread for applications

executed at different thread counts for the PDPA and FAIRCOM.
We omit the FAIRMIS and Greedy graphs since they show similar
trends. Power per thread is normalized to the single-thread con-
figuration (lower values are better). Power per thread decreases as
number of threads increases, with the co-scheduled workloads or
the workloads at maximum thread counts exhibiting lowest costs.
At lower thread counts, the benchmarks actually use almost the
same or less power as when executing in isolation. This is interest-
ing, because at lower thread counts, the applications might be ex-
pected to consumemore dynamic power because they commit more
useful instructions per time quantum. However, if static/system
(“uncore”) power accounts for most of the total power, then total
power changes little when the system runs at more efficient con-
currency levels. Additionally, dynamic power consumption may
decrease if thread contention is reduced. Unlike the maximum
thread case, benchmarks are more power efficient (in terms of per-
formance/watt) at lower concurrency levels, and extra cores can
also run other benchmarks at power-efficient concurrency levels.
The graph shows that watts per thread does not change from the
maximum thread cases. This is interesting because more work is
performed (as shown in earlier graphs with higher thread through-
put). Co-scheduling significantly reduces power per thread over the
co-scheduling ideal case, since benchmarks are able to share sys-
tem (uncore) power consumption overhead with other programs.
We calculate energy using total application power consumption

(from our per-core power derivations) and elapsed time, since en-
ergy is the product of power over time. Figure 8 shows average
energy reductions normalized to the baseline of time-shared gang-
scheduling. Bars labeled Scheduled represent average energy re-
duction for co-scheduled programs, and those labeled Overall Av-
erage show average reduction for the entire benchmark suite. Inter-
estingly, programs with worse performance than the baseline may
still see energy savings (since the performance degradation results
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(a) PDPA (b) FAIRCOM

Figure 7: Total Power Consumption per Thread Normalized to Single-Thread Configuration (Lower is Better)

Figure 8: Energy Reduction Normalized to Gang-Scheduling
(Higher is Better)

from resource unfairness), and programs with better performance
might see higher energy expenditures due to increased contention
(e.g., increased DRAM activity). Benchmark energy reductions
are difficult to predict, since threads react differently to increases
in throughput. Although individual benchmark performance is not
graphed, benchmarks such as facesim and canneal, exhibit pro-
portional reductions in energy consumption with performance im-
provements. Other benchmarks, such as bodytrack, show only
minor improvements in energy consumption compared to through-
put improvements. For example, when facesim is co-scheduled
using PDPA, performance degrades by 11%, but energy consump-
tion decreases by 1.39. PDPA scheduling shows the highest en-
ergy reductions for co-scheduled programs, but at the expense of
other applications, with programs such as bodytrack experienc-
ing increased energy usage. FAIRCOM scheduling shows the sec-
ond highest energy reductions for co-scheduled programs, and the
highest reductions for the entire suite, since it reduces energy for
all programs co-scheduled, and chooses the most programs for co-
scheduling. Most noteworthy is that requiring all co-scheduled pro-
grams to benefit from co-scheduling does not hinder the perfor-
mance of our scheduling heuristics: HOLISYN schedulers deliver
the best performance compared to other heuristics that optimize
only for global throughput.

7. CONCLUSIONS
We investigate multithreaded programs that are constrained by

shared resources, and increase their collective throughput via holis-
tic, symbiotic (HOLISYN) co-scheduling (which implements both
time- and space-sharing). Using an eight-core CMP, we first de-
vise metrics to assess program resource requirements, and then use
this information to better schedule both single-threaded and multi-
threaded workloads. Instead of scaling frequency for bandwidth-
limited CMPs, we reduce the numbers of threads and schedule
programs together to improve individual benchmark efficiency and

overall workload performance. On the PARSEC suite, our HOLISYN
schedulers perform better than previous co-schedulers, minimizing
contention by co-scheduling programs that complement each other
with respect to use of shared resources. Our methodology works
for cases when applications fail to scale by design, as well as when
they are limited by the available hardware resources. We profile
performance and energy at run time, which ensures that our sched-
ules can adapt to changes in program behavior.
We show that Bandwidth Aware Threading (BAT) by Suleman

et al. [24] does not provide the optimal thread count for perfor-
mance or energy, and thus run-time scheduling and monitoring is
required to manage with on-chip contention. By monitoring bus
contention, instructions retired, and last level cache misses, we
provide insight into how to schedule multithreaded applications to-
gether. We leverage these HOLISYN schedulers to achieve sig-
nificant performance improvements over time multiplexing the en-
tire CMP. The advantages of our approach are that we require little
knowledge of the software, and no offline access to code, since
we derive our scheduling information from hardware performance
counters. Our schedulers achieve a net reduction in total energy
from increasing thread throughput per watt and amortizing sys-
tem overhead across multiple programs. Increasing throughput per
thread also improves performance over time multiplexing the sys-
tem when there are more programs than CMPs. For poorly scaling
programs, we deliver significant performance improvements over
both time-sharing and resource-oblivious, space-sharing methods.
Our schedulers improve overall performance by 19%, and reduce
energy consumption by 26%. Through co-scheduling, we reduce
ED by a factor of 1.5 over time-multiplexed gang scheduling.
Future work will examine scheduling for heterogenous cores within

a CMP and dynamically partitioning the workloads during program
execution via run-time workload balancing techniques. The goals
are to concurrently improve energy efficiency by mapping threads
to the most appropriate cores and to balance fairness among pro-
grams. CMPs have entered the mainstream, and as their sizes grow,
so will the importance of scheduling for them. With multiple vir-
tual servers and cloud computing consisting of several independent
environments executing simultaneously on a single chip, efficient
scheduling is critical for achieving power efficiency on CMPS con-
strained by shared resources.
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