29 research outputs found

    Assessing similarity of feature selection techniques in high-dimensional domains

    Get PDF
    Recent research efforts attempt to combine multiple feature selection techniques instead of using a single one. However, this combination is often made on an “ad hoc” basis, depending on the specific problem at hand, without considering the degree of diversity/similarity of the involved methods. Moreover, though it is recognized that different techniques may return quite dissimilar outputs, especially in high dimensional/small sample size domains, few direct comparisons exist that quantify these differences and their implications on classification performance. This paper aims to provide a contribution in this direction by proposing a general methodology for assessing the similarity between the outputs of different feature selection methods in high dimensional classification problems. Using as benchmark the genomics domain, an empirical study has been conducted to compare some of the most popular feature selection methods, and useful insight has been obtained about their pattern of agreement

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Application of Volcano Plots in Analyses of mRNA Differential Expressions with Microarrays

    Full text link
    Volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized signal (e.g. t-statistic or -log10(p-value) from the t test). We review the basic and an interactive use of the volcano plot, and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to the two perpendicular lines for the "double filtering" criterion. This review attempts to provide an unifying framework for discussions on alternative measures of differential expression, improved methods for estimating variance, and visual display of a microarray analysis result. We also discuss the possibility to apply volcano plots to other fields beyond microarray.Comment: 8 figure

    A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data

    Get PDF
    Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-sample ratio. In addition to the essential objectives such as to reduce data noise, to reduce data redundancy, to improve sample classification accuracy, and to improve model generalization property, feature selection also helps biologists to focus on the selected genes to further validate their biological hypotheses.Results: In this paper we describe an improved hybrid system for gene selection. It is based on a recently proposed genetic ensemble (GE) system. To enhance the generalization property of the selected genes or gene subsets and to overcome the overfitting problem of the GE system, we devised a mapping strategy to fuse the goodness information of each gene provided by multiple filtering algorithms. This information is then used for initialization and mutation operation of the genetic ensemble system.Conclusion: We used four benchmark microarray datasets (including both binary-class and multi-class classification problems) for concept proving and model evaluation. The experimental results indicate that the proposed multi-filter enhanced genetic ensemble (MF-GE) system is able to improve sample classification accuracy, generate more compact gene subset, and converge to the selection results more quickly. The MF-GE system is very flexible as various combinations of multiple filters and classifiers can be incorporated based on the data characteristics and the user preferences. <br /

    PatternLab for proteomics: a tool for differential shotgun proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A goal of proteomics is to distinguish between states of a biological system by identifying protein expression differences. Liu <it>et al</it>. demonstrated a method to perform semi-relative protein quantitation in shotgun proteomics data by correlating the number of tandem mass spectra obtained for each protein, or "spectral count", with its abundance in a mixture; however, two issues have remained open: how to normalize spectral counting data and how to efficiently pinpoint differences between profiles. Moreover, Chen <it>et al</it>. recently showed how to increase the number of identified proteins in shotgun proteomics by analyzing samples with different MS-compatible detergents while performing proteolytic digestion. The latter introduced new challenges as seen from the data analysis perspective, since replicate readings are not acquired.</p> <p>Results</p> <p>To address the open issues above, we present a program termed PatternLab for proteomics. This program implements existing strategies and adds two new methods to pinpoint differences in protein profiles. The first method, ACFold, addresses experiments with less than three replicates from each state or having assays acquired by different protocols as described by Chen <it>et al</it>. ACFold uses a combined criterion based on expression fold changes, the AC test, and the false-discovery rate, and can supply a "bird's-eye view" of differentially expressed proteins. The other method addresses experimental designs having multiple readings from each state and is referred to as nSVM (natural support vector machine) because of its roots in evolutionary computing and in statistical learning theory. Our observations suggest that nSVM's niche comprises projects that select a minimum set of proteins for classification purposes; for example, the development of an early detection kit for a given pathology. We demonstrate the effectiveness of each method on experimental data and confront them with existing strategies.</p> <p>Conclusion</p> <p>PatternLab offers an easy and unified access to a variety of feature selection and normalization strategies, each having its own niche. Additionally, graphing tools are available to aid in the analysis of high throughput experimental data. PatternLab is available at <url>http://pcarvalho.com/patternlab</url>.</p

    Comparison study of microarray meta-analysis methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analysis methods exist for combining multiple microarray datasets. However, there are a wide range of issues associated with microarray meta-analysis and a limited ability to compare the performance of different meta-analysis methods.</p> <p>Results</p> <p>We compare eight meta-analysis methods, five existing methods, two naive methods and a novel approach (mDEDS). Comparisons are performed using simulated data and two biological case studies with varying degrees of meta-analysis complexity. The performance of meta-analysis methods is assessed via ROC curves and prediction accuracy where applicable.</p> <p>Conclusions</p> <p>Existing meta-analysis methods vary in their ability to perform successful meta-analysis. This success is very dependent on the complexity of the data and type of analysis. Our proposed method, mDEDS, performs competitively as a meta-analysis tool even as complexity increases. Because of the varying abilities of compared meta-analysis methods, care should be taken when considering the meta-analysis method used for particular research.</p

    Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis

    Get PDF
    Abstract Background In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.</p
    corecore