63 research outputs found

    Identifying and remeshing contact interfaces in a polyhedral assembly for digital mock-up applications

    Get PDF
    Polyhedral models are widely used for applications such as manufacturing, digital simulation or visualization. They are discrete models; easy to store, to manipulate, allowing levels of resolution for visualization. They can be easily exchanged between CAD systems without loss of data. Previous works (Comput Aided Des 29(4):287–298, 1997, Comput Graphics 22(5):565–585, 1998) have focused on simplification process applied to polyhedral part models. The goal of the proposed approach is to extend these processes to polyhedral assembly models, describing the digital mock-up of a future manufacturing product. To apply simplification techniques or other processes on polyhedral assemblies, contact surfaces between interacting objects have to be identified and specific constraints must be applied for processing. The approach proposed allows checking and maintaining a global consistency of the assembly model to ensure the reliability of the future processes. Thus, contacts between objects are detected using an approach that works for a static configuration of the assembly. Finally, a precise detection of the faces involved in each contact area is made and the resulting input domains identified are processed using a local Frontal Delaunay re-meshing technique to produce an identical tessellation on both objects involved in the processed contact. The quality of the triangulation produced is also checked

    Identifying and remeshing contact interfaces in a polyhedral assembly for digital mock-up applications

    Get PDF
    International audiencePolyhedral models are widely used for applications such as manufacturing, digital simulation or visualization. They are discrete models; easy to store, to manipulate, allowing levels of resolution for visualization. They can be easily exchanged between CAD systems without loss of data. Previous works (Comput Aided Des 29(4):287-298, 1997, Comput Graphics 22(5):565-585, 1998) have focused on simplification process applied to polyhedral part models. The goal of the proposed approach is to extend these processes to polyhedral assembly models, describing the digital mock-up of a future manufacturing product. To apply simplification techniques or other processes on polyhedral assemblies, contact surfaces between interacting objects have to be identified and specific constraints must be applied for processing. The approach proposed allows checking and maintaining a global consistency of the assembly model to ensure the reliability of the future processes. Thus, contacts between objects are detected using an approach that works for a static configuration of the assembly. Finally, a precise detection of the faces involved in each contact area is made and the resulting input domains identified are processed using a local Frontal Delaunay re-meshing technique to produce an identical tessellation on both objects involved in the processed contact. The quality of the triangulation produced is also checked

    Identifying and remeshing contact interfaces in a polyhedral assembly for digital mock-up applications

    No full text
    International audiencePolyhedral models are widely used for applications such as manufacturing, digital simulation or visualization. They are discrete models; easy to store, to manipulate, allowing levels of resolution for visualization. They can be easily exchanged between CAD systems without loss of data. Previous works (Comput Aided Des 29(4):287-298, 1997, Comput Graphics 22(5):565-585, 1998) have focused on simplification process applied to polyhedral part models. The goal of the proposed approach is to extend these processes to polyhedral assembly models, describing the digital mock-up of a future manufacturing product. To apply simplification techniques or other processes on polyhedral assemblies, contact surfaces between interacting objects have to be identified and specific constraints must be applied for processing. The approach proposed allows checking and maintaining a global consistency of the assembly model to ensure the reliability of the future processes. Thus, contacts between objects are detected using an approach that works for a static configuration of the assembly. Finally, a precise detection of the faces involved in each contact area is made and the resulting input domains identified are processed using a local Frontal Delaunay re-meshing technique to produce an identical tessellation on both objects involved in the processed contact. The quality of the triangulation produced is also checked

    Merging enriched Finite Element triangle meshes for fast prototyping of alternate solutions in the context of industrial maintenance

    Get PDF
    A new approach to the merging of Finite Element (FE) triangle meshes is proposed. Not only it takes into account the geometric aspects, but it also considers the way the semantic information possibly associated to the groups of entities (nodes, faces) can be maintained. Such high level modification capabilities are of major importance in all the engineering activities requiring fast modifications of meshes without going back to the CAD model. This is especially true in the context of industrial maintenance where the engineers often have to solve critical problems in very short time. Indeed, in this case, the product is already designed, the CAD models are not necessarily available and the FE models might be tuned. Thus, the product behaviour has to be studied and improved during its exploitation while prototyping directly several alternate solutions. Such a framework also finds interest in the preliminary design phases where alternative solutions have to be simulated. The algorithm first removes the intersecting faces in an n-ring neighbourhood so that the filling of the created holes produces triangles whose sizes smoothly evolve according to the possibly heterogeneous sizes of the surrounding triagles. The holefilling algorithm is driven by an aspect ratio factor which ensures that the produced triangulation fits well the FE requirements. It is also constrained by the boundaries of the groups of entities gathering together the simulation semantic. The filled areas are then deformed to blend smoothly with the surroundings meshes

    Functional restructuring of CAD models for FEA purposes

    Get PDF
    International audienceDigital Mock-ups (DMUs) are widespread and stand as reference model for product description. However, DMUs produced by industrial CAD systems essentially contain geometric models and their exploitation often requires user's input data to derive finite element models (FEMs). Here, analysis and reasoning approaches are developed to automatically enrich DMUs with functional and kinematic properties. Indeed, geometric interfaces between components form a key starting point to analyse their behaviours under reference states. This is a first stage in a reasoning process to progressively identify mechanical, kinematic as well as functional properties of the components. Inferred semantics adds up to the pure geometric representation provided by a DMU and produce also geometrically structured components and assemblies. Functional information connected to a structured geometric model of a component significantly improves the preparation of FEMs and increases its robustness because idealizations can take place using components' functions and components' structure helps defining sub-domains of FEMs

    Template-based geometric transformations of a functionally enriched DMU into FE assembly models

    Get PDF
    International audiencePre-processing of CAD models derived from Digital Mock-Ups (DMUs) into finite element (FE) models is usually completed after many tedious tasks of model preparation and shape transformations. It is highly valuable for simulation engineers to automate time-consuming sequences of assembly preparation processes. Here, it is proposed to use an enriched DMU with geometric interfaces between components (contacts and interferences) and functional properties. Then, the key concept of template-based transformation can connect to assembly functions to locate consistent sets of components in the DMU. Subsequently, sets of shape transformations feed the template content to adapt components to FE requirements. To precisely monitor the friction areas and the mesh around bolts, the template creates sub-domains into their tightened components and preserves the consistency of geometric interfaces for the mesh generation purposes. From a user-selected assembly function, the method is able to robustly identify, locate and transform groups of components while preserving the consistency of the assembly needed for FE models. To enlarge the scope of the template in the assembly function taxonomy, it is shown how the concept of dependent function enforces the geometric and functional consistency of the transformed assembly. To demonstrate the proposed approach, a business oriented prototype processes bolted junctions of aeronautical structures

    Merging enriched Finite Element triangle meshes for fast prototyping of alternate solutions in the context of industrial maintenance

    Get PDF
    A new approach to the merging of Finite Element (FE) triangle meshes is proposed. Not only it takes into account the geometric aspects, but it also considers the way the semantic information possibly associated to the groups of entities (nodes, faces) can be maintained. Such high level modification capabilities are of major importance in all the engineering activities requiring fast modifications of meshes without going back to the CAD model. This is especially true in the context of industrial maintenance where the engineers often have to solve critical problems in very short time. Indeed, in this case, the product is already designed, the CAD models are not necessarily available and the FE models might be tuned. Thus, the product behaviour has to be studied and improved during its exploitation while prototyping directly several alternate solutions. Such a framework also finds interest in the preliminary design phases where alternative solutions have to be simulated. The algorithm first removes the intersecting faces in an n-ring neighbourhood so that the filling of the created holes produces triangles whose sizes smoothly evolve according to the possibly heterogeneous sizes of the surrounding triagles. The holefilling algorithm is driven by an aspect ratio factor which ensures that the produced triangulation fits well the FE requirements. It is also constrained by the boundaries of the groups of entities gathering together the simulation semantic. The filled areas are then deformed to blend smoothly with the surroundings meshes

    Computation of Components' Interfaces in Highly Complex Assemblies

    Get PDF
    International audienceThe preparation of CAD models from complex assemblies for simulation purposes is a very time-consuming and tedious process, since many tasks \rev{such as meshing and idealization} are still completed manually. Herein, the detection and extraction of geometric interfaces between components of the assembly is of central importance not only for the simulation objectives but also for all necessary shape transformations such as idealizations or detail removals. It is a repetitive task in particular when complex assemblies have to be dealt with. This paper proposes a method to rapidly and fully automatically generate a precise geometric description of interfaces in generic B-Rep CAD models. The approach combines an efficient GPU ray-casting technique commonly used in computer graphics with a graph-based curve extraction algorithm. Not only is it able to detect a large number of interfaces efficiently, but it also provides an accurate Nurbs geometry of the interfaces, that can be stored in a plain STEP file ~\cite{step:1994} for further downstream treatment. We demonstrate our approach on examples from aeronautics and automotive industry

    Qualitative behavioral reasoning from components' interfaces to components' functions for DMU adaption to FE analyses

    Get PDF
    International audienceA digital mock-up (DMU), with its B-Rep model of product components, is a standard industrial representation that lacks geometric information about interfaces between components. Component shapes reflect common engineering practices that influence component interfaces with interferences and not only contacts. The proposed approach builds upon relationships between function, behavior, and shape to derive functional information from the geometry of component interfaces. Among these concepts, the concept of behavior is more difficult to set up and connect to the geometry of interfaces and functions. Indeed, states and design rules are introduced to express the behavior of components through a qualitative reasoning process. This reasoning process, in turn, takes advantage of domain knowledge rules and facts, checking the validity of certain hypotheses that must hold true all along a specific state of the product's lifecycle, such as operational, stand-by or relaxed states. Eliminating configurations that contradict one or more of those hypotheses in their corresponding reference state reduces ambiguity, subsequently producing functional information in a bottom-up manner. This bottom-up process starts with the generation of a conventional interfaces graph (CIG) with components as nodes, and conventional interfaces (CIs) as arcs. A CI is initially defined by a geometric interaction that can be a contact or an interference between two components. CIs are then populated with functional interpretations (FIs) according to their geometric properties, producing potentially many combinations. A first step of the reasoning process, the validation against reference states, reduces the number of FIs per CI. Domain knowledge rules are then applied again to group semantics of component interfaces into one functional designation per component to connect together geometric entities of its boundary with its function
    corecore