
HAL Id: hal-00854926
https://hal.inria.fr/hal-00854926

Submitted on 28 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of Components’ Interfaces in Highly
Complex Assemblies

François Jourdes, Georges-Pierre Bonneau, Stefanie Hahmann, Jean-Claude
Léon, François Faure

To cite this version:
François Jourdes, Georges-Pierre Bonneau, Stefanie Hahmann, Jean-Claude Léon, François Faure.
Computation of Components’ Interfaces in Highly Complex Assemblies. Computer-Aided De-
sign, Elsevier, 2014, 2013 SIAM Conference on Geometric and Physical Modeling, 46, pp.170-178.
�10.1016/j.cad.2013.08.029�. �hal-00854926�

https://hal.inria.fr/hal-00854926
https://hal.archives-ouvertes.fr


Computation of components’ interfaces in highly complex assemblies

François Jourdes, Georges-Pierre Bonneau, Stefanie Hahmann, Jean-Claude Léon, François Faure a

aUniversity of Grenoble, INRIA and Laboratoire Jean Kuntzmann

Abstract

The preparation of CAD models from complex assemblies for simulation purposes is a very time-consuming and tedious process,
since many tasks such as meshing and idealization are still completed manually. Herein, the detection and extraction of geometric
interfaces between components of the assembly is of central importance not only for the simulation objectives but also for all
necessary shape transformations such as idealizations or detail removals. It is a repetitive task in particular when complex assemblies
have to be dealt with. This paper proposes a method to rapidly and fully automatically generate a precise geometric description
of interfaces in generic B-Rep CAD models. The approach combines an efficient GPU ray-casting technique commonly used in
computer graphics with a graph-based curve extraction algorithm. Not only is it able to detect a large number of interfaces
efficiently, but it also provides an accurate Nurbs geometry of the interfaces, that can be stored in a plain STEP file [1] for further
downstream treatment. We demonstrate our approach on examples from aeronautics and automotive industry.

Key words: Interface, Imprint, Assembly, CAD/CAM

1. Introduction

The widespread use of CAD software in industries over
decades has led to common representations of products as
assemblies, also designated as digital mock ups (DMUs).
The extensive use of CAD has led to increasingly complex
DMUs, ranging from tens of components for simple prod-
ucts to thousands of components for a car to hundreds of
thousands of components for an aircraft. More recently,
commercial software platforms have expanded to cover the
product lifecycle, addressing, among various steps, the de-
sign stage and the numerical behavior simulations using
CAE software. While finite element (FE) analyses of sin-
gle components have been under focus for long and are still
requiring new developments [20], companies are now head-
ing toward behavior simulations at the assembly level [18].
Indeed, the design of complex products containing numer-
ous components remains tedious since many tasks require
a large amount of user interaction that can be only con-
ducted by experts. First, generating FE models at rather
large assembly level, i.e. incorporating tens of components,
requires the simplification and/or idealization of compo-
nent shapes, consistently with the simulation objectives,
e.g. replacing volume sub domains by either planar surfaces
or lines when their mechanical behavior resembles plate’s
or beam’s one, respectively. In addition to the modeling
of each component individually, mechanical simulation re-

quires to model the interfaces between components [4,5,18].
While the kinematic simulation of assemblies only requires
knowledge about the type and spatial position of the con-
tact surfaces, stress computations using FE simulations re-
quire the precise modeling of the imprint of one component
on each other within each interface. Given two partially
overlapping surfaces, imprinting consists in the process of
inserting curves and vertices in each surface such that they
share a topologically well defined interface.

While the automatic meshing of components based on
their B-Rep reprensentations is available in CAE sofware,
remeshing components to conform to their interfaces may
involve man-months of engineering. Similar observations
can be transposed to other stages of the product lifecy-
cle like assembly simulations using virtual reality tech-
niques [9,23] where component interfaces appear again as
prominent elements. More generally, components’ geomet-
ric interfaces appear as key entities to process assemblies
efficiently. However, these interfaces are not readily avail-
able in DMUs and specific geometry processing is needed
to obtain them [4,5,23,9].

In this paper we propose a method to rapidly detect and
produce the B-Rep model of the imprint of each component
onto each of its neighbouring components as illustrated in
Figure 1. We do not assume any prior knowledge on the
interfaces, we are given only the CAD BRep model of the
assembly, and from this we detect and reconstruct the BRep



of the interfaces.

Fig. 1. Neighbouring components and their imprint (courtesy AN-

TECIM).(a) component1 and component2 in their assembly posi-
tion, (b) The imprint of component1 onto component2 representing

the precise geometric interface defined as the common cylindrical

surface between these two components.

Based on our study of the current state-of-the-art regard-
ing how interfaces are dealt with in CAD/CAM academic
literature and industrial software (see section 2 for details),
we can make the following observations. First, most of the
previous work does not incorporate a precise description
of components’ geometric interfaces. Furthermore, no stan-
dard is effectively implemented in industrial CAD/CAM
software that can export geometric interfaces to other ones.
When it comes to large assemblies, this lack of detailed de-
scription of geometric interfaces becomes a real challenge.
Low level interactive operators enabling the surface trim-
ming of components’ boundaries become too tedious for a
practical computation of imprint faces [4,5,2]. To scale up
this approach to highly complex assemblies, new and more
automated approaches are necessary. Highly complex as-
semblies are subject to multiple downstream processes with
their own objectives in focus and their own tools. In such
cases, it is essential to have the ability to handle standard
CAD/CAM models and still be able to use the precise de-
scription of geometric interfaces between assembly compo-
nents. We also observe that high level geometrical opera-
tors that are used to generate geometric interfaces, such
as geometric offset computation, imprint generation [5,2]
and CSG-type operators [4], do not scale well to complex
assemblies in terms of time and robustness.

Based on these observations, we propose an approach
that takes as input any standard CAD/CAM assembly
model and automates the generation of geometric interfaces
between components. Our approach can detect and accu-
rately describe the geometry of interfaces while scaling up
well to highly complex assemblies. Our main contributions
are:
• A novel method to compute interface imprints in B-Rep

models, using ray-casting and a series of post-processing
steps, to produce upgraded B-Rep models which include
the imprints of the interfaces in the components.

• The efficient implementation of the most compute-
intensive parts of the method on the Graphics Process-
ing Unit (GPU), allowing the process of thousands of
B-Rep faces within minutes.

We have applied our framework to complex real-world cases
and the results were validated by our industrial partners.
The remainder of this paper is structured as follows. Section

2 analyzes related works. Section 3 presents our method.
In section 4, the implementation on GPU is described. Re-
sults on real-world industrial CAD/CAM assemblies are
presented in section 5. We finally conclude and sketch fu-
ture work in section 6.

2. Background and Motivation

Let us first define vocabulary. The components of an
assembly, as modeled within current CAD systems, are
facetted solid models represented as B-Rep NURBS. An
interface in CAD modeling is defined as the imprint of one
component onto the other. It is a contact surface which
may be composed of planar, cylindrical, conical, spherical,
ruled surface or general free-form surface parts.

Approaches to functional design [16,15,10,14] contribute
to the setting of relationships between functional param-
eters of a product and its 3D CAD model. However, gen-
erating these relationships requires designers’ interactions
to locate mating surfaces between components, which be-
comes too tedious for highly complex assemblies [12]. Ad-
ditionally, even if B-Rep faces of components are identified
as functional surfaces (i.e. component interfaces), the com-
mon surface, or imprint, of each component onto the other
is not available.

Interfaces have typically been modeled using geometric
constraints, such as mating surfaces or coaxiality, in func-
tional design [7], virtual assembly simulations [23] or in
standard CAD modules. While sufficient to enforce the rel-
ative positioning of the components, these constraints nei-
ther define the imprints between these (see Figure 1), nor
do they necessarily identify all the contact surfaces. Indeed,
when an engineer selects two surfaces as input of a mating
constraint, e.g. S11 and S21 in Figure 3, the other contacts
implementing the kinematical interface, such as S11 and
S22 in the same figure, are not identified as contacts. The
same issue arises in coaxiality constraints, creating ambigu-
ous configurations that require specific treatments [23].

Although feature-based modeling can provide compo-
nent boundary decompositions that can meet the require-
ments to correctly identify the mating surfaces [17,21], it
is a prescriptive approach because it requires user input.
Therefore, the user’s assignment of features becomes error
prone, especially when processing large assemblies. Also,
it has to be pointed out that features cannot be propa-
gated through model exchange between industrial software
because most of them rely on STEP API 203 or 214 [1]
that do not incorporate feature description. When process-
ing assemblies for FE simulations in an industrial context,
model exchange between CAD and CAE is often necessary,
hence reducing the interest of feature-based models.

Some CAD software propose operators to compute geo-
metric interfaces. In CATIA V5, this operation is applied to

2



(a) Two components (b) Ray-surface intersec-

tions

(c) Boundary curves (d) Curve connectivity (e) Imprint faces

Fig. 2. Overview of the algorithm.

(a) (b)

component 1 component 2

S11

S21

S22

Fig. 3. Geometric constraints do not define the imprint between two

components (courtesy ANTECIM).(a) component1 and component2

positioned using a mating constraint defined using S11 on compo-
nent1 and S21 on component2 only, (b) exploded view of compo-

nent1 and component2 for visualization purposes showing that S21

and S22 coincide with the same cylindrical surface. The imprint de-

rived from the contact between component1 and component2 must

relate to the couple of surfaces (S11, S21) and (S11, S22).

a facetted representation of the B-Rep NURBS model of the
components. As a result, the approximation taking place is
not defining precisely the geometric interface and this op-
erator cannot robustly distinguish contact from clearance
configurations. In SolidWorks, geometric interfaces defin-
ing contacts can be visualized but cannot be converted to
imprints. To the best of our knowledge, there is no indus-
trial CAD software that produces accurate geometric in-
terfaces with operators that scale up robustly to process
highly complex assemblies. Additionally, if these softwares
can position components using geometric constraints, the
consistency of the corresponding equation system is still
an issue [11]. This is critical since positioning components,
even in a rather small assembly like the hydraulic pump of
Figure 13 with 46 components, can lead to a large number
of constraints, i.e. more than two hundreds of geometric
constraints are necessary for the hydraulic pump. There-
fore, aircraft and automotive companies favor the storage of
large assemblies with components located at their absolute
positions. Consequently, there is no geometric relationship
between assembly components.

Some approaches have been proposed to identify ge-
ometric interfaces between components. Chouadria [4]
used a facetted representation of components. Because the
facetted representation is the input model, telling contacts
from clearances becomes inherently difficult since there
is no reference to an underlying B-Rep NURBS geome-
try. In [5], the authors introduce an approach of tolerant

imprinting using a tolerance greater than that of the un-
derlying geometric modeler used to split edges and faces
of each component. All the boundary transformations are
performed using tolerant projection and split/cut opera-
tors of a volume modeler. This results in difficulties to scale
up to highly complex assemblies. As mentioned by the
authors, their approach strongly relies on the behavior of
the operators of the volume modeler, which is not generic.

Contact has also been extensively studied in Computer
Graphics, to detect and react to collisions [19]. It is typi-
cally modeled as distance constraints within pairs of low-
level geometric primitives such as vertices, edges, polygons,
spheres, and boxes. Recent methods leverage the power
GPUs to discretize the boundaries of the intersection vol-
umes between arbitrarily complex polyhedra [8,22]. None
of these approches accurately compute the contact surface
between tangent objects.

The above analysis shows that current approaches in
functional design, feature-based modeling, geometric con-
straints and industrial practices are not able to produce the
precise geometric interfaces between assembly components
in a robust and scalable manner able to process highly com-
plex assemblies.

3. Imprint computation method

Our approach is based on the following assumptions:

(A1) The imprint is a 2-manifold surface with boundaries.
(A2) Every point on a boundary of an interface belongs

to the boundary curve of at least one component.

Assumption (A2) is reasonable, since interfaces that include
neither of the components boundaries only occur in some
degenerate cases of point contact, line-contact or free-form
shapes, but are rather rare in assembly modelling. We defer
the study of a completely general method to future work.

An overview of our method is shown in Figure 2. Given
two components (fig.2a), we shoot short rays from the facet
boundaries and detect detect nearby intersections (fig.2b).
These are clustered to represent the boundary curves of
the imprint (fig.2c). We compute the connectivity of the
curves (fig.2d) to detect cycles, which define the imprint
faces (fig.2e).

3



3.1. Interface boundary points

We shoot short rays only from the discretized boundaries
of the surfaces to compute the boundaries of the imprint,
consistently with assumption (A2). The rays are created on
a per-face basis and casted in the direction of the normal to
the surface. The rays are generated for all components B-
Rep faces along their boundary curves by sampling the B-
spline curves uniformly at the precision of the CAD model.
Thus, from a boundary shared by two B-Rep faces of the
same component, rays are casted in two directions.

We compute pairs of closed points (P,Q) where P as
the origin of the ray belongs to a boundary curve of some
component’s face, and Q belongs either to the interior of
another component’s face, or to its boundary curve. The
latter corresponds to the frequent case where two faces in
different components share a section of the same boundary
curve, see for example the three plates in Figure 9(a).

P

Q’

Q

Fig. 4. Post-processing proximities with boundary curves. The ray

(dashed arrow) casted from its origin P (green point) enters the box

of an edge (gray line) discretizing a piece of a boundary curve (blue
curve). The closest point Q′ (red) to P on the segment is computed.

The position of Q′ in the edge is used to linearly interpolate the

parameters of the two end points (black) on the boundary curve.
This gives us the position and parameter of the point Q on the curve

segment close to P .

For the sake of clarity, the technical details of the GPU
implementation of ray casting is presented in section 4.
For the time beeing it is sufficient to know that the GPU
provides pairs of points (P,Q′) where P is the origin of the
ray and Q′ is a point, close to P , lying on a discretization
of the components. This discretization consists in edges for
the boundary curves, and triangles for the B-Rep faces.
• In case Q′ belongs to an edge, we need to compute the

corresponding point Q on the boundary curve segment.
To this end we linearly interpolate the parameter values
of the end-points of the edge using the position of Q′ in
the edge, as illustrated in Figure 4. Since the parameter-
ization may be distant from chord-length, we check that
the distance between P and Q is smaller than a thresh-
old ε. If not we reject the pair (P,Q) and proceed to the
next ray. If yes, we store the position Q, its parameter
value and the index of the boundary curve it belongs to.

• In case Q′ belongs to the interior of a triangle, we don’t
need the exact intersection point with the B-Rep face the
triangle belongs to, we only need to store the index of
this B-Rep face.

Figures 12(d) and 13(b) show the result of the ray-casting
process on complex assemblies. Figure 5 shows a simpler

example, corresponding to the assembly of Figure 9.
Output of the ray-casting part is finally a set of points

lying on the boundary of the interfaces. In Sections 3.3
and 3.4 we will present our method for reconstructing the
geometry of all interfaces from this set of points.

Fig. 5. Ray-casting results. All rays are casted from the boundary

curves of the components. The rays are subsampled and magnified
for visibility purposes. Rays appear pink if they do not correspond to

component proximities, red if they correspond to proximities between

a boundary curve in one component and the interior of a B-Rep
face in another component, green if they correspond to proximities

between two boundary curves in different components. The inset
shows a zoom on the cylindrical bolt and the cylindrical hole in the

plates.

3.2. Notations

face A

face B

Ci
A

Cj
B

(a) (b)

Fig. 6. (a) Interface I (in green) between B-Rep face A (in blue)
and B-Rep face B (in purple). A (resp. B) is bounded by the curves

CA
i (resp. CB

j ), two of them are highlighted in dark blue (resp.
dark purple). (b) Points surrounding the interface, collected by ray
casting. The points PA

k collected from face A are shown in dark blue,

the points PB
l casted from face B are shown in dark purple. The

green points belong to the boundary of both faces.

4



In order to describe our method for reconstructing the
interfaces from the points collected at their boundary, we
choose the following notations.

Let I be an interface between B-Rep face A of one compo-
nent and B-Rep face B of another component. Let CA

i , CB
j

denote the boundary curves of the faces A and B as given
from the input B-rep models. The B-rep model also pro-
vides for each face an ordering of these curves and a para-
metric representation with coherent orientation for each
curve such that the curves {CA

i }i form one or more closed
oriented boundary curves. See for example the blue face in
Fig. 6(a) which is composed of 11 curves CA

i .
Using ray casting as explained in the previous section, we

have collected points along the boundary of I. These points
correspond to rays that were launched from the boundaries
of face A (resp. B) and that have intersected face B (resp.
A) either at its boundary or in its interior. Let us denote
these points PA

k in case the ray has been launched from
A, and PB

l otherwise. The collected points belong either
to the boundary of one face (see blue and purple points in
Fig. 6(b)) or to both faces (see green points in Fig. 6(b)).

For each PA
k , the ray-casting process described in the pre-

vious section gives us the following information:
· PA

k ←− (i, s) if the ray intersects the interior of B, or
· PA

k ←− (i, s, j, t) if the ray intersects the boundary of B,
where i is the index of the boundary curve PA

k belongs to
(e.g. PA

k ∈ CA
i ), s is the parameter of PA

k in CA
i , and t is

the parameter of the closest point of PA
k in the boundary

curve CB
j of face B.

Similarly, for each PB
l we know:

• PB
l ←− (j, t) if the ray intersects the interior of A, or

• PB
l ←− (j, t, i, s) if the ray intersects the boundary of A,

where j is the index of the boundary curve PB
l belongs to

(e.g. PB
l ∈ CB

j ), s is the parameter of PB
l in CB

j , and s is

the parameter of the closest point of PB
l in the boundary

curve CA
i of face A.

3.3. Grouping interface boundary points

The first step of our interface reconstruction method con-
sists of grouping together and ordering the pointsPA

k of face
A so that each group describes a section of curve. There-
fore, for each curve CA

i with a non-empty set of points as-
sociated to it, the points PA

k are sorted by increasing value
of their parameter s. Then, whenever the distance between
two successive points is larger than a threshold ε′, a new
group is created. This may happen when two or more seper-
ate sections of the same curve CA

i belong to the interface
boundary, e.g. see the two left-most boundary curves of face
B in Fig. 6(a).

Theoretically, a new group should be created as soon
as one ray didn’t intersect the other face. Nevertheless,
in order to account for numerical inacurracies due to the

initial sampling of rays along the boundary curves, we use
a distance threshold ε′ larger than the distance given by
the initial sampling. In practice, we choose ε′ to be 5 times
larger than the distance in the initial sampling.

The same procedure is applied to group adjacent points
PB
l in face B. Figures 2(c), 7(c) and 8(c) show the group

of points on three examples.
The min and max parameter values of points in each

group determine a section of a face boundary curve, which
also bounds the interface. Thus each group of adjacent
points may also be considered as a section of the inter-
face boundary curve. But vice-versa, the interface bound-
ary is composed only of a subset of the previously com-
puted groups of points. There may be redundancy due to
the fact that groups of points are partly overlapping when
the points belong to the boundary of both faces. See green
points in Fig. 6(b) or the circular hole in Fig. 8(c). These
points generate in fact two groups, i.e. two curve sections
for the same piece of boundary, one for face A and another
for face B.

3.4. Connecting interface boundaries

First, redundancy is reduced by making the following
observation. When both faces share a common section of
boundary curve, it may be the case that one group of points
in face A is completely included in another group of points
in B. In that case we remove it, since the other group of
points already includes this piece of interface boundary. In
order to select among all groups of points complete subset
of groups of points representing all boundaries of the same
interface, we introduce a graph-based approach.

A directed graph is defined as follows. All nodes in this
graph are the groups of adjacent points. Two types of arcs
are established in this graph:
• Arcs between nodes in the same face. When two nodes

correspond to adjacent sections of boundary curves of the
same face, then an arc is established between the nodes,
in the direction corresponding to the orientation of the
curves. This information can be recovered from the B-
Rep model of the face.

• Arcs between nodes in different faces. Let PA
k be the

point with max parameter in a node N in face A. If PA
k

corresponds to a ray intersecting the boundary of B, then
we know (i, s, j, t) where t is the parameter of the closest
point of PA

k in CB
j . We then search for the unique node Ñ

in face B, for which t lies between the min and the max
parameter of this node. An arc is established between N
and Ñ .

An example of such a graph is shown in Figure 7(d).
It corresponds to the two components shown in Figure
7(a,b). There are 12 nodes in this example. The nodes are
colored according to the component from which the rays
were casted to detect the intersection points. 4 nodes be-
long to the lower component in Figure 7, and 8 nodes to

5



the upper component. 8 arcs join nodes in different faces,
and 4 arcs join nodes in the same face. Note that the two
red nodes at the bottom correspond to different sections
of the same boundary curve of the red component. In this
example there is no redundancy, two nodes corresponds
to sections of boundary curves that intersect in a single
point. As a result the graph is a cycle.

In general, the graph has at least one strongly connected
component 1 corresponding to the outer boundary of the
interface. Furthermore, additional strongly connected com-
ponents appear for each hole (interior boundary) in the in-
terface. Since a section of the interface’s boundary curve
may belong to both faces, the connected components are
not always cycles, as shown in Figure 8(d). In all cases, a
cycle can be extracted from any strongly connected compo-
nent, since strongly connected directed graphs are cyclic.
Once the graph is built, each interface boundary can be ex-
tracted as a cycle. We extract a cycle from each strongly
connected component using the algorithm 1. In this algo-
rithm, priority is given to a successor node belonging to the
same face as the first node. As a result, for the circular hole
in the example of Figure 8 , this algorithm extracts cycles
with all nodes belonging to the same face, e.g. two red of
two yellow nodes.

Algorithm 1 Extract Cycle from face A (resp. B)

Choose any node StartingNode in face A (resp. B)
CurrentNode← StartingNode
repeat

if there exists a direct successor N of CurrentNode
in face A (resp. B) then
CurrentNode← N

else
Choose any direct successor Ñ of CurrentNode
CurrentNode← Ñ

end if
until CurrentNode = StartingNode

3.5. B-rep model of interface

The interface boundaries are now extracted from the
graph as cycles. Each node represents a curve section pa-
rameterized either in the B-Rep face A or the B-Rep face
B. The last step of our reconstruction method consists in
computing a B-rep model of the interface surface. It is in
fact a trimmed surface of both A and B. The interface can
thus be parameterized either in the parameter domain of
face A or B. If we choose the parameter domain of A, then
each section of the boundary interface in B must be repa-
rameterized in the parameter domain of A. This reparam-
eterization is implemented using the OpenCascade library.

1 In graph theory, a directed graph is said to be strongly connected,
iff for every pair of nodes u, v, a directed path exists from u to v

and from v to u [6].

In our implementation we choose to parameterize the in-
terface using the parameter domain of the face which sup-
ports the largest number of nodes in the graph, in order to
reduce the number of reparameterizations. For each node
in the cycle, we store the parameterization directly in the
B-Rep model if the corresponding curve section is defined
in the chosen parameter domain, otherwise we reparame-
terize if it is defined in the parameter domain of the other
face. Using this procedure, the outer boundary of the in-
terface as well as all inner boundaries are entirely encoded
in the B-Rep model, with the required orientation. If nec-
essary, this model can be stored in a plain STEP file for
downstream treatment in other systems.

(a) (b)

(c) (d)

Fig. 7. (a) and (b): two components. (c): group of adjacent points (see
section 3.3). (d): corresponding graph (see section efsubsec:graph).

(a) (b)

(c) (d)

Fig. 8. (a) and (b): two components sharing the same circular hole
at their interface, but with a different parameterization. (c): group

of adjacent points (see section 3.3). (d): corresponding graph (see

section 3.4). Due to redundancy, the strongly connected component
corresponding to the circular hole is not a cycle.

4. Implementation

GPU Ray casting
The core of our system consists in launching rays through

the object and looking for pairs of neighbouring intersec-

6



tions between one ray and two components. Such a pair in-
dicates the existence of an interface between the two com-
ponents. We use OptiX, a highly efficient, freely available
ray-tracing engine implemented on the GPU [13]. It is a
programmable system for efficiently implement ray-casting
and ray-tracing applications on GPU. The user sends a
set of geometric primitives to the GPU. The system ini-
tializes an acceleration structure stored in GPU, based
on bounding-volume hierarchies. This structure enables to
quickly find potential intersections between rays and geo-
metric primitives. The user provides a set of programs, for
computing the bounding-boxes of the geometric primitives,
actually testing and computing intersections with the geo-
metric primitives, and for handling intersections, all these
on a per-ray or per-primitive basis. All the parallel aspects
of the implementation are addressed by the library, trans-
parently to the user.

We discretize the input model into edges for the bound-
ary curves and triangles for the B-Rep faces, and we gener-
ate axis-aligned bounding boxes for these geometric primi-
tives. A ray passing nearby a component’s boundary curve
or B-Rep face will always intersect one of the boxes. Note
that the discretization is only used for accelerating the
casting of rays by OptiX. However, for all other computa-
tions (interface boundary computations and interface sur-
face generation) the exact Nurbs representation is used.

We proceed in two steps: first, OptiX finds all poten-
tial proximities between rays and components based on
bounding-boxes of the geometric primitives. Then, the po-
tential proximities are post-processed, still in the GPU, in
order to remove invalid proximities, and to identify the pa-
rameters of the pair of closed points in the B-Rep model,
as explained in section 3.1.

Model preparation
The input of our algorithm are one or several STEP files

containing the components of the assembly as a B-Rep
Nurbs. In a STEP file, each surface forming the bound-
ary faces of the components is represented as a (possibly
trimmed) parametric B-spline surface defined on a given
parameter domain, and each boundary curve has its indi-
vidual parameterization. The OpenCasCade (OCC) library
[3] is used to read the STEP files and to compute a mesh
of each component in the assembly. The edges and trian-
gles in these meshes are used by the OptiX library, as ex-
plained above. The triangles do not need to be regular, the
only requirement is that the maximum distance between
the triangulation and the face should be less than a given
error tolerance ε, so that an intersection between the ray
and a triangle indicates a nearby intersection between the
ray and a B-Rep face.

5. Results

We have implemented our interface computation algo-
rithm on a linux workstation with 4 Intel Xeon 2.67 Ghz

CPUs, 8 GB RAM and a NVIDIA Quadro 4000 graphics
card with 2 GB memory.

Model description
Various models are presented, two of them are hand-

made academic models, the other four are real-world indus-
trial assemblies. The models exhibit planar and cylindrical
interfaces (Figures 1, 7, 12 and 13(a,b,c)). as well as free-
form interfaces (Figure 10 and 13(d,e,f)). The first indus-
trial example is an aircraft assembly, part of a root joint, for
joining the root of the wing to the fuselage, see Figure 12.
Additionally to the simple academic models, where the in-
terfaces are known a-priori, this aircraft assembly served us
to validate our method on a real industrial part with feed-
back from an industrial partner. The hydraulic pump as-
sembly, Figure 13(a), has 46 components composed of 2156
B-Rep faces and 5389 NURBS curves. 565 interfaces have
been computed. They are shown in Figure Figure 13(c).
In the Imprint example (Figs. 1, 3), the holes are modeled
by substraction of cylinders from objects with non-planar
faces. As a result, the cylindric holes are represented in the
input B-Rep model, not as usual with only two half cylin-
ders, but with as many as 50 cylinder arcs connected to-
gether, which explains the large number of B-Rep faces and
curves in this model. Nevertheless, our method is able to
handle the assembly and produces topologically valid B-
Rep STEP files for the interfaces.

Timings
For the aircraft part (Fig. 12), the total processing time

is 12s. According to our industrial partners, building an
FEM model for such an assembly is a question of days, of
which several hours of manual work are required to extract
the interfaces between components. The total processing
time for computing the interfaces is at most 106s for the
hydraulic pump (Fig. 13). Thanks to the parallel GPU im-
plementation (see section 4), a huge number of rays can be
casted very efficiently. More precisely the time to cast rays
is logarithmic in the number of rays. For the Aircraft root
joint example, 10 million rays are casted in just 2,3 seconds.
Setting up the graph (see section 3.4) and building the step
model of the interfaces (see section 3.5) takes at most 1s for
the Aircraft example. Most of the time is spent by the Op-
tiX library for initializing the acceleration structure before
casting the rays (see section 4). This initialization time of
OptiX is proportional to the number of triangles used to
discretize the model, therefore it is directly related to the
complexity of the geometry of the components. For the air-
craft root joint and bolted junction assemblies which have
a lot of planar faces and some cylindrical faces, this initial-
ization time takes 60% to 70% of the total time. For the
Imprint, Freeform, Car door and Pump examples, many
triangles are required for the discretization, and as a conse-
quence the time to initialize OptiX account for about 95%
to 99% of the total time.

Numerical issues
- We choose the length of rays coherently with the CAD

7



model tolerances. If the rays are too short, then some in-
terfaces may not be detected by the ray-casting. In Fig-
ure 11(b) we show the result of ray casting on the Imprint
model with rays that are too short. Interface boundary
points are not detected when the distance between the
components is larger than the length of rays. This behav-
ior may also be used to detect defaults in assemblies, as
illustrated in Figure 13(e). Two parts seem to be missing
in the interface between the car door outer surface and
the inner frame. In fact, at these two places the compo-
nents have a distance larger than the length of rays. It is
up to the user to decide whether or not this corresponds
to missplaced components in the assembly. Thanks to
the GPU implementation, the user can quickly experi-
ment with different length of rays if the default length is
not adapted to the model. In the examples of the paper,
we only had to increase slightly the length of rays for the
Imprint example.

- We also did initial experiments to adapt our method for
computing interferences between components. In order
to do this we translated the origin of the rays. Instead
of choosing the origin of rays exactly on the boundary
curves of each face of the components, we translated this
origin in the direction opposite to the normal of the face,
thus slightly inside the component. Therefore the rays
also intersect other components with which there is an
interference. On the other hand, by increasing the length
of rays, we are able to detect nearby components even
if they are not in contact, thereby paving the way for
clearance fit detection and computation. We reserve a
full study of clearance and interference computation in
assemblies for future works.

- Other parameters of the algorithm include the chordal
tesselation error that is used by OCC to triangulate the
components for accelerating OptiX (see section 4), the
threshold ε used to assess boundary/boundary proximi-
ties (see section 3.1) and the threshold ε′ used to build the
group of interface boundary points (see section 3.3). We
used the same value of these parameters in all our results.
For the chordal tesselation error, we used deflection=
0.1 in the OCC function BRepMesh::Mesh. This is a rela-
tive measure taking into account the absolute maximum
distance between the object and its tesselation and the
lengths of the edge/triangle used to tesselate it. Thus for
the same deflection parameter, applying the function
BRepMesh::Mesh on two homothetic surfaces will result
in the same number of triangles and edges. For the thresh-
old ε we used the length of the ray. The value of ε′ has al-
ready been given in section 3.3. This value assumes that
an edge of the interface cannot be shorter than 5 times
the distance between the origin of two consecutive rays.

6. Conclusion

Interfaces detection and computation between compo-
nents in B-Rep CAD models is a key step for the efficient

(a) (b)

Fig. 9. Bolted junction with three plates (a) Cut view (b) Interfaces.

(a) (b)

Fig. 10. Freeform surface example. (a) two components (b) their

interface.

(a) (b)

Fig. 11. Influence of the length of rays. The actual length is 10 times

smaller. (a) Correct length (b) Rays too short.

analysis of assemblies. Interfaces are essential for com-
ponent idealizations, FE simulations or Virtual reality
simulation of assemblies. In this paper we have presented
the first ray-casting based interface computation method
that scales up robustly to process highly complex assem-
blies. Our method combines GPU accelerated adaptive
ray-casting for proximity computations with a graph-based
interface geometry reconstruction. The algorithm is ex-
tremely fast without requiring any user-interaction and is
thus able to treat complex assemblies in minutes only. The
resulting interfaces are standard high-level B-Rep Nurbs
faces computed at an accurate precision, and can be stored
in plain STEP files for further processing.

Currently, we have made assumptions concerning the
boundaries and the manifoldness of the interfaces. These
assumptions exclude particular cases such as line contact
and point contact between components. Note however that
the ray-casting part of the algorithm will still be able to
detect the interfaces for these particular degenerate cases,
but the graph based approach is not adapted to these cases.
This limitation will be addressed in future work.

Our implementation uses a discretization of the B-Rep

8



Table 1

model #comp.
#B-Rep
faces #curves #interf.

#curves
in interf. #triangles#rays

#Interf.
boundary
points

Init
Optix
(ms)

Launch
Rays
(ms)

Build
graph
(ms)

Build
step
model
(ms)

Total
(ms)

Academic
Fig. 7 2 20 48 1 12 56 118,496 10,022 16 118 7 2 143

Imprint
Figs. 1, 3, 2 2 314 887 2 75 19,241 1,743,644 88,254 3758 328 31 9 4126

Freeform
Fig. 10 2 20 42 5 20 27,620 189,452 52,679 5516 150 20 25 5711

Bolted Junction
Figs. 9, 5 6 69 154 25 106 1,438 176,330 64,318 264 154 25 25 468

Aircraft part
Fig. 12 12 498 1780 20 324 50,880 10,275,797 1,650,456 8189 2386 1083 30 11688

Car door
Fig. 13 2 537 1728 122 501 139,863 5,435,386 168,978 32486 804 76 11 33377

Hydraulic pump
Fig. 13 46 2158 5389 119 565 447,181 8,465,558 1,095,595 103472 1683 402 126 105683

(a) (b) (c)

(d) (e) (f)

Fig. 12. Aircraft part for assembling the wings with the body of an aircraft (model courtesy of EADS). (a,b) two views of the components,

(c) exploded view, (d) ray casting results, refer to caption of Fig. 5 for the color coding, (e) boundary reconstruction, (f) final interfaces

model that is stored in the GPU in order to compute the in-
tersections with the rays. In future works, we want to store
the B-Rep model on the GPU and perform the exact inter-
section computation without using a discretization. This
should reduce memory consumption.

Also, as already mentioned in section 5, the extension
to include the computation of interferences and clearance
contacts is possible by adapting the ray-casting parameters,
but it needs a more careful investigation of the interplay
between the ray and the tolerance parameters. This will be
investigated as well in the future.

ACKNOWLEDGMENTS

This work has been partly funded by the ANR project
ROMMA 2 . Models are partly provided by EADS 3 and
ANTECIM 4 . NVIDIA has provided professional graphics
card to our research team.

2 http://romma.lmt.ens-cachan.fr/
3 http://www.eads.com/
4 http://www.antecim.eu/

9



(a) (b) (c)

(d) (e) (f)

Fig. 13. Pump and car door assemblies.(a,d) Input model, (b) Results of ray-casting, refer to caption of Fig. 5 for the color coding, (c,e)

Interfaces, (f) Zoom from (e) with different colors to highlight the NURBS faces of the interface.

References

[1] Iso 10303-1:1994 industrial automation systems and integration
product data representation and exchange - overview

and fundamental principles, international standard. ISO

TC184/SC4, 1994.

[2] ANSYS Workbench v.14, 2012.

[3] OpenCascade CAD software library, 2012.

[4] R. Chouadria and P. Véron. Identifying and re-meshing contact
interfaces in a polyhedral assembly for digital mock-up. Eng.
with Computers, 22(1):47–58, 2006.

[5] B. Clark, B. Hanks, and C. Ernst. Conformal assembly meshing
with tolerant imprinting. In Proc. 17th Meshing Roundtable,

Pittsburg, USA, October 12–15, pages 267–280, 2008.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd

edition, 2009.

[7] A. Dixon and J. J. Shah. Assembly feature tutor and recognition
algorithms based on mating face pairs. CAD and Applications,
7(3):319–333, 2010.

[8] F. Faure, J. Allard, F. Falipou, and S. Barbier. Image-based

Collision Detection and Response between Arbitrary Volumetric
Objects. In ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, pages 155–162, Dublin, Ireland, July 2008.

[9] R. Iacob, P. Mitrouchev, and J.-C. Léon. Contact identification

for assembly/disassembly simulation with a haptic device. Visual

Computer, 24(11):973–979, 2008.

[10] K.-Y. Kim, Y. Wang, O. S. Muogboh, and B. O. Nnaji. Design

formalism for collaborative assembly design. CAD, 36(9):849–

871, 2004.

[11] A. Lee-St.John and J. Sidman. Combinatorics and the rigidity
of cad systems. CAD, 45:473–482, 2013.

[12] C. Mascle. Feature-based assembly model for integration in

computer-aided assembly. RCIM, 18:373–378, 2002.

[13] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,

D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison,

and M. Stich. Optix: A general purpose ray tracing engine.
ACM Transactions on Graphics, August 2010.

[14] K. Rahmani and V. Thomson. Ontology based interface design

and control methodology for collaborative product development.
CAD, 44(5):432–444, 2012.

[15] U. Roy and B. Bharadwaj. Design with part behaviors: behavior

model, representation and applications. CAD, 34(9):613–636,
2002.

[16] U. Roy, N. Pramanik, R. Sudarsan, R. D. Sriram, and K. W.

Lyons. Function–to–form mapping: model, representation and
applications in design synthesis. CAD, 33(10):699–719, 2001.

[17] J. Shah and M. Mäntylä. Parametric and Feature-Based
CAD/CAM: Concepts, Techniques, and Applications. John

10



Wiley & Sons, 1995.

[18] A. Shahwan, J.-C. Léon, G. Foucault, M. Trlin, and O. Palombi.

Qualitative behavioral reasoning from components’ interfaces to
components’ functions for DMU adaption to FE analyses. CAD,

45:383–394, 2013.

[19] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann,
L. Raghupathi, A. Fuhrman, M.-P. Cani, F. Faure, N. Magnenat-

Thalmann, W. Strasser, and P. Volino. Collision Detection for

Deformable Objects. Computer Graphics Forum, 2005.
[20] A. Thakur, A. Banerjee, and S. K. Gupta. A survey of cad

model simplification techniques for physics-based simulation

applications. CAD, 41(2):65–80, 2009.
[21] W. van Holland and W. F. Bronsvoort. Assembly features in

modeling and planning. RCIM, 16:277–294, 2000.
[22] B. Wang, F. Faure, and D. K. Pai. Adaptive Image-based

Intersection Volume. ACM Transactions on Graphics, Aug.

2012.
[23] R. Yang, X. Fan, D. Wu, and J. Yan. Virtual assembly

technologies based on constraint and dof analysis. RCIM,

23:447–456, 2007.

11


