334,452 research outputs found

    Outsourcing and acquisition models comparison related to IT supplier selection decision analysis

    Get PDF
    This paper presents a comparison of acquisition models related to decision analysis of IT supplier selection. The main standards are: Capability Maturity Model Integration for Acquisition (CMMI-ACQ), ISO / IEC 12207 Information Technology / Software Life Cycle Processes, IEEE 1062 Recommended Practice for Software Acquisition, the IT Infrastructure Library (ITIL) and the Project Management Body of Knowledge (PMBOK) guide. The objective of this paper is to compare the previous models to find the advantages and disadvantages of them for the future development of a decision model for IT supplier selection

    A Model-Based Approach to Impact Analysis Using Model Differencing

    Get PDF
    Impact analysis is concerned with the identification of consequences of changes and is therefore an important activity for software evolution. In modelbased software development, models are core artifacts, which are often used to generate essential parts of a software system. Changes to a model can thus substantially affect different artifacts of a software system. In this paper, we propose a modelbased approach to impact analysis, in which explicit impact rules can be specified in a domain specific language (DSL). These impact rules define consequences of designated UML class diagram changes on software artifacts and the need of dependent activities such as data evolution. The UML class diagram changes are identified automatically using model differencing. The advantage of using explicit impact rules is that they enable the formalization of knowledge about a product. By explicitly defining this knowledge, it is possible to create a checklist with hints about development steps that are (potentially) necessary to manage the evolution. To validate the feasibility of our approach, we provide results of a case study.Comment: 16 pages, 5 figures, In: Proceedings of the 8th International Workshop on Software Quality and Maintainability (SQM), ECEASST Journal, vol. 65 201

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    A Preliminary Study of Applying Lean Six Sigma Methods to Machine Tool Measurement

    Get PDF
    Many manufacturers aim to increase their levels of high-quality production in order to improve their market competitiveness. Continuous improvement of maintenance strategies is a key factor to be capable of delivering high quality products and services on-time with minimal operating costs. However, the cost of maintaining quality is often perceived as a non-added-value task. Improving the efficiency and effectiveness of the measurement procedures necessary to guarantee accuracy of production is a more complex task than many other maintenance functions and so deserves particular analysis. This paper investigates the feasibility of producing a concise yet effective framework that will provide a preliminary approach for integrating Lean and Six Sigma philosophies to the specific goal of reducing unnecessary downtime on manufacturing machines while maintaining its ability to machine to the required tolerance. The purpose of this study is to show how a Six Sigma infrastructure is used to investigate the root causes of complication occurring during the machine tool measurement. This work recognises issues of the uncertainty of data, and the measurement procedures in parallel with the main tools of Six Sigma’s Define-Measure-Analyse-Improve-Control (DMAIC). The significance of this work is that machine tool accuracy is critical for high value manufacturing. Over-measuring the machine to ensure accuracy potentially reduces production volume. However, not measuring them or ignoring accuracy aspects possibly lead to production waste. This piece of work aims to present a lean guidance to lessen measurement uncertainties and optimise the machine tool benchmarking procedures, while adopting the DMAIC strategy to reduce unnecessary downtime

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Clarifying the Quadrennial Needs Study Process, December 1993

    Get PDF
    • …
    corecore