2,238 research outputs found

    Revision of Boolean Logical Models of Biological Regulatory Networks using Answer-Set Programming

    Get PDF
    Biological regulatory networks are one of the most prominent tools used to represent complex, regulatory cellular processes. Creating computational models of these networks is key to better comprehend the corresponding cellular processes, as they allow for the reproduction of known behaviors, the testing of hypotheses, and the identification of predictions in silico. However, given that the process of constructing and revising such models is mainly a manual one, it is prone to error, and would therefore benefit from automation. An attempt at solving this problem has already been made using a mixture of Answer Set Programming (ASP) and C++. The previous attempt automated the process of revising these models, by using ASP to verify whether a Boolean logical model of a biological regulatory network was consistent with a given set of experimental observations and, in case of inconsistencies, used C++ to implement an algorithm capable of searching for possible sets of repair operations to render the model consistent. In our work we propose an alternative solution for this problem, a solution that fully leverages ASP which, being a declarative language tailored for this type of difficult search problems, has demonstrated to be a great tool to use both for consistency checking as well as model repair. This is in view of the fact that ASP offers a more intuitive and elaboration-tolerant programming style, which facilitates the processes of understanding, and modifying the code behind the model revision process. This, coupled with the powerful and exhaustively optimized solving capabilities provided by the state of the art ASP system clingo, has shown that there is great potential in adopting a fully ASP-based approach to aid in the automation of the revision of Boolean logical models. In this thesis we present the tool that we have developed to automate the process of revising Boolean logical models of Biological Regulatory Network(s) (BRN), which uses ASP to search for inconsistencies and perform repairs on these models.As redes reguladoras biológicas são das ferramentas mais proeminentes usadas para representar processos celulares regulatórios complexos. A criação de modelos computacionais destas redes é fundamental para entender melhor os processos celulares correspondentes, pois permitem reproduzir comportamentos conhecidos, testar hipóteses e identificar previsões in silico. Porém, dado que o processo de construção e revisão destes modelos é principalmente manual, torna-se propenso a erros e, logo, beneficiaria de automação. Já foi feita uma tentativa de resolução deste problema usando uma mistura de Programação por Conjuntos de Resposta (ASP) com C++. A tentativa anterior automatizou o processo de revisão destes modelos, usando ASP para verificar se um modelo lógico booleano de uma rede regulatória é consistente com um determinado conjunto de observações experimentais e, caso inconsistências se verifiquem, é utilizado um algoritmo desenvolvido em C++ capaz de encontrar possíveis conjuntos de operações de reparo para tornar o modelo consistente. No nosso trabalho, propomos uma solução alternativa para este problema, que tira completo partido da utilização ASP que, sendo uma linguagem declarativa adaptada a este tipo de problemas de busca difíceis, demonstrou ser uma excelente ferramenta a utilizar tanto para a verificação da consistência como para a reparação de modelos. Tal deve-se ao facto de ASP oferecer um estilo de programação mais intuitivo e tolerante à elaboração, o que facilita os processos de compreensão, e a modificação do código por detrás do processo de revisão de modelos. Isto, juntamente com as poderosas e otimizadas capacidades de resolução de problemas de busca oferecidas pelo sistema ASP de última geração clingo, demonstrou que existe um grande potencial na adopção de um sistema totalmente baseado em ASP para ajudar na automatização da revisão destes modelos. Nesta tese apresentamos a ferramenta que desenvolvemos para automatizar o processo de revisão de modelos lógicos booleanos de redes reguladoras biológicas (BRN), que utiliza ASP para procurar inconsistências e efectuar reparações nestes modelos

    Combining Network Modeling and Gene Expression Microarray Analysis to Explore the Dynamics of Th1 and Th2 Cell Regulation

    Get PDF
    Two T helper (Th) cell subsets, namely Th1 and Th2 cells, play an important role in inflammatory diseases. The two subsets are thought to counter-regulate each other, and alterations in their balance result in different diseases. This paradigm has been challenged by recent clinical and experimental data. Because of the large number of genes involved in regulating Th1 and Th2 cells, assessment of this paradigm by modeling or experiments is difficult. Novel algorithms based on formal methods now permit the analysis of large gene regulatory networks. By combining these algorithms with in silico knockouts and gene expression microarray data from human T cells, we examined if the results were compatible with a counter-regulatory role of Th1 and Th2 cells. We constructed a directed network model of genes regulating Th1 and Th2 cells through text mining and manual curation. We identified four attractors in the network, three of which included genes that corresponded to Th0, Th1 and Th2 cells. The fourth attractor contained a mixture of Th1 and Th2 genes. We found that neither in silico knockouts of the Th1 and Th2 attractor genes nor gene expression microarray data from patients with immunological disorders and healthy subjects supported a counter-regulatory role of Th1 and Th2 cells. By combining network modeling with transcriptomic data analysis and in silico knockouts, we have devised a practical way to help unravel complex regulatory network topology and to increase our understanding of how network actions may differ in health and disease

    Mathematical modelling plant signalling networks

    Get PDF
    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This sub-cellular analysis paves the way for more comprehensive mathematical studies of hormonal transport and signalling in a multi-scale setting

    Decoding the regulatory network of early blood development from single-cell gene expression measurements.

    Get PDF
    Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315

    Unraveling the Complex Regulatory Relationships between Metabolism and Signal Transduction in Breast Cancer.

    Full text link
    Almost all cancer cells exhibit a metabolic phenotype characterized by high rates of glucose uptake known as the Warburg effect. Metabolic changes that are representative of distinct stages of breast cancer may suggest dependence by cancer cells on certain metabolic processes that are not relevant to normal cells. Importantly, these differences may help identify therapeutic targets that are non-lethal to normal cells. In this thesis, I present a set of models and methodologies developed using both experimental and theoretical approaches to investigate the complex intracellular signaling and metabolic networks associated with distinct stages of breast cancer. First, a detailed literature search was used to construct a logic network model of the PI3K signaling pathway, which is known to play an important regulatory role in glucose metabolism. Comparisons of experimental and simulated results suggest that the network model is well constructed but some regulatory crosstalk with MAPK requires additional refinement. Targeted therapeutic inhibitors frequently induce off-target effects. This thesis also explored the role of retroactivity in generating off-target effects in signaling networks using a computational model. The simulation results suggest that the kinetics governing covalently modified cycles in a cascade are more important for propagating an upstream off-target effect via retroactivity than the binding affinity of a drug to a targeted protein, which is a commonly optimized property in drug development. Finally, 13C tracer experiments were used to infer relative glucose and glutamine derived flux in cell lines representing distinct stages of breast cancer. Steady state metabolic flux analysis was also used to computationally fit the absolute TCA cycle flux in these cell lines. Variations in acetyl-CoA, citrate, pyruvate, and alpha-ketoglutarate flux were identified. A particularly important finding was a large reductive carboxylation flux from alpha-ketoglutarate to citrate in SUM-149 cells. Together, the models presented in this thesis provide a framework for identifying mechanistic drivers of the Warburg effect, which may represent important therapeutic targets for modulating cancer proliferation and progression.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98062/1/mlwynn_1.pd

    Integrating Time-Series Data in Large-Scale Discrete Cell-Based Models

    Get PDF
    International audienceIn this work we propose an automatic way of generating and verifying formal hybrid models of signaling and transcriptional events, gathered in large-scale regulatory networks.This is done by integrating temporal and stochastic aspects of the expression of some biological components. The hybrid approach lies in the fact that measurements take into account both times of lengthening phases and discrete switches between them. The model proposed is based on a real case study of keratinocytes differentiation, in which gene time-series data was generated upon Calcium stimulation. To achieve this we rely on the Process Hitting (PH) formalism that was designed to consider large-scale system analysis. We first propose an automatic way of detecting and translating biological motifs from the Pathway Interaction Database to the PH formalism. Then, we propose a way of estimating temporal and stochas-tic parameters from time-series expression data of action on the PH. Simulations emphasize the interest of synchronizing concurrent events

    Inference of Genetic Regulatory Networks with Recurrent Neural Network Models using Particle Swarm Optimization

    Get PDF
    Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes
    corecore