3 research outputs found

    Rating Prediction based on Optimal Review Topics: A Proposed Latent Factors-Optimal Topics Hybrid Approach

    Get PDF
    Rating prediction is an inevitable problem which recommender systems (RS) need to address. Its goal is to accurately predict the rating a user will assign to a particular item. Predictions which utilize numerical ratings and review texts are biased and have low accuracy. Also, existing topic-based rating prediction approaches focus on finding the most preferred items through the identification of latent topics expressed in users’ review texts. Even though the latent topics seem to represent most user review texts, they do not necessarily capture each user’s preferences. The goal of this work is then to develop a more accurate model by considering product review texts analysis so as to gain additional preference knowledge. Hence, a hybrid algorithm that optimizes the latent topics is proposed.  Specifically, the proposed approach finds appropriate weights for the topics of each review text. Rating prediction is critical task for RS because slight performance enhancement of the prediction accuracy results into significant improvements in recommendations. Experimental evaluation over real-world datasets revealed performance improvements of the proposed approach compared to alternative models. The proposed model can be used by RS in various domain such as e-learning, movie and hotel rating

    Development of a national-scale real-time Twitter data mining pipeline for social geodata on the potential impacts of flooding on communities

    Get PDF
    International audienceSocial media, particularly Twitter, is increasingly used to improve resilience during extreme weather events/emergency management situations, including floods: by communicating potential risks and their impacts, and informing agencies and responders. In this paper, we developed a prototype national-scale Twitter data mining pipeline for improved stakeholder situational awareness during flooding events across Great Britain, by retrieving relevant social geodata, grounded in environmental data sources (flood warnings and river levels). With potential users we identified and addressed three research questions to develop this application, whose components constitute a modular architecture for real-time dashboards. First, polling national flood warning and river level Web data sources to obtain at-risk locations. Secondly, real-time retrieval of geotagged tweets, proximate to at-risk areas. Thirdly, filtering flood-relevant tweets with natural language processing and machine learning libraries, using word embeddings of tweets. We demonstrated the national-scale social geodata pipeline using over 420,000 georeferenced tweets obtained between 20-29th June 2016. Highlights • Prototype real-time social geodata pipeline for flood events and demonstration dataset • National-scale flood warnings/river levels set 'at-risk areas' in Twitter API queries • Monitoring multiple locations (without keywords) retrieved current, geotagged tweets • Novel application of word embeddings in flooding context identified relevant tweets • Pipeline extracts tweets to visualise using open-source libraries (SciKit Learn/Gensim) Keywords Flood management; Twitter; volunteered geographic information; natural language processing; word embeddings; social geodata. Hardware required: Intel i3 or mid-performance PC with multicore processor and SSD main drive, 8Gb memory recommended. Software required: Python and library dependencies specified in Appendix A1.2.1, (viii) environment.yml Software availability: All source code can be found at GitHub public repositorie

    An ebd-enabled design knowledge acquisition framework

    Get PDF
    Having enough knowledge and keeping it up to date enables designers to execute the design assignment effectively and gives them a competitive advantage in the design profession. Knowledge elicitation or acquisition is a crucial component of system design, particularly for tasks requiring transdisciplinary or multidisciplinary cooperation. In system design, extracting domain-specific information is exceedingly tricky for designers. This thesis presents three works that attempt to bridge the gap between designers and domain expertise. First, a systematic literature review on data-driven demand elicitation is given using the Environment-based Design (EBD) approach. This review address two research objectives: (i) to investigate the present state of computer-aided requirement knowledge elicitation in the domains of engineering; (ii) to integrate EBD methodology into the conventional literature review framework by providing a well-structured research question generation methodology. The second study describes a data-driven interview transcript analysis strategy that employs EBD environment analysis, unsupervised machine learning, and a range of natural language processing (NLP) approaches to assist designers and qualitative researchers in extracting needs when domain expertise is lacking. The second research proposes a transfer-learning method-based qualitative text analysis framework that aids researchers in extracting valuable knowledge from interview data for healthcare promotion decision-making. The third work is an EBD-enabled design lexical knowledge acquisition framework that automatically constructs a semantic network -- RomNet from an extensive collection of abstracts from engineering publications. Applying RomNet can improve the design information retrieval quality and communication between each party involved in a design project. To conclude, this thesis integrates artificial intelligence techniques, such as Natural Language Processing (NLP) methods, Machine Learning techniques, and rule-based systems to build a knowledge acquisition framework that supports manual, semi-automatic, and automatic extraction of design knowledge from different types of the textual data source
    corecore