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Abstract 

An EBD-Enabled Design knowledge acquisition framework 

Cheligeer Cheligeer, Ph.D. 

Concordia University, 2022 

 

Having enough knowledge and keeping it up to date enables designers to execute the design 

assignment effectively and gives them a competitive advantage in the design profession. 

Knowledge elicitation or acquisition is a crucial component of system design, particularly for tasks 

requiring transdisciplinary or multidisciplinary cooperation. In system design, extracting domain-

specific information is exceedingly tricky for designers. This thesis presents three works that 

attempt to bridge the gap between designers and domain expertise. First, a systematic literature 

review on data-driven demand elicitation is given using the Environment-based Design (EBD) 

approach. This review address two research objectives: (i) to investigate the present state of 

computer-aided requirement knowledge elicitation in the domains of engineering; (ii) to integrate 

EBD methodology into the conventional literature review framework by providing a well-

structured research question generation methodology. The second study describes a data-driven 

interview transcript analysis strategy that employs EBD environment analysis, unsupervised 

machine learning, and a range of natural language processing (NLP) approaches to assist designers 

and qualitative researchers in extracting needs when domain expertise is lacking. The second 

research proposes a transfer-learning method-based qualitative text analysis framework that aids 

researchers in extracting valuable knowledge from interview data for healthcare promotion 

decision-making. The third work is an EBD-enabled design lexical knowledge acquisition 

framework that automatically constructs a semantic network -- RomNet from an extensive 



iv 

 

collection of abstracts from engineering publications. Applying RomNet can improve the design 

information retrieval quality and communication between each party involved in a design project.  

To conclude, this thesis integrates artificial intelligence techniques, such as Natural Language 

Processing (NLP) methods, Machine Learning techniques, and rule-based systems to build a 

knowledge acquisition framework that supports manual, semi-automatic, and automatic extraction 

of design knowledge from different types of the textual data source. 
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Chapter 1. Introduction 

Knowledge is an essential component of design activity. For a designer, team, or organization, 

knowledge represents the design capability of an individual or a group (Nguyen and Zeng 2017). 

Knowledge provides the design team with critical competitive advantages over its competitors and 

influences the team's ability to explore opportunities in new industries. As a consequence, if a 

design team loses its knowledge, it loses its competitiveness; however, if a team can continually 

acquire and retain knowledge, the team has a limitless amount of potential for developing a variety 

of goods. The field of knowledge management focuses on activities that contribute to 

organizational knowledge management, such as knowledge acquiring, modeling, sharing, using, 

and updating knowledge. To address knowledge management-related difficulties, the disciplines 

of knowledge management and design science have fused to develop a new interdisciplinary area 

called design knowledge management (Fu et al., 2006; Zhang et al., 2012). Researchers have 

proposed several frameworks to manage design knowledge; however, effectively acquiring 

sufficient knowledge, modeling design knowledge, and design information retrieval are still an 

open challenge.  

The component of design knowledge is complex; unlike monodisciplinary tasks, design 

knowledge is diverse and heterogeneous. Due to its complexity, different researchers hold different 

explanations and classifications of design knowledge. The design knowledge can be classified as 
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tacit design knowledge and explicit design knowledge (Wong & Radcliffe, 2000); learning skills, 

social skills, product knowledge, and environment knowledge (Friedman 2000); general 

knowledge, domain-specific knowledge, procedural knowledge, and process knowledge (Tiwana 

and Ramesh 2001); natural environment, built environment and human environment knowledge 

(Zeng 2004); generic knowledge and domain-specific knowledge (Zeng 2008); process knowledge, 

product knowledge, function knowledge and issues (Ahmed 2005); process knowledge, product 

knowledge and task knowledge (Baxter et al. 2007). In this study, we integrated the 

aforementioned design knowledge classification into a three-dimensional cubic taxonomy shown 

in Figure 1, which includes (1) generic and domain-specific knowledge, (2) product and procedural 

design knowledge, and (3) natural, built, and human-related knowledge. The thesis focuses on 

product knowledge, represented by the lighter block (left part of the cubic) in Figure 1.  Procedural 

design knowledge will not be involved since procedural design knowledge is usually taught by 

design schools and textbooks, which is the designer's domain knowledge and is usually readily 

accessed by the designer. This study aims to design and propose methodologies to support and 

guide designers in acquiring knowledge from a target domain or to minimize designers' reliance 

on target domain experts in design projects. 

The management of knowledge and its modeling are popular research topics in many fields, such 

as the healthcare domain (Guptill 2005), engineering design (McMahon, Lowe, and Culley 2004), 

business (Gao, Meng, and Clarke 2008), and education (García et al. 2020). Numerous frameworks 

and methodologies aim to deliver an effective and efficient mechanism for general or specific 

knowledge management; however, only a few succeed in practice due to their complexity and 

immature information technologies.  
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As computing power and Internet technology have developed, data science has become an 

increasingly popular science that can solve various problems in various fields (Provost and Fawcett 

2013). Data-driven methodologies have gradually become one of the effective solution patterns to 

complex issues. 

With the rapid development of information technology, such as Natural Language Processing 

(NLP), Text Mining (TM), Information Retrieval (IR), Machine Learning (ML), and the recent 

rise of the Deep Learning (DL) frameworks started to provide feasible solutions to technical 

problems that troubled knowledge acquisition and modeling research before. Techniques such as 

automated ontology construction from the raw text (Wong et al., 2012) and automated knowledge 

graph construction (Rotmensch et al. 2017) are examples of modeling knowledge from available 

textual resources. 

 

Figure 1. Design knowledge taxonomy in this thesis. 
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1.1. Motivation 

The designer's role is to collect sufficient and necessary fragmental knowledge from different 

domains to solve an open-ended design problem (Yoshioka, Sekiya, and Tomiyama 1998). 

However, it is unrealistic for designers to be all-rounders of all disciplines. Because of this, 

designers need to learn by doing to solve many design challenges. As an essential skill, knowledge 

acquisition is the process of extracting, collecting, and eliciting knowledge from one or more 

sources. However, there are uncertainties regarding nearly all parts of design knowledge 

acquisition. The uncertain nature of the design makes knowledge acquisition more challenging. In 

addition, design knowledge is a compound knowledge closely connected with engineering, 

business, aesthetics, healthcare, and many other domains (Tatlisu and Kaya 2017). The compound 

characteristic of the knowledge causes various terms and jargon from different fields, which 

challenges communication, collaboration, and knowledge sharing among the design team. In 

addition, most design knowledge comes from practices and experience, which results in tacit 

design knowledge (Wong & Radcliffe, 2000). Research shows that 20% of a designer’s time is 

spent searching and learning information (Baxter et al. 2007). As a result, gaining knowledge is 

one of the critical tasks for any design activity. 

Information can be accessed in various media, such as audio, video, images, textbooks, blog posts, 

and research publications. According to Rahman & Harding (2012), 80% of industrial or business 

knowledge is stored in textual format. However, text-related activities such as collecting, filtering, 

querying, matching, interpreting, and analyzing are time-consuming and error-prone. Especially 

when working on multidisciplinary projects, domain-specific terms and phrases often have 

different meanings than those commonly used in their daily lives. The definition and explanation 

of these terms become one of the barriers to engineers while dealing with textual data.  
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1.2. Objective  

Hence,  motivated by the complexity of the unstructured nature of the textual document, the 

complex nature of design knowledge, and the ambiguous nature of domain-specific terms, this 

study focuses on design knowledge acquisition, synthesis, and modeling from available textual 

resources. Hence, the main objective of this thesis can be represented by a single statement: 

A data-driven methodology for design knowledge acquisition from textual data. 

By conducting an environment analysis with Environment-Based Design (EBD) and Recursive 

Object Modeling (ROM) on this statement, we can develop a three-layered framework for 

knowledge acquisition in the design shown in Figure 2. 

 

Figure 2. A conceptual framework for a general EBD-based design knowledge acquisition. 
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Different design knowledge sources are identified through the environment analysis, including 

research publications and interview transcripts. To efficiently utilize existing textual data in design, 

this thesis will focus on three tasks that support designers in closing the gap caused by insufficient 

design knowledge. 

The objective can be achieved by following three research works: 

1) To design a model-based systematic literature review on engineering requirement 

acquisition and synthesis. 

2) To design an AI-aided qualitative data analysis methodology to support knowledge 

acquisition in qualitative research. 

3) To design an automated lexical design knowledge modeling framework for engineering 

design. 

1.3. Outline 

The remainder of the thesis is structured as follows: Chapter 2 introduces the related concepts, 

theories, and research works to this thesis. Chapter 3 reviews the state of the art of methods and 

techniques associated with three proposed works (1) systematic literature review methodology, (2) 

AI-aided qualitative coding supporting methodology, and (3) automated design semantic networks 

construction framework. Chapter 4, Chapter 5, and Chapter 6 are three proposed research works. 

Last, in Chapter 7, the discussion about potential future research direction and conclusion are 

presented. 
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Chapter 2. Theoretical Framework 

In this chapter, we mainly introduce our theoretical basis Environment-Based Design (EBD) and 

the technological basis of Recursive Object Modeling (ROM), Natural Language Processing 

(NLP), and Machine learning (ML).  

2.1. Environment-based design methodology and Recursive 

object modeling  

The EBD method is a systematic design theory that considers different environmental factors of 

the target product and generates design solutions aimed at solving the problems caused by the 

production environment to maintain a balanced state of the environment and the development and 

achieve true design harmony (Zeng 2011). The EBD methodology is fully supported by recursive 

design logic that fits human problem-solving logic and the evolutionary pattern of all things (Zeng 

2020). The theoretical backbone of the Recursive Logic of Design and the EBD design 

methodology is Axiomatic Theory of Design Modeling (ATDM), an early design modeling work 

in design science that studied the design activities and proposed five theorems derived from two 

groups of axioms (Zeng 2002).  

EBD is a methodology that provides step-by-step instructions for guiding a designer toward 

designing a product with the minimum amount of knowledge. EBD method significantly lowers 

the barriers to system design, allowing novice designers to generate design solutions without 
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sufficient domain knowledge. As an approach to interdisciplinary technique, the EBD 

methodology has been applied successfully in many different fields, including aviation, geometry, 

education, neurology, medical, and traditional product design (Jia and Zeng 2021; Pan et al. 2021; 

Tan, Zeng, and Montazami 2011; Yang et al. 2021). 

The EBD methodology aims to decompose problem statements into several basic units (primitive 

objects) and relations between them with ROM techniques and apply a recursive procedure to 

retrieve sufficient knowledge for the design activities. The ROM is a modeling language for 

engineering design, which is also based on ADTM, that decomposes a given text length into 

individual text and the relationships between each word (Zeng 2008). The ROM model has three 

types of relationships: predicate, constraint, and connection (as shown in Figure 4). These three 

types of relations reflect the semantic dependencies between each word and contain implicit 

information that is hard to be identified by the designers without decomposition.  

For the early design phase, such as conceptual design, the EBD method can decompose complex 

design statements into primitive, simple design questions to help designers with knowledge 

retrieval directions. The questioning technique (Figure 4) based on the ROM diagram is designed 

to enumerate all uncertain primitive objects using predefined questioning templates to ensure that 

the produced questions cover the scope of the entire product development project (Wang and Zeng 

2009).  

The EBD method for conceptional design contains five major procedures: problem statement 

modeling with ROM, question object identification, and question generation (Zeng 2020). The 

ROM analysis takes the problem statement as input and generates a relational graph diagram 

representing each item and its relationships. Object and relations are two types of primitive 
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components of ROM. A ROM diagram can be generated for each design statement with the 

fundamental part and the construction rules. The next step of the EBD analysis is to decide on the 

questioning objects from the ROM diagram. Either observation or ROM matrix can aid the 

identification of the questioning objects. The rationale behind questioning object identification is 

to count the number of informative relationships it has. 

 

Figure 3. ROM components (Zeng, 2008, 2020). 

 

Figure 4. Question generation procedure (Wang & Zeng, 2009; Zeng, 2020) 
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The informative relation usually refers to predicate and constraints. After the questioning objects 

are identified, the next step is to generate simple questions according to the part-of-speech of each 

object. The detailed rules introduced by the original author are shown in Figure 5. After the 

questions are developed, designers can answer the questions according to the knowledge they 

possess and the experience they have. However, when the designers cannot answer the questions, 

designers may browse internal or external knowledge sources to retrieve relevant information to 

answer the questions. 

 

Figure 5. Question generation rules. 

With these questions, designers can learn generic or domain-specific knowledge by retrieving 

relevant answers to each question. The procedure not only helps designers to acquire relevant 

design knowledge but also helps the designer to generate appropriate design solutions to uncertain 

problems.  

2.2. Atomic design 

The EBD methodology explained the nature of design and the relationships between design 

requirements, knowledge, and solution. The procedure is initiated with a valid design requirement 

composed of multiple atomic design requirements. The atomic design requirements represent the 
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user’s expected individual product facts, which include feature, function, and aspect. These 

product facts may or may not be the same as the final product because it only stands from the 

user’s point of view. On the other hand, the design requires designers to understand the design 

requirements and decompose the requirement into several valid design questions. The design team 

can decompose, distribute, track, and validate the design tasks with the design questions. The 

nature of design solution generation is to collect and integrate design knowledge to satisfy the 

design questions, and the nature of design knowledge is a combination of facts about the target 

product. Hence, the nature of design is to collect and synthesize atomic design knowledge to satisfy 

the design requirements (Figure 6). 

 

Figure 6. Design requirements, design knowledge, and environment (Zeng, 2020). 

2.3. User requirements 

According to the Cambridge dictionary, the requirement means “something you must do or 

something you need.” When a student meets the requirements of an academic degree, the student 

can graduate. Similarly, when a product meets customers' requirements, the product is successful.  

The definition of requirements is slightly different in different domains. In the engineering design, 

a requirement is a physical product or system that “must be” created and delivered to satisfy the 

customers' needs (Brace and Cheutet 2012). In software engineering, requirements represent the 
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“must-have” functionalities and features of the software to solve problems in the real world 

(Bourque and Fairley 2014). For service design, the requirements are the service delivery and 

service development request from the customer (Patrício et al. 2011). The design requirements 

describe the target product's structure and performance (Cascini, Fantoni, and Montagna 2013; 

Zeng and Gu 1999). For product design, requirement means the written description of a product 

required by customers, which is usually in the form of documentation that lists “product 

description”, and “product performance”(Zeng and Gu 1999).  In combination, a requirement 

means a written description of functions, attributes, or the quality of the target product or service 

that stakeholders expect.  

2.4. Natural language processing  

The design knowledge elicitation from a textual document is a challenging task for designers to 

complete. With the development of artificial intelligence and machine learning, natural language 

processing (NLP) techniques are becoming more and more mature enough to handle structured, 

monotonous, repetitive tasks related to the text. Designers can benefit significantly from using 

NLP techniques to ease knowledge elicitation tasks. Natural language processing is a broad topic 

of research and application that uses computer technology to understand and manipulate natural 

language to perform downstream tasks (Chowdhury 2003). Natural language processing has many 

different approaches, and it is a multi-disciplinary area that is a subfield of computer science, 

mathematics, linguistics, and artificial intelligence (Chowdhury 2003).  

Lensu (2002) introduced the taxonomy of traditional NLP, where NLP is divided into three 

categories: parsing, semantic interpretation, and pragmatics. Under each category, there are many 

specific NLP tasks. A parsing task refers to a task that uses a parser to analyze input text according 
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to specific rules, such as formal grammar or dependency grammar, to generate a relational data 

structure that may contain grammatical or semantic information (Jurafsky and Martin 2018; Lensu 

2002). The category semantic interpretation studies the meanings of words and language to analyze 

what reality each word (or text) stands for (Lensu 2002).  

The tasks under semantic interpretation include semantic analysis, word-sense disambiguation 

(WSD), and lexical semantics. The NLP tasks related to context analysis are classified into the 

pragmatics category. Ganegedara (2018) put parsing, semantic, and pragmatics tasks under 

analysis tasks and extended the hierarchical taxonomy with the generation tasks category (Table 

1). The generation tasks can produce new text based on the given inputs, and applications such as 

machine translation and question answering can be divided into this category. Based on the above 

explanation, the following conclude the popular tasks that NLP techniques could solve and the 

input/output of the specific traditional NLP task.   

The statistical approach raised the revolution in the NLP field from the 1980s to the 1990s 

(Johnson 2009). The initial goal of the probabilistic model for natural language was to compute 

the probability of a sequence of words or to assign a class to the given sequence of the text. 

Unlike a human being, a machine cannot naturally read and understand a piece of natural 

language. To convert raw text into machine-readable content, there is a need to transform the 

representation of input text. The method for using data to represent input text is called text/word 

representation (Jurafsky and Martin 2018). There are many approaches for representing text, 

such as one-hot word encoding, co-occurrence vector (Lund and Burgess 1996), Glove 

(Pennington, Socher, and Manning 2014), and Word2Vec (Goldberg and Levy 2014). The 

model is called the language model that is learned from the data and produces predictions 

according to new data (Goldberg 2017).  



14 

 

 

Task name  Input  Output 

Regular expressions Matching pattern, 

text 

Target text 

Text searching Keywords, phrase  Retrieved information 

Text normalization Word Normalized text 

Part-of-Speech (POS) tagging Sentence Text with POS labeled   

Semantic role labeling/ slot-filling 

(SRL) 

Sentence  Text with semantic role indicated 

Sentiment analysis Sentence  The emotional status of the text writer 

Word sense disambiguation 

(WSD) 

Word  The exact sense of input word 

indicating 

Named-entity recognition (NER) Text Assign each word a pre-defined 

category 

Co-reference resolution Text The relation for the same mention 

Similarity Two text documents The similarity metric 

Topic modeling  Text documents  Topics and topic words  

Question answering Question Answer 

Machine translation Text in language A Text in language B 

Text summarizing  Text documents Summarized document 

Word encoding Word Numbers  

Feature extraction Text Vector representation 

Word embedding Text  Dense word vectors 

Dependency parsing  Sentence  Dependency relation of text 

Document clustering  A set of text  Categorized groups 

Document classifying  A set of text Labeled categories 

Keyword extraction  Text document  Keywords, key phrase 

Table 1. NLP techniques – descriptions  
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Statistically, the language model assigns a probability distribution over given tokens and 

provides the probability of a given token following the distribution (Goldberg 2017; Manning 

and Hinrich Schütze 1999). The Neural Network Language Model (NNLM) is not new in NLP. 

In 2003, the first neural network language model was introduced by Bengio et al. (2001), named 

Neural Probabilistic Language Model (NPLM) is a simple feedforward neural network with 

three layers. Inspired by NPLM, there are different neural network-based language models 

introduced successively, such as the Recurrent Neural Network (RNN) based language modal 

(Mikolov et al. 2010) and transformer-based language model (Devlin et al. 2018).  

NLP techniques are closely related to machine learning, and both methods have much in 

common. First, as introduced, most of the state-of-the-art NLP techniques are built with neural 

network architecture. Second, when doing text-based machine learning, some NLP techniques 

are used as the data preparation part of the machine learning pipeline, such as text data cleaning, 

preprocessing, and textual feature extraction.  

2.5. Machine learning 

Machine learning is a subcategory of artificial intelligence, and it refers to a set of automatic 

methods that take a large amount of information as input and generate patterns from it (Murphy 

2012). Generally, there are three types of machine learning: supervised machine learning, 

unsupervised machine learning, and reinforcement learning (Figure 7). The primary objectives 

of various machine learning algorithms vary, resulting in these machine learning algorithms 

performing various jobs. Supervised machine learning uses labeled data to train the machine 

learning model to predict previously unknown data. (Murphy 2012). In supervised learning, the 

data and output are already known before training, and the supervised algorithms can evaluate 

iteratively on labeled data to discover possible data for any given input. In supervised machine 
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learning, two types of tasks can be performed: classification and regression. Classification 

challenges are designed to learn patterns that correspond to predetermined categories 

automatically. When there are just two classes, this is termed binary classification; when there 

are more than two classes, this is called multiclass classification (Murphy 2012). Another 

supervised machine learning task is regression. Unlike the classification task, the input/output 

continues (Murphy 2012). The real-world regression problems include but are not limited to the 

following tasks: stock market prediction, predicting the house price according to given statistics, 

and customer satisfaction prediction with the price and quality of a product. 

Unsupervised machine learning does not have labeled data as input, and there is no prior 

knowledge about the relation between input data. Unsupervised learning algorithms can find 

helpful information about input data without knowledge. There are two main types of unsupervised 

learning algorithms one is called clustering algorithm, and the other one is dimensionality 

reduction (Murphy 2012). The clustering task can be viewed as “knowledge discovery” that takes 

unlabeled data as input and group them. Each group is called a cluster in clustering algorithms, 

and in (Raschka and Mirjalili 2019) introduced clustering as unsupervised classification. The real-

world application of clustering includes cluster user groups, spam email filtering, and document 

clustering. The second necessary type of unsupervised machine learning is dimensionality 

reduction (Raschka and Mirjalili 2019). The primary task of the dimensional reduction algorithm 

is to keep essential data factors and omit irrelevant factors to project the multi-dimensional data 

into low-dimensional space. The most widely used algorithm in this family is Principal Component 

Analysis (PCA) which is described as the unsupervised version of linear regression (Murphy 2012). 

In practice, PCA or other dimensionality reduction algorithms are applied to reduce the 

dimensionality for data visualization, image compression, and computer vision. 
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Reinforcement learning uses an agent or a system that iteratively optimizes its performance of 

action to a specific task based on the interaction with the environment of the agent/system (Sutton 

and Barto 2018). Unlike supervised learning, there is no truth or false result from each iteration; 

instead, a measure of each action to indicate how well/bad each action performs. There are many 

real-world applications with reinforcement learning, such as robotics automatic control, game 

intelligence (Vinyals et al. 2019), recommender systems (Zheng et al. 2018), and Computer-aided 

automated design (Jie et al. 2021) 

Machine learning can provide different types of aid according to the task type and the data. From 

the design knowledge elicitation perspective, several questions need to consider. How do we 

transfer design knowledge elicitation problems into machine learning problems? Which machine 

learning algorithm fits well with the target domain's design knowledge? How do we prepare the 

data to feed the machine learning algorithm?  

 

Figure 7. A machine learning taxonomy. 

Thus, introducing machine learning into the problem of design knowledge extraction is not a plug-

and-play technique; instead, it requires a carefully designed approach to ensure that each pipeline 

component works as envisioned.  
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Chapter 3. Literature Review 

Our research includes three works to tackle design knowledge collection, synthesis, and modeling. 

In particular, as the first contribution, we proposed a method to support literature review in the 

engineering field. We conduct a systematic review of the literature on machine learning-based 

automatic requirement elicitation as part of a case study and thesis review. The literature review 

serves two significant roles in this thesis: 1) it is an application of the proposed literature review 

methodology; 2) it systematically reviews the current state of data-driven requirement knowledge 

extraction techniques and strategies to serve as a methodological review to our following two 

studies. Hence, the first studies involve the following three domains: a systematic literature review 

methodology 3.1), automated requirement elicitation (section 3.2), and design knowledge (section 

3.4). The second work is proposed to support textual data analysis in qualitative research for 

gathering knowledge for stakeholder analysis, and the related research works are computer-aided 

qualitative data analysis (section 3.3) and semantic similarity (section 3.4). The last work is a 

ROM-based semantic network, which introduces a methodology that automatically constructs 

engineering lexical knowledge graphs from a given seed sentence by collecting and analyzing 

massive scientific research publication abstracts with NLP algorithms. The related research filed 

to this work is semantic similarity (section 3.4), engineering semantic network (section 3.9), design 

knowledge (section 3.4), and knowledge acquisition (section 3.8). 

3.1. Systematic literature review  

A systematic literature review (SLR) aims to identify, select, analyze, and criticize the included 

research for answering one or multiple specific research questions (Ahn and Kang 2018). There 
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are two ways to conduct research: design and develop theories from scratch or learn from the 

existing works (Gough, Oliver, and Thomas 2012). Reviewing existing works can help us answer 

questions such as the current state-of-the-art, the existing research limitations, and the potential 

future research directions (Xiao and Watson 2019). When conducting a literature review, two 

distinct objectives are pursued: one is to serve as background information for a practical study, 

and the other is to treat it as a standalone study (Xiao and Watson 2019).  

In the term Systematic Literature Review (SLR), systematic (S) means the review is controlled by 

a fixed, well-defined, planned, and expected; literature (L) means books, papers, and writing 

publications on a particular subject; review (R) means to examine or assess literature critically. 

SLR is usually considered the highest level of evidence in scientific research (Ahn and Kang 2018). 

The level of evidence of scientific research is illustrated in Figure 8. 

 

Figure 8. The level of evidence in scientific research (Ahn and Kang 2018). 

Xiao & Watson (2019) summarized and categorized the existing literature review into four 

different categories by its objectives and research focus: the categories including Describe, Test, 

Extend, and Critique. By summarizing different types of literature review methods, they suggested 

an SLR method including three major phases: 1) planning, 2) conducting the review, and 3) 



20 

 

reporting the review (Figure 9). As a result of repeating steps two and one, the methodology will 

continue to harvest papers that meet the criteria. 

 

Figure 9. Process of SLR by (Xiao and Watson 2019). 

Evidence-based Software Engineering (EBSE) is one of the early works advocating SLR in 

software engineering (Kitchenham et al., 2004). EBSE attempted to introduce a systematic 

software engineering methodology from evidence-based medical research using an “analogy with 

medical practice” (Kitchenham et al., 2004). At that time, the EBSE method was used only for 

software development and not for scientific research in the engineering field; however, in 

presenting the EBSE, there was much SLR published in the field of software engineering 

(Kitchenham et al., 2009). Similarly, in engineering design, researchers also advocated and 

discussed the rationale for adopting SLR in engineering and design studies (Lame 2019). The SLR 

has become a routinely used research methodology in the engineering field. There are several SLR 

methodologies and guidance proposed in the engineering domain. Among these methods, the 

snowballing SLR by Wohlin (2014) is one of the most widely applied SLR methods in the software 

engineering community (as shown in Figure 10). It is required that the user identify an initial set 
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of papers as a "tentative start set" and conduct a backward and forward snowballing process based 

on these papers. The backward method means looking at the selected papers’ reference list to 

include more publications, and the forward method means looking at the papers that cite the 

included papers (Wohlin 2014). 

 

Figure 10. The demonstration of Wohlin's snowballing SLR 

Brereton et al. (2007) categorized many subtasks in SLR into three main phases: planning, 

conducting the review, and reporting (Figure 11). The planning phase specifies research questions, 

LR protocol development, and validation. The conduct phase involves five activities: identifying 

relevant research, selecting primary studies, assessing study quality, extracting required data, and 

synthesizing data. The last phase is reporting review, which contains review report generation and 

LR reports validation. 

SLR's increasing interest in engineering results in a specification of the proposed methods. Torres-

Carrión et al. (2018) introduced a three-step literature review method, including planning, 

conducting, and reporting (as shown in Figure 12), which are similar to the phases described by 

Brereton et al. (2007) and Xiao & Watson (2019).  

However, they focused more on the planning and conducting phase to specify the subtasks 

involved in these steps. They adopted a method called Mentefactor Conceptual, which uses 

conceptual ontology to support reading and learning (Torres-Carrión et al. 2018). The Mentefacto 

Conceptual is a simple ontology to represent a concept, that includes “Supraordination”, 
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“Infraordiantion”, “Isoordiantion” and “Exclusion” of a given concept (Figure 13). The SLR 

reviewer can analyze the research question and generate search keywords through this framework. 

 

Figure 11. SLR guideline by Brereton et al. (2007). 

Okoli (2015) introduced an eight-step guide to conducting SLR in information system research. 

Eight steps include identifying the research objective, training reviewers, practical screening, 

literature searching, data extraction, quality assessment, studies synthesis, and writing the report. 

According to the nature of the tasks in SLR, they also categorized these methods into four different 

phases (as shown in Figure 14): planning, selection, extraction, and execution (Okoli 2015). 

 

Figure 12. SLR method by (Torres-Carrión et al. 2018). 
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Figure 13. The demonstration of Mentefacto Conceptual (Torres-Carrión et al. 2018). 

 

Figure 14. SLR methodology by (Okoli 2015). 

The author of a book titled "The literature review: A step-by-step guide for students", Ridley (2012) 

gives a list of steps to be followed when conducting a literature review. The procedure contains 11 

steps (Figure 15), and the author introduces each step generally in the book. While several other 

methods have primarily focused on planning and conducting phases, this book has also elaborated 

on the aspect of writing the report.  

 

Figure 15. SLR process by (Ridley 2012) 

In Table 2, we summarize the SLR methodologies that we have reviewed. 
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ID Title  Author  Published year Citation (until 

2022-5-25) 

Domain 

SLR1 Procedures for Performing 

Systematic Reviews, Version 

1.0 

Barbara 

Kitchenham 

2004 6667 Software 

engineering 

SLR2 Guidelines for snowballing in 

systematic literature studies 

and a replication in software 

engineering 

Claes Wohlin 2014 2603 Software 

engineering 

SLR3 Lessons from applying the 

systematic literature review 

process within the software 

engineering domain 

Brereton et al.  2007 2354 Software 

engineering 

SLR4 An introduction to systematic 

reviews 

Gough et al.  2012 2140 General 

SLR5 The literature review: A step-

by-step guide for students 

Diana Ridley 2012 1280 General 

SLR6 Guidance on Conducting a 

Systematic Literature Review 

Xiao and Watson 2019 780 General 

SLR7 A guide to conducting a 

standalone systematic 

literature review 

Chitu Okoli 2015 609 Information 

system 

SLR8 Methodology for Systematic 

Literature Review applied to 

Engineering and Education 

Torres-Carrion et 

al.  

2018 111 Engineering 

Education 

SLR9 The systematic literature 

review as a research genre 

Ramey and Rao 2011 33 General 

SLR10 Systematic literature reviews: 

An introduction 

Guillaume Lame 2019 31 Design 

science 

Table 2. SLR methods and guidelines. 

3.2. Automated requirement elicitation 

During the past 15 to 20 years, the field of mechanical requirement engineering has been 

continuously explored and researched. Automated requirement engineering is an attractive topic, 

given the importance and challenges associated with tackling requirements within a project. 

According to research by (Verner, Sampson, and Cerpa 2008), over 70 failed software projects, of 

which 73% had unclear or inadequate requirements at the core of their failure. Most requirements-

related project failures will be discovered in the latter stages of the project; however, requirements 

activities usually occur at the beginning of the project. The development team must restart the 

entire process if it fails to meet the requirements. Hence, understanding the stakeholder 

requirements is extremely important for the development team. Although flexible project 
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management frameworks such as Scrum and XP allow some degree of requirements changes and 

vague requirements, each development iteration still requires a particular well-defined requirement. 

As a result, considerable workforce, time, and budget were required in the early stage of the project. 

Due to such high demand, research on reducing labor and budget with computer systems or tools 

has become one of the most critical topics for academia and industry.  

Automated requirement elicitation has grown in popularity as a study area during the last few years. 

As the name indicates, automated requirement elicitation is a broad term that refers to the process 

of extracting requirements or assisting in requirement acquisition operations using computer 

programs. Thus, to address this issue, two critical factors must be considered. To begin, defining 

the requirements for elicitation activities and subtasks is required. Secondly, it is necessary to 

determine how to implement an automated solution to assist the activities.  

The requirement elicitation aims to determine stakeholders' needs for the target product. It takes 

intensive communication between various experts from different fields to fully understand 

stakeholders' requirements (Coughlan and Macredie 2002). The output from this process should 

be in a well-structured format that can be shared, systematically reviewed, evaluated, and approved 

by different parties. Typically, requirements are written in natural language to address this need. 

However, due to the nature of the requirement, it is difficult to restrict the input format. The needs 

of stakeholders can be both explicit and implicit. The purpose of requirement elicitation is to make 

as many implicit needs as possible and to document as many explicit needs as possible in formal 

written requirements. 
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3.3. Computer-aided qualitative data analysis 

Qualitative research provides an in-depth description of the ideas and experiences of research 

subjects; however, conducting qualitative research is time-consuming, laborious, and expensive, 

especially in the medical and healthcare field (Leeson et al. 2019). The grounded theory approach 

is primarily used in qualitative research conducted by social scientists to develop an explanatory 

theory (Starks and Trinidad 2007). A general grounded theory method contains six major steps: 

research question generation, data collecting/sampling, open coding, merge codes, theme 

generation, and theory building. Each step from the grounded theory method requires domain 

experts’ involvement. Recent advancements in artificial intelligence, particularly machine learning 

and deep learning methodologies, have brought potential benefits to the qualitative research 

community (Chen et al., 2018). Muller et al. (2016) identified the connection between machine 

learning and the grounded theory method in inductive reasoning. The collaboration between 

machine learning and grounded theory is still in its infancy (Singh et al., 2020). Nelson (2020) 

introduced a computer-aided three-step grounded theory framework fully supported by topic 

modeling techniques. Apart from a topic model, other machine learning methods can be applied 

to qualitative codings, such as supervised text classification (Smith and Tissing 2018) and the text 

clustering method (Henry et al. 2015). 

3.4. Semantic similarity algorithms 

The thesaurus-based approach, also known as the topological or knowledge-based approach, uses 

lexical information from the knowledge base to perform calculus. Multiple types of semantic 

relations are identified (as Figure 16), including inclusion, possession, attachment, attribution, 

antonyms, synonyms, and case (Storey 1993).  
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Figure 16. Semantic relationships, Storey. V (1993) 

Semantic relations measuring is an essential subfield of NLP and semantic relatedness, and it is 

dedicated to several critical NLP applications, such as Question Answering (QA), Machine 

Translating (MT), Text Summarization, Word Correction, and Complete and Text Paraphrase. 

WordNet is a well-known open-source lexical knowledge base containing semantic relations 

between words in multiple languages. In addition, there is a brief definition called “gloss” for each 

word. Synonyms are grouped into “synsets” without order, and these “synsets” and the relationship 

between them build up the whole lexical knowledge graph. There are four different types of 

relations in the WordNet, which are hypernymy (also known as “is-A”, hyponymy or super-

subordinate), meronym (part-of) relation, holonomy (contain) relation, and antonyms relation. The 

field of semantic relatedness study considers all of the relationships in the WordNet; however, 

semantic similarity only studies the relation “is-A”. 

With the information provided by the thesaurus like WordNet, there are three strategies to calculate 

the similarity/relatedness between two words. These strategies are described as path-based 

measures, Information Content (IC) based measures, and gloss-based measures. Here are 

definitions for related terms and concepts.  

Let W be the set of  words in the WordNet, and we want to calculate the similarity between two 

words 𝑤𝑖, 𝑤𝑗 ∈ 𝑊 , the number of links in the shortest path between 𝑤𝑖 , 𝑤𝑗  are described 

as 𝑙𝑒𝑛(𝑤𝑖, 𝑤𝑗). 

The first family of similarity algorithms is called shortest path-based algorithms. This type of 

algorithm counts the edges between two terms and uses that measurement to determine the 
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closeness of two words. In thesaurus like WordNet, words and relations are organized into a graph 

structure, and the relationships between words are edges in the graph.  

The most common path-based similarity measure is:  

 

𝑠𝑖𝑚(𝑤𝑖 , 𝑤𝑗) =  
1

(1 + 𝑙𝑒𝑛(𝑤𝑖 , 𝑤𝑗))
 (1) 

 

The equation takes the reciprocal of the 𝑙𝑒𝑛(𝑤𝑖, 𝑤𝑗) to indicate the connection between two words. 

As the shortest path-based algorithm improved, the least common super concept was introduced to 

measure semantic relatedness (Wu & Palmer, 1994). In Figure 17, shown below, to compute the 

similarity between 𝑤1, 𝑤2, the depth of least common super concept 𝑤3 is also considered.  

 

Figure 17. The illustration of the common super concept. 

 

𝑠𝑖𝑚(𝑤𝑖 , 𝑤𝑗)
𝑊𝑢&𝑃𝑎𝑙𝑚𝑒𝑟

=  
2 ∗ 𝑙𝑒𝑛(𝑤𝑖 , 𝑟𝑜𝑜𝑡)

(𝑙𝑒𝑛(𝑤𝑖 , 𝑟𝑜𝑜𝑡) + 𝑙𝑒𝑛(𝑤𝑖 , 𝑤𝑗))
  (2) 

 

Leacock and Chodorow measure semantic relatedness by considering the maximum depth of the 

graph. The equation is shown below, where 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ refers to the maximum depth of the given 

structure.  

𝑠𝑖𝑚(𝑤𝑖 , 𝑤𝑗)
𝐿𝑒𝑎𝑐𝑜𝑐𝑘&𝐶ℎ𝑜𝑑𝑜𝑟𝑜𝑤

=  −log (
𝑙𝑒𝑛(𝑤𝑖 , 𝑤𝑗)

2 ∗ 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ
)  (3) 

Resnik (1995) first introduced the notion of Information Content (IC.  The IC is defined as the 

negative log-likelihood of the frequency of a given the word in a semantic network, and the 

detailed equation is shown in equations (4), (5), and (6), where 𝑝(𝑤) is probability of encountering 
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and instance of word 𝑤; 𝑓𝑟𝑒𝑞(𝑤) represent the frequency of the instance; and 𝑁 denote the total 

number of words in the graph.  

𝐼𝐶 =  − log 𝑝(𝑤)  (4) 

𝑝(𝑤) =  
𝑓𝑟𝑒𝑞(𝑤)

𝑁
  (5) 

𝑓𝑟𝑒𝑞(𝑤) = ∑ 𝑐𝑜𝑢𝑛𝑡(𝑤)

𝑤∈𝑠𝑢𝑏𝑠𝑒𝑡(𝑊)

  (6) 

With the explanation above, the Resnik algorithm can be described as equation (7), where 

𝑙𝑐𝑠(𝑤𝑖, 𝑤𝑗) is the least common super concept in the graph.         

𝑠𝑖𝑚(𝑤𝑖 , 𝑤𝑗)
𝑅𝑒𝑠𝑛𝑖𝑘

= 𝐼𝐶 (𝑙𝑐𝑠(𝑤𝑖 , 𝑤𝑗))  (7) 

Based on the IC concept, Lin proposed an algorithm related to IC of both the least super concept 

and individual words (as equation 8). 

𝑠𝑖𝑚(𝑤1, 𝑤2)𝐿𝑖𝑛 =
2 ∗ 𝐼𝐶(𝑙𝑐𝑠(𝑤𝑖 , 𝑤𝑗))

𝐼𝐶(𝑤𝑖) + 𝐼𝐶(𝑤𝑗)
 

 

 (8) 

3.5. Text vectorization and contextualized embeddings 

Text vectorization to transforming text into numbers that machines can calculate. Machine learning 

and deep learning algorithms work on numeric vector space, meaning the learning model's input 

needs to be represented by numbers. Once the text is represented with the numbers, it can make 

both arithmetic and logical operations on the text.  

Term Frequency-Inverse Document Frequency (TF-IDF) is a popular feature weighting method 

among the included works. TF-IDF neutralizes the term frequency with the number of documents 

containing that word to draw a weighted feature value, reflecting how important a feature (term or 
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n-gram) is to a document in a corpus. Contextualized word embeddings technique is an effective 

solution to represent text with numbers. It can learn to represent each token from the entire input 

sentence, dramatically boosting performance on tasks with more ambiguous, challenging, and 

unseen text data (Arora et al. 2020; Peters et al. 2018). Although the contextualized word 

embeddings reached a state-of-the-art performance with multiple downstream tasks, it is 

considered an expensive embedding method for both training and inference, and optimization of 

this type of method is still a research problem (Liu et al. 2019). A recent study tried to find a 

balance between contextualized word embedding and non-contextualized word embedding 

methods and concluded that when to use which type of method is determined by the dataset volume, 

complexity of the text structure, ambiguity of the word usage, and presence of unseen words (Arora 

et al. 2020). In addition, the performance of a text clustering algorithm relies on the quality of the 

text feature representations. Hence, we decided to use contextualized word embeddings for the 

unsupervised learning tasks. 

3.6. Transfer learning  

Applying a pre-trained language model or checkpoints is a revolutionary milestone of NLP and 

becoming a standard process for a wide range of NLP tasks (Edunov, Baevski, and Auli 2019; 

Gururangan et al. 2020; Rothe, Narayan, and Severyn 2020). A pre-trained language model is a 

general-purpose language model trained from a massive text source. A checkpoint is the exact 

value of all learned parameters without any information about the model architecture. Increasing 

numbers of checkpoints and pre-trained models are uploaded to publicly accessible communities 

such as GitHub, Hugging face transformers, and TensorFlow hub. Introducing pre-trained models 

into a custom framework (or “warm-start”) would reduce the local pretraining time and improve 

performance significantly (Rothe et al. 2020). 
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3.7. Design knowledge 

We introduced the EBD analysis and the design question generation procedure in the former 

section. Answering the generated design questions usually require sufficient design knowledge 

and domain knowledge. EBD closes the gap to design question generation and insufficient design 

knowledge by providing a systematic question generation methodology. However, answering the 

design question requires designers to have sufficient knowledge. This section will introduce design 

knowledge with a design knowledge taxonomy that is a simple integration of existing design 

research.  

Design knowledge in design science is classified into multiple categories based on different 

perspectives. Based on the knowledge representation clarity, the design knowledge can be 

categorized as explicit and implicit (Wong & Radcliffe, 2000). The design knowledge can be 

further categorized into learning skills, social skills, product knowledge, and environmental 

knowledge from the designers’ capability perspective (Friedman 2000). Ahmed (2005) 

categorized design knowledge into design process knowledge, product knowledge, function 

knowledge, and knowledge about issues based on a hypothesis developed from the designers’ 

perspective. According to design knowledge reusability, design knowledge can be categorized into 

process knowledge, product knowledge, and task knowledge (Baxter et al. 2007). Based on the 

EBD product environment classification, the design knowledge can further be categorized into 

natural, built, and human-environmental knowledge. The summary of the design knowledge 

taxonomy is in Table 3. Based on the explanation from existing works and EBD methodology, the 

definition of the design knowledge can be extracted. Design knowledge is a combination of 

knowledge about the design process, techniques, and the product to be designed.  
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Authors Categorization of design knowledge 

Wong & Radcliffe (2000) Explicit design knowledge, tacit design knowledge 

Friedman (2000) Learning skills, social skills, product knowledge, environment knowledge  

Ahmed (2005) Design process, product knowledge, functions, issues 

Baxter et al. (2007) Process knowledge, product knowledge, task knowledge  

Yong Zeng (2020) Natural environmental knowledge, built environmental knowledge, human 

environmental knowledge 

Table 3. Design knowledge taxonomies from different works. 

The design process and techniques are fundamental knowledge for a designer, usually learned from 

standard training systems or past project experiences. The design process and techniques include 

multiple beneficial design activities, such as questionnaire design, interview question preparation, 

prototype development, and brainstorming. Product knowledge is everything about the product to 

be designed, such as the product's dimension, function, cost, component and assembly methods, 

and similar alternative artifacts. To system design, the system is the product. The system design 

knowledge can be further classified into three environmental knowledge as EBD categorized.  

3.8. Knowledge acquisition 

With the EBD methodology, design problems can be formalized and decomposed into primitive, 

atomic design problems represented by multiple simple questions. To answer these questions, 

knowledge, and experience are inevitable. Knowledge exists in many sources with various formats. 

Knowledge can be stored in the mind of an individual, such as common-sense -- water can turn 

into steam that is known to everyone. Knowledge can also be stored in forms outside of the human 

brain, such as books, documents, databases, messages, voice recordings, and scientific literature. 

Without readily available tools, guidelines, and procedures, acquiring knowledge for design 

activities is time- and labor-intensive. Systematically leveraging knowledge from these sources 

can boost design efficiency.  
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Knowledge acquisition is the process of uncovering specific knowledge that contributes to human 

performance and the cognition issues associated with this process. The concept is initially coined 

by the field of knowledge engineering, which is majorly used for constructing knowledge-based 

systems or expert systems. Knowledge-based System (KBS) development was considered a 

process of transferring human knowledge into an implemented knowledge base in the early 1980s 

(Studer, Benjamins, and Fensel 1998). Knowledge engineering is a long-standing branch of 

artificial intelligence that aims to create a system capable of imitating expert knowledge (Hahn 

and Schnattinger 1998). The knowledge engineering process involves five major steps (Figure 18): 

knowledge acquisition, knowledge representation, knowledge base construction, knowledge 

inference, and justification (Jung et al. 2020; Sharda et al. 2014). The knowledge engineering 

approaches provide a systematic guideline for building an information system. Knowledge 

elicitation is a broad term that covers concepts from early knowledge engineering steps: knowledge 

acquisition, knowledge representation, and knowledge base construction. The three steps involve 

knowledge engineers extracting knowledge from experts or the knowledge source in the same way 

system analysts, and designers elicit user requirements (Gavrilova and Andreeva 2012).  

The importance of knowledge acquisition to product development is reflected in three folds. First, 

knowledge management is vital for a development team, and extracting knowledge to document 

existing knowledge with an integrated, centralized, accessible knowledge hub (or wiki) is a good 

team knowledge management practice (Sousa, Aparicio, and Costa 2010). Second, for cross-

domain product design and development, extracting knowledge of the target domain is essential 

to build a product that can be easily applied and accepted by users in that domain. Third, it is 

essential to elicit knowledge about stakeholders, understand how stakeholders interacted with the 

product, what functions or features most stakeholders requested, and which part of the product is 
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most liked/disliked by the users. Knowing stakeholders bring more targeted strategies for the 

product design. 

Hence, eliciting knowledge from various sources could help the design questions answering. 

However, manual knowledge extraction from different sources is inefficient, bringing many 

potential problems. Manual knowledge learning or acquisition is a time-consuming and error-

prone process. Especially when there is no senior expert in providing timely feedback, it could be 

a disaster. For some domains, such as healthcare and aerospace design, the experts are expensive 

to consult.  

 

Figure 18. General knowledge engineering process. 

3.9. Engineering semantic networks 

Researchers have invented hundreds of knowledge representation techniques to map knowledge 

into computers so far (Davis, Howard, and Peter 1993). One of the goals of using Knowledge 

Representation (KR) is to represent the knowledge and store it in computer systems to process it 

efficiently by both human and computer systems.  

Knowledge 
Acquisition

•Input: Knowedge source

•Out put: Raw knowledge 

Knowedge 
Representation

•Input: Raw knowledge

•Output: Normalized, fine-grined knowledge

Knolwedge base 
Construction

•Input: Normalized knowledge

•Output: A set of knowledge inference rules

Knowledge 
Inference 

•Input: New scineario  

•Out put: Prediction, advices, or explaination 

Justification

•Input: Inference 
results, evaluation 
criteria

•Output: Analysis
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Language is a system designed and used by language users to deliver the meaning they want to 

express. Understanding the meanings of the language is essential in a conversation. Until today, it 

is still difficult for machines to perform Natural Language Processing (NLP) and Information 

Retrieval (IR) tasks as an average normal human being do. The study of semantics is to reveal the 

meaning of any form of human expressions, such as language semantics and image semantics, and 

using a graph dataset to represent the lexical knowledge is defined as the lexical knowledge graph 

or semantic network in this thesis. 

 

Figure 19. Semantic network without taxonomy 

A Semantic Network uses graph notation, which consists of interconnected nodes, to represent 

knowledge by representing relationships and dependencies between concepts (Sowa 1987). 

Semantic networks can be easily understood by humans and machines. For example, from the 

graph listed in Figure 19, we can directly transfer the graph into formalized logical format 

is_father_of(Tim, Jim) or natural human language “Tim is Jim’s father”. 
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Figure 20. An illustration for WordNet (Meng, Huang, and Gu 2013). 

Inspired by human lexical memory and semantic network, researchers from Princeton University 

introduced a lexical semantic network named WordNet (Miller, 1995). WordNet only includes 

nouns, verbs, and adjectives and divides them into four lexical categories: nouns, verbs, modifiers, 

and function words. WordNet is the most well-developed and widely used lexical database for 

English. Unlike other thesaurus or lexical knowledge bases, WordNet is handcrafted from scratch 

instead of mining from structured or semi-structured sources. As Figure 20 shown, terms are 

organized in hierarchy and taxonomy relationships.  

Design knowledge formalization, modeling, and representation have been an ongoing research 

hotspot during the past few decades. For design knowledge modeling, ontologies are the most 

commonly applied frameworks, which conceptualize terms and the relationships among them with 

formal specifications (Gruber 1993; Noy and McGuinness 2001). The term “ontology” is a 

controversial concept, which was first proposed in the field of philosophy, and now it extends to 

various domains such as Natural Language Processing (NLP) (Miller et al., 1993), design 

knowledge management (Štorga, Andreasen, and Marjanović 2010), and healthcare (El-Sappagh 

et al. 2018). Lin et al. (1996) proposed a design knowledge model called requirement ontology to 

support requirement analysis by modeling the product knowledge into concepts and different types 
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of relationships. With the help of the requirement ontology, the engineer can refine, trace, validate, 

and change the customer requirement in the product design. Štorga et al. (2010) introduce an 

ontology framework based on a taxonomy of product concepts, including objects, processes, 

attributes, design attributes, propositions, quantities, and relations. Each category is further divided 

into subcategories of refinement. Some works proposed ontology to model the design itself, such 

as FBS ontology (Gero and Kannengiesser 2014),  generic design activity ontology (Sim and Duffy 

2003), TIPS ontology (Fernandes et al. 2007), PDO (Catalano et al. 2009), and DSO (Rockwell et 

al., 2009; Rockwell et al., 2010).  Ontology and a variety of models of knowledge were used in 

the early works of knowledge-based design systems, and it is required that domain experts 

participate in most of the design activities, such as acquiring knowledge  (Dixon et al. 1987), 

knowledge graph construction (Yoshioka et al. 1998), and knowledge validation (O’Leary 1991). 

A semantic network is an alternative approach for knowledge formalization to support engineering 

design decision-making. Unlike ontology, a semantic network usually does not require a pre-

defined schema, instead, it uses node, relations to formalize narrative description (Sowa 1987). 

Usually, in an engineering design semantic network, a node represents a semantic entity, such as 

a concept, an idea, a physical or virtual location, or even a name of a person (Frisch 1982; Han et 

al. 2022; Sowa 1987). In addition to benefiting design simulation, knowledge sharing, and 

organizational best practices, semantic networks can also help in determining organizational best 

practices (Rogers, Priest, and Haddock 1995). A list of reviewed engineering semantic networks 

is summarized in Table 4.  
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Authors Focus Elements Description Downstream 

application 

Rogers et 

al., (1995) 

Knowledge 

model design 

Node (term),  

Relationships 

(activity, 

interactions) 

Proposed a conceptual design of a design 

semantic network that supports concurrent 

engineering in the design of semiconductor 

devices. The main application scenario of the 

design of semantic networks is for 

communication enhancement. 

Conceptual design, 

communication 

support 

Tiwana & 

Ramesh 

(2001) 

Knowledge 

management 

system design 

Node (term),  

Relationships 

(activity, 

interactions) 

Proposed a knowledge management system that 

allows engineers to manually enter concepts and 

relationships between them.  

Design knowledge 

acquisition and 

management 

Hao et al., 

(2011) 

Feature 

Semantic 

network design 

and automated 

construction. 

Node 

(Features),  

Relationships 

(Operations) 

The authors proposed a semantic network to 

support feature-based design. The  

Formalized design 

description 

Tawosi et 

al., (2015) 

Product domain 

semantic 

networks 

Node (entity)  

Relationships 

( 6 defined 

relations) 

A product domain semantic network provides 

the human engineer with a piece of sufficient 

background knowledge. 

Building models for 

detailed design. ER 

diagram,  

Shi et al., 

(2017) 

B-link 

knowledge 

Graph 

construction, 

information 

retrieval 

Node (term),  

Relationship 

(co-

occurrence) 

Mine concept (terms) from engineering papers 

(1 M) and connect the concept with the phrase 

co-occurrence. Introduced a threshold to reduce 

the graph size. In addition, they provide 

algorithms for information retrieval. 

Design information 

retrieval 

Sarica et 

al., (2019, 

2021) 

Automatic 

graph 

construction,  

TKG, TechNet 

Node (term), 

relationship 

(distance)  

Text mining from USPTO (Design patent 

documents) obtained in total 26.8 million 

sentences and extracted 4 million terms based on 

Tf-idf. The relation in the graph indicates 

semantic relatedness (cosine distance). 

Semantic search, 

network analysis 

Table 4. Knowledge graphs and semantic networks are introduced in engineering design. 
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Chapter 4. An EBD-based Systematic 

Literature Review: Machine 

Learning in  Requirement Elicitation 

4.1. Introduction  

Requirement elicitation is an early-stage product development process to gather stakeholders' 

detailed descriptions of the target system. Several traditional elicitation techniques, such as 

interviews, meetings, and brainstorming sessions, can be used to collect precise and individualized 

requirements. However, due to growing user demands and the rapid pace of product iterations, 

these conventional methods are often insufficient.  

The fourth industrial revolution is triggering a pervasive digital transformation in many fields of 

human activities. Particularly, engineering is being transformed into “Digital Engineering” (Huang 

et al. 2020; US DoD 2018; Zimmerman 2017). In digital engineering, digital data and models will 

be shared in the engineering life cycle (US DoD 2018); engineering artifacts and processes will be 

digitalized with standardized digital representation, unique identifier, and augmented metadata 

about their attributes, including provenance, thus making those digital artifacts machine-

processible, uniquely identifiable, traceable, and accountable (Huang et al. 2020). The digital 

engineering transformation brings both opportunities and challenges for requirement elicitation.  
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The evolution of digital transformation has led to improved productivity, quality, and customer 

satisfaction through agile and robust big data collection, analysis, learning, and decision-making 

processes. Success stories, advancing technologies, and growing customer demands are why 

digitalization has become necessary for various fields. For example, in recent years, there has been 

a growing number of studies involving a digital transformation in requirement engineering, such 

as identifying requirements from documents (Wang et al., 2019), and automatically classifying the 

requirements (Casamayor, Godoy, and Campo 2012), and prioritizing the requirements (Maiti and 

Mitropoulos 2017). By applying advanced technologies and shifting the existing process to a new 

digitized paradigm, it may be possible to solve the problem.  

Traditionally, expert experience or intuition has directed requirements activities. Each decision is 

based on a combination of implicit and explicit domain expertise. Developing a computer model 

that mimics expert rules is expensive to construct and maintain, if not impossible. A data-driven 

strategy, unlike rule-based systems, does not codify the rules and knowledge for decision-making. 

The term data-driven refers to a decision-making strategy based on data analytics, interpretation, 

and prediction rather than pure intuition (Provost and Fawcett 2013). Over the past fifteen years, 

several studies have been published on the application of machine learning to requirements 

engineering and systems engineering, followed by reviews that summarize these studies (Lim et 

al., 2021; Meth et al., 2013; Wong et al., 2017). Different from those existing studies, this current 

literature review, covering 86 studies, provides a roadmap for building an ML-based requirement 

elicitation pipeline, including data collection, data preprocessing, feature extraction, training, and 

evaluation of the model and the open-source tools.   

The rest of this chapter is structured as follows. In Section 4.2, literature reviews related to the 

proposed review are summarized; and in Section 4.3, the scope and methodology of the literature 
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review, as well as search strategies, criteria for inclusion and exclusion, and the data extraction 

template, are presented. Section 4.4 shows the primary results of the literature review. Section 4.5 

summarizes the major findings from the review by analyzing the included works and categorizing 

them into various categories from seven different research concerns. In Section 4.6, the current 

role of ML in requirement elicitation and its limitations are discussed. In addition, the open issues 

and potential future works in this field are discussed. In Section 4.7, we discuss the potential threat 

to the validity of the review and the measures we took to address these limitations. Finally, Section 

4.8 concludes the paper. 

4.2. Research methodology 

4.2.1. Literature review and design 

There is a paradox in conducting literature review research: before completing the literature review, 

the researcher does not have a holistic overview of the study; before the researcher has a holistic 

view of the study, the researcher does not know what to search for; before the researcher search, 

the researcher does not have any knowledge about the topic. The literature review procedure is 

described as linear rather than recursive. Hence, there is a contradiction existing between the 

research statement and the researcher’s knowledge. The research statement helps the researcher to 

retrieve knowledge from correct research works, and the knowledge helps the researcher to 

complete the research statement. However, most textbooks and guidelines on conducting a 

literature review do not address this contradiction. Instead, they assume that the audience has a 

well-designed research question and is capable of writing sufficient and appropriate research 

questions.  
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In design science, a similar logical paradox is described by Zeng (2020) as the recursive nature of 

the design process. The recursive design process describes a recursively evolutionary process for 

design. Before the designer has the design knowledge and design solution, the designer cannot 

fully capture the requirements from the design statement; before the design statement is fully 

captured, the designer is unable to get sufficient design knowledge, which results in an incomplete 

design solution. Further, through over 30 years of studies, scholars have proven that the design 

process is recursive rather than linear (Jia and Zeng 2021; Thanh An and Zeng 2012; Zeng and 

Cheng 1991). The recursion comes from the designer’s enhanced understanding of the design 

problem.  

Comparatively, literature review research shares the same logic and paradox with design. We can 

relate the literature review in the design to three activities, namely, the research statement (design 

statement), the reviewed literature, and the study results. The initial research statement provides 

the researcher (or designer) with a vague direction and scope regarding the study. The researcher 

further analyzes the research statement and searches related literature. With the initial set of 

research papers, the researcher can extract initial knowledge, which helps the researcher to make 

the research statement complete and valid. Thus, the EBD methodology is applied to this literature 

review to generate relevant research questions. 

This study contains two parts, which are the data preparation part, and the paper writing part. For 

data preparation, we customized the RomNet framework for the literature review to help the 

researchers to extract useful information from research articles.   
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4.2.2. EBD-based research question generation  

The literature review methodology in this chapter contains research question generation, literature 

retrieval, and literature review. This literature review's research questions are generated with 

Environment Based Design (EBD) methodology (Zeng 2020).  

EBD is a design methodology that was initially a design guideline for designers with limited 

knowledge (Zeng 2011). Because of its question-driven and structured nature, EBD acts as a 

literature review method for secure collaboration (Zeng et al. 2012). EBD provides an adaptive 

question-driven information retrieval method to ensure the objectivity of design activity. 

Researchers from different fields applied EBD for various problems due to its supportability to 

complex and uncertain problems, such as education science, management science, computational 

geometry, and neuroscience (Jia & Zeng, 2021; Jie et al., 2021; Meng et al., 2021; Milhim & 

Schiffauerova, 2013; Wang & Zeng, 2017). EBD can solve various uncertain problems because of 

its ability to represent problem statements and generate questions in a logical order.  

The Environment-based Research Question (eRQ) generation used in this review starts with an 

initial statement that describes the central theme of this chapter. Specifically, there are seven steps 

to generate research questions: 1) to generate a Recursive Object Modeling (ROM) diagram to 

represent the research statement in a structured formal format; 2) to extract key terms from the 

ROM diagram; 3) to generate lists of questions according to the question templates provided in 

EBD methodology; 4) to seek answers for the questions following an EBD answer template; 5) to 

merge the topic sentence of each answer into an integrated final statement; 6) to update the ROM 

diagram based on the final statement; 7) conduct environmental analysis on the updated ROM 

diagram, and generate final research questions. The entire procedure is shown in Figure 21. 
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Figure 21. Illustration of the eRQ process for generating research questions. 

The objective of the first three steps is to analyze the initial statement and generate a list of initial 

questions that provide direction and scope for information searching. During these steps, the core 

function is ROM which generates structured questions for a single statement (Zeng 2008). The 

ROM is a semantic language model representing text in a structured dependency graph. The initial 

statement of this chapter is: 

Data-driven Approach for Intelligent Requirements elicitation.  

According to ROM construction rules (Zeng 2008), we generate a ROM diagram, as is shown in 

Figure 22. The next step is to extract keywords for question generation with the generated ROM 

diagram. The key terms and phrases are  “requirement”, “requirements elicitation”, “data”, “data-

driven”, and “intelligence”. The third step is generating questions about key terms. The key-term 

extraction and the question generation details are introduced in Section 2.1.  

Intelligent

Requirement

Elicitation

Driven Data

Approach For

 

Figure 22. The ROM diagram for the initial statement 
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According to EBD question generation rules, we generated 11 initial questions and answered the 

questions with knowledge retrieved from the existing works of literature (as Table 5).  

What is a requirement? The definition of requirements is slightly different in different domains. 

In the engineering design field, a requirement is a physical product or system that “must be” 

created and delivered to satisfy the customers' needs (Brace and Cheutet 2012). In software 

engineering, requirements represent the “must-have” functionalities and features of the software 

to solve problems in the real world (Bourque and Fairley 2014). For service design, the 

requirements are the service delivery and service development request from the customer (Patrício 

et al. 2011). The design requirements describe the target product's structure and performance 

(Cascini et al. 2013; Zeng and Gu 1999). In combination, a requirement means a written 

description of functions, attributes, or the quality of the target product that stakeholders expect.  

Question-id Question  Key term 
IQ1 What is a requirement?  Requirement 

IQ2 What is the lifecycle of the requirement?  Lifecycle, requirement  

IQ3 What is requirements elicitation?  Requirement elicitation 

IQ4 Why elicits requirements?  Requirement elicitation 

IQ5 How to elicit requirements?  Requirement elicitation 

IQ6 Who elicits requirements?  Requirement elicitation 

IQ7 When to elicit requirements?  Requirement elicitation 

IQ8 Where to elicit requirements?  Requirement elicitation 

IQ9 What is data?  Data, information, 

knowledge 

IQ10 Why driven by data? Data-driven 

IQ11 What is “data-driven”? Data-driven 

Table 5. Initial questions (IQs). 

What is the lifecycle of the requirement? According to Brace & Cheutet (2012), the requirement 

development process comprises customer requirements identification, defining specific 

requirements, requirement refinement, requirement exploration, and requirement specification. In 

ISO/IEC/IEEE 29148:2011 standard, the requirement process contains extracting requirements, 

defining requirements, analyzing the requirement, and maintaining requirements (García et al. 
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2020). Almefelt et al. (2006) indicated that the requirement lifecycle should stick together with the 

entire product life cycle. The requirement lifecycle includes business requirement analysis, product 

requirement extraction, system requirements elicitation, specific requirements generation, and 

requirement validation. In SWEBOK V3.0, the requirement lifecycle is generalized into four steps, 

which are requirements elicitation, requirement analysis, requirement specification, and 

requirement validation (Bourque and Fairley 2014). Researchers in the requirement engineering 

community also believe that the requirement process is an ongoing process that can continuously 

change through user feedback and online review (Jha and Mahmoud 2019; Nayebi, Cho, and Ruhe 

2018; Oriol et al. 2018). Hence, by combining these different definitions, requirement lifecycles 

can be generalized as 1) initial requirements elicitation, 2) requirement analysis, 3) requirement 

documentation, 4) requirement validation and 5) requirement maintenance.  

What is requirements elicitation? Requirements elicitation is a process that contains a set of 

activities in the initial phase of engineering, which aim to gather, identify or discover the 

application domain, the required performance, the task-related stakeholders, and business rules 

(Bourque and Fairley 2014; Sommerville and Sawyer 2003). Requirement elicitation is the first 

phase in the requirement lifecycle, which identifies initial requirements for the project and the 

continuous incremental requirements from various sources such as user feedback and reviews. The 

requirements elicitation’s main tasks include understanding the application domain, identifying 

requirements sources, analyzing related stakeholders, selecting proper requirements elicitation 

techniques, and eliciting requirements (Zowghi and Coulin 2005).  

Why elicits requirements? Product definition is one of the most critical factors for product design 

and development, and product definition comes from customers’ requirements (Yan, Chen, and 

Khoo 2002). It is also essential for an organization to decide on various detailed activities such as 
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budget estimation and project scheduling (Azadegan, Papamichail, and Sampaio 2013). 

Requirements elicitation is vital to define clear project scope and build a communication channel 

to minimize the potential risks (Bourque and Fairley 2014). 

How to elicit requirements? Hundreds of requirements elicitation techniques were developed and 

applied by academia and industries to elicit requirements from stakeholders (Zowghi and Coulin 

2005). To answer how to elicit requirements, we only illustrate a few requirements elicitation 

techniques as examples commonly applied by multiple domains: interview, questionnaire, 

prototyping, domain analysis, brainstorming, and observation.  

Who elicits requirements? Requirement engineers and users are two main actors for requirements 

elicitation, and the degree of their involvement depends on the specific technology for 

requirements elicitation. Requirement engineers in this chapter refer explicitly to designers and 

engineers in the requirement team. For example, an interview requires both requirement engineers 

and target stakeholders to attend together, whereas observation does not depend on stakeholders.  

When to elicit requirements? Requirements elicitation is the first phase of engineering design 

and helps designers understand the problems to be solved (Bourque and Fairley 2014; Yan et al. 

2002). However, the design process is not always sequential. The design process is a recursive 

process that consists of several stages (Zeng and Cheng 1991). The current stage's design solution 

becomes part of the design requirements in the subsequent design stages (Wang and Zeng 2009). 

Hence, design requirements and design solutions span through the entire product life cycle. The 

recursive nature of customer requirements determines that requirements elicitation is an ongoing 

activity that spans throughout the entire product development life cycle.  
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Where to elicit requirements? Designers can extract requirements through communication with 

stakeholders, such as interviews, questionnaires, observation, brainstorming, and formal or 

informal meetings.  Requirements can also be found in many types of documents, e.g., tenders 

documents (Fantoni et al. 2021), crowdsourcing project requests (Li et al., 2018), product-relevant 

multimedia documents (Dadzie et al. 2009), domain documents (Wu & Srihari, 1996), technical 

documents (Garzoli et al. 2013) and problem record document (Xu et al. 2020). Besides, customers 

usually express their demands and expectation directly or indirectly through feedback and reviews 

(Birch, Simondetti, and Guo 2018; Maalej, Nayebi, and Ruhe 2019).  Moreover, researchers 

suggested other sources such as data from existing systems (Rusu et al. 2012), social networks 

(Lim & Finkelstein, 2012), and gamified platforms (Kolpondinos and Glinz 2020). 

What is data? Oxford dictionary defines the term data as facts and statistics collected for 

reference or analysis1. More specifically, data are a numerical or symbolic representation of the 

real world (Targowski 2005). Data is the statistical observations and computer recordings in the 

most basic form (Zins 2007). Data can be categorized, interpreted, analyzed, and extracted to 

produce meaningful output by human experts and artificial intelligence (O’Leary 2013). 

Why driven by data? Although conventional requirements elicitation techniques are robust and 

have many mature procedures and guidelines to direct requirement engineers and stakeholders to 

gather requirements, these existing techniques are labor-intensive, time-consuming, and error-

prone (Cleland-Huang et al. 2007; Reinhartz-Berger and Kemelman 2020). For example, there are 

about 40,000 documents generated during a single-engine project in an aerospace company, and 

most of them are written in plain text (Li and Ramani 2007). Handling massive documents multiply 

 
1 https://www.oxfordlearnersdictionaries.com/definition/american_english/data 
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the workload of requirement engineers, and a heavy workload might lead to substandard 

performance (Nguyen and Zeng 2012). Also, requirements tend to change during the entire project 

lifecycle, which requires additional attention from engineers to cope with the changing 

requirements (Morkos, Mathieson, and Summers 2014). Moreover, the traditional requirements 

elicitation methods require multiple skills and knowledge, such as domain knowledge and 

interpersonal skills. Using data-driven methods can provide automatic tools in the target field, 

which can reduce designers' workload on a particular task or replace the process with an automated 

procedure that requires minimal human intervention.  

What is “data-driven”? Data-driven is an adjective that means based on or decided by collecting 

and analyzing data 2 . The noun form data-drivenness method uses technologies, tools, and 

processes that act on data (Turner 2015). Unlike conventional decision-making strategies based on 

human experience, the data-driven represents a strategy that requires knowledge learned from data 

(Provost and Fawcett 2013).  

By summarizing the answers in the question-answer pairs, we generated a brief description of the 

target domain, and the answers are organized as follows.  

The requirement means the description of functions, attributes, or the quality of the target product 

expected by stakeholders. Requirement lifecycle contains, 1) initial/continues requirements elicitation 

2) requirement analysis, 3) requirement documentation, 4) requirement validation and 5) requirement 

maintenance. Requirement elicitation is a process that contains a set of activities in the initial phase of 

engineering, which aim to gather, identify, or discover the application domain, the required 

performance, the task-related stakeholders, and business rules. Requirement elicitation is essential to 

define clear project scope and build a communication channel to minimize the risks. Multiple methods 

 
2 https://www.oxfordlearnersdictionaries.com/us/definition/english/data-driven?q=data-driven 
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elicit requirements, such as interviews, questionnaires, prototyping, domain analysis, brainstorming, 

and observation. Requirement engineers and users are the two main actors for requirements elicitation. 

Requirement elicitation is an ongoing activity that spans the entire product development lifecycle. 

Various requirement techniques can extract requirements from end-users. Data is facts and statistics 

collected for reference or analysis. Data-driven is an adjective that means based on or decided by 

collecting and analyzing data. The noun form data-drivenness is a method that uses technologies, tools, 

and processes that act on data. Using data-driven methods can automate several requirements 

elicitation tasks that reduce requirement engineers' workload.  

A ROM diagram (Figure 23) is generated based on the answer summary, where related answers 

are merged and connected. The ROM diagram can be divided into seven parts, which are 

represented by different colors. The summary of these different clusters is presented in Table 6. 

Among these clusters, the red cluster represents the “requirement” and “requirements elicitation” 

that works as a central hub in this model. The yellow part represents the conventional requirements 

elicitation techniques, and the navy-blue part shows the motivation and lifecycle of requirements 

elicitation. The purple part lists the main actors in requirements elicitation. The grey zone is the 

lifecycle of a requirement that is not the primary focus of this study. The white cluster lists the 

objectives of requirements elicitation, and the green part is the study scope of this chapter, which 

is the data-driven requirements elicitation. We can generate effective research questions by 

analyzing the relationship between the green cluster and other clusters. 

The relation between the green cluster and the red cluster indicates the relation between data-

driven methods and requirements elicitation. In addition, the relationship between the green cluster 

and the blue cluster refers to the motivation of data-driven requirements elicitation. Third, 

understanding how the green cluster is related to the white cluster helps us find the objectives of 

data-driven requirements elicitation. Fourth, the relation between the green cluster and the yellow 
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cluster represents the data source of data-driven requirements elicitation. Besides, the connection 

between the green and the purple parts raises the question about who attends to the data-driven 

requirements elicitation.  

Based on the ROM analysis, six research questions can be generated as follows. 

RQ1. Which specific requirement elicitation activities are supported with ML methods? 

RQ2. Which types of data sources are being used in the current works?  

RQ3. What technologies are used for building an ML-based requirements elicitation methodology? 

RQ4. What criteria are used to assess data-driven solutions? 

RQ5. What are the available tools to support ML-based requirements elicitation methodology?  

Based on the merged ROM diagram we can identify the main entities and the related keywords 

accordingly.  

Cluster-id Cluster  Color Main entities  

Clu-1 Data-driven  Green Data-driven, data, techniques, tool, 

process, collecting, analyzing 

Clu-2 Requirement elicitation  White Process, gather, identify, discover, 

application domain, stakeholders, 

required performance, business rule 

Clu-3 Definition of requirements  Red Description, function, attribute, 

quality, target product, customer’s 

expectation 

Clu-4 Motivation and lifecycle of 

requirements elicitation 

Blue Minimize risks, communication 

channel, project scope, ongoing, entire 

product lifecycle 

Clu-5 Conventional requirements 

elicitation  

Yellow Interview, questionnaire, prototype, 

domain analysis, brainstorming, 

observation 

Clu-6 Actors in requirements 

elicitation 

Purple Engineers, users 

Clu-7 Requirement lifecycle Grey Elicitation, analysis, documentation, 

validation, maintenance 

Table 6. The description of each cluster and its main entities. 
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Figure 23. ROM diagram from first-round question answering  
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4.2.3. Review scope  

Characteristic  Categories The focus of this work 

Focus Research findings  ✓ 

Research methods ✓ 

Practices of applications  ✓ 
Theories ✕ 

Goal Integration ✓ 

Identification of the central 

issue 
✓ 

Criticism ✕ 

Perspective Neutral representation ✓ 

Espousal of position ✕ 

Coverage Exhaustive with selective 

citation 
✓ 

Exhaustive ✕ 

Representative ✕ 

Central or pivotal ✕ 

Organization Methodological ✓ 

Conceptual  ✕ 

Historical  ✕ 

Audience Specialized scholars ✓ 

General scholars  ✓ 

Practitioners or policymakers ✓ 

General public ✕ 

Table 7. The research scope under Cooper's literature review taxonomy. 

The review scope is defined in Table 7 according to Cooper's taxonomy for literature review, 

including focus, goal perspective, coverage, organization, and audience (Cooper 1988; Cooper, 

Hedges, and Valentine 2019). First, in this work, the emphasis is on practical solutions that can be 

applied; therefore, theoretical works are not our focus. Second, this study aims to synthesize and 

integrate existing studies to identify the tasks supported by ML-based requirements elicitation; 

thus, criticism of the field or related works is not a goal of this article. Third, this chapter does not 

take an espousal perspective to advocate for or against ML-based requirement elicitation. Instead, 

it demonstrates how the existing work would convert requirement elicitation challenges into ML 

problems. Fourth, the coverage of the literature is determined by its inclusion and exclusion criteria. 

Fifth, the work applies a methodological organization that group and organize similar 

methodologies or tools from the same step together, presenting a modular organization to the target 
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audience. Finally, the targeted audiences are mainly requirements analysts, engineers, and scholars 

to implement ML-based requirement elicitation solutions.  

4.2.4. From the research question to the search string  

According to the central theme of this literature review, we have key terms: requirements 

elicitation, data-driven, and intelligence. The search terms are expanded by introducing the 

synonyms of key terms. As a result, the following search terms are created to retrieve documents 

from electronic databases (Table 8).  

Data-driven  OP Requirement OP Elicitation OP

  

Methods (techniques, 

process, tools) 

Automated  AND Requirement(s) AND Elicitation AND Machine learning 

OR  OR  OR  OR 

Automatic  Need(s)  Gathering  Deep learning 

OR  OR  OR  OR 

Data-driven  Demand(s)  Collecting  Natural language 

processing 

OR  OR  OR  OR 

Intelligent  Request(s)  Extraction  Artificial intelligence 

    OR  OR 

    Discovery  Neural network 

      OR 

      Data mining 

      OR 

      Text mining 

      OR 

      Data science 

Table 8. Table of search terms and operators (op). 

Seven bibliographic databases, including Scopus, Web of Science, Google Scholar, IEEE Xplore, 

Springer Link, ACM digital library, and ASME digital library, are adopted to guarantee the 

coverage of the review. Three search strategies are adopted: 1) the query expanding is used to add 

synonyms, inflectional, and derivational morphological forms to the original term; 2) a wildcard 

character is used to capture multiple forms of a keyword by replacing one or more characters with 

a star symbol (*) or question marks (?); and a 3) query scoping strategy is applied when the search 
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term is too general to retrieve a related result. The search queries and the search engines can be 

found in Table 9. 

Search engine Query 

Web of Science (TI=((requirement* OR demand* OR need*) NEAR (elicit*  OR  collect*  OR  gather*  

OR  detect*  OR  identif*  OR  classif*))) AND TS=(data-driven OR automat* OR NLP 

OR ML OR deep learning) 

Scopus TITLE-ABS-KEY ( ( "data-driven"  OR  "ML"  OR  "deep learning"  OR  "neural network"  

OR  "text mining"  OR  "data mining" OR “NLP”)  AND  ( "requirement*"  OR  "need*"  

OR  "demand*" )  AND  ( "elicit*"  OR  "collect*"  OR  "gather*"  OR  "detect*"  OR  

"identif*"  OR  "classif*" ) )   

Google Scholar ("data-driven" OR "automated" OR "automatic" OR "NLP" OR "text mining" OR 

(“machine” OR “deep”) AND learning”) AND (“requirement elicitation” OR “requirement 

engineering” OR “requirement identification” OR “requirement detection” OR 

“requirement collection” OR “requirement 

Springer Link Requirement AND (elicit* OR collect* OR gather* OR extract* OR detect* OR identif* 

OR classif*) NEAR (automat* OR “ML” OR “deep learning” OR “neural network” OR 

“text mining” OR “natural language processing” OR “nlp”) 

IEEE Xplore ("Publication Title":requirement ) AND ("All Metadata":extract* OR "All 

Metadata":collect* OR "All Metadata":identifi* OR "All Metadata":detect*) AND ("All 

Metadata":"ML" OR "All Metadata":"deep learning" OR "All Metadata":"data-driven" OR 

"All Metadata":"neural network" OR "All Metadata":"automat*" OR "All 

Metadata":"natural language processing" OR "All Metadata":"nlp" OR "All 

Metadata":"text mining" OR "All Metadata":"supervise*" OR "All 

Metadata":"unsupervise*"") 

ACM digital library [Title: requirement*] AND [[Title: elicit*] OR [Title: collect*] OR [Title: gather*] OR 

[Title: extract*] OR [Title: detect*] OR [Title: identif*] OR [Title: classif*]] AND 

[[Abstract: automat*] OR [Abstract: "ML"] OR [Abstract: "deep learning"] OR [Abstract: 

"neural network"] OR [Abstract: "text mining"] OR [Abstract: "natural language 

processing"] OR [Abstract: "nlp"]] 

ASME digital library “Data-driven requirement elicitation”, “need elicitation.”  

Table 9. Search engines and queries. 

4.2.5. Inclusion/exclusion criteria and data extraction table 

The next step of the literature review is selecting studies by screening the title, abstract, and full 

text of the works found in the previous steps. We applied the inclusion/exclusion criteria in Table 

10. The inclusion-exclusion criteria list pre-defined rules that work as filters to decide whether to 

keep or delete papers from the selected article list.  

Research information was collected from each included article with a data extraction form. 

Characteristics of the study (author, title, year of publication, etc.) and measures of research 

interests (data source, preprocess, feature extraction, etc.) were collected. This includes 14 data 
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elements described in Table 11. A commercial literature review tool Covidence3 is used to design 

and manage the data extraction activities. 

Exclusion 
 

Inclusion 

The work is a survey paper or literature review. 

 

 The work should either capture requirements in an 

automated way from text data or support the requirement 

elicitation process with an automated approach trained 

from big data. 

The work is an editorial, conference abstract, 

or introductory popular science article. 

 

 The article presents the details of the datasets and data 

processing. 

 

The work only generally describes the problem 

and the solution without providing an 

experiment result or convincing evidence. 

 

 The article explains in detail the ML algorithm that they 

employed, such as the learning algorithms they used and 

the validation strategy they employed. 

If there are multiple similar works from the 

same authors, only one of the earliest works 

would be retained. 

 

 The full text of the article should be accessible. 

 

The work is written in a non-English language. 

 

 The article is written in English. 

 

Table 10. Search engines and queries. 

# Data Description 

1 Author(s) Author(s) of the included work in the literature review. 

2 Title Title of the included work in the literature review. 

3 Country The country of the corresponding author is the primary country, and the rest 

of the countries follow the order of the author list. 

4 Year The published year of the work. 

5 Citation count The number of citations of included work. (From Google Scholar, until 2021-

10-20) 

6 Venue  The publication type of the work includes conference, journal, book chapter, 

and workshop. 

7 Venue title The name of the journal or conference contains the article.  

8 Requirement elicitation 

task(s)   

Identify which requirement elicitation subtask is supported by the paper.  

9 Data source The data source is used for training or validation purposes.  

10 Preprocess  The specific data preprocessing techniques from the selected paper. 

11 Feature extraction The specific features applied by the selected work in the literature review. 

12 Learning algorithm  The learning algorithm was adopted by the included study in the literature 

review. 

13 Evaluation method The evolution method was introduced by the selected papers in the literature 

review. 

14 Tools  List the tools mentioned by the authors in the paper as aids to their work. 

Table 11.  Elements of data extraction. 

 
3 https://app.covidence.org/reviews 
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4.3. Results 

4.3.1. Results overview  

A total of 975 papers were retrieved with the search queries from the seven included scientific 

search engines. Upon initial screening and title screening, 915 works were forwarded to title-

abstract screening. A subset of 774 was irrelevant and thus discarded. As a result, 129 papers are 

retained for the full-text screening. According to the inclusion-exclusion criteria, 43 works were 

included in the literature review after 22 were excluded. The complete process of study selection 

is shown in Figure 24.  

 

Figure 24. PRISMA flow chart. 

Among the included 86 articles, an increasing trend was observed in Figure 25. The 86 studies 

came from 30 different countries, and 17 of them were conducted by more than one country. With 

3.8 being the average of the included publications per country, seven countries published more: 

the United States (n=28, 25.0%), China (n=14, 12.5%), Germany (n=13, 11.6%), Canada (n=8, 

7.1%), Singapore (n=5, 4.5%), South Korea (n=5, 4.5%), and the United Kingdom (n=5, 4.5%).  
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Thirty-nine of the studies are conference papers (n=39, 45.3%) and 31 are journal papers (n=31, 

36.0%). In addition, eight workshop papers (n=8, 9.3%) and eight book sections (n=8, 9.3%) are 

included. The included conference papers are collected in 23 unique conference proceedings, with 

16 appearing in the Proceedings of the IEEE International Conference on Requirements 

Engineering. The majority of the journal publications in this collection are from the Journal of 

Mechanical Design, Information and Software Technology, and Requirement Engineering.  

 

Figure 25. The number of included papers by year. 

4.3.2. Resources and methods supporting ML-based requirement elicitation 

ML-based requirements elicitation mainly includes requirement categorization, user preference 

analysis, and review helpfulness analysis. First, requirement categorization is constituted by 

classification, clustering, and topic modeling methods to support requirements elicitation. Second, 

user preference analysis involves mining user opinions, sentiments, complaints, and expectations 

from massive online reviews to provide designers with a more comprehensive and detailed 

understanding of customer needs. Finally, user review helpfulness analysis supports requirement 

elicitation, which awards a score to a given user review that quantifies its usefulness to product 

development. The general pipeline of ML-based requirement elicitation tasks contains data 

collection and preparation, data preprocessing, feature extraction, model training, and evaluation. 

According to this pipeline, we will summarize the review results in the following subsections.  
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4.3.3. The data source for building an ML-based requirement elicitation system 

This review identifies two types of data sources: requirements specification data and user-

generated content data. The requirement specification is a document that systematically stores 

system definition and system requirements (Bourque and Fairley 2014). Most of the requirement 

specifications applied by the reviewed works are written in English, and only two are bilingual 

(Ko et al. 2007; Lyutov, Uygun, and Hütt 2019), and three are written in a non-English language 

(Falessi, Cantone, and Canfora 2010; Gulle et al. 2020; Ott 2013). 

A total of 15 included studies built the ML models with DePaul’s NFRs corpus provided by 

Cleland-Huang et al. (2006).  Two works expanded DePaul’s NFR corpus by including other SRS 

for constructing a larger corpus (Baker et al. 2019; Sabir, Banissi, and Child 2021). Along with 

DePaul’s corpus, SecReq (Knauss et al. 2011)  and PURE (Ferrari, Spagnolo, and Gnesi 2017) are 

two open requirement datasets adopted by several selected articles. The SecReq dataset was the 

second task introduced by the RE’17 data challenge, which aims to identify quality (security) 

requirements from given text. SecReq is a tagged corpus containing cleaned sentences and their 

associated labels, which contains the tags sec and nonsec for security-related and non-security-

related requirements, respectively. Among the included articles, two works trained and tested their 

ML framework with SecReq corpus (Dekhtyar and Fong 2017; Kobilica, Ayub, and Hassine 2020). 

The PURE corpus has 79 requirement specifications, including about 35,000 sentences with an 

average length of fifteen words (Ferrari et al. 2017). Unlike DePaul’s NFRs and SecReq, the PURE 

dataset is not labeled and produced for a particular goal; instead, the authors made it open for 

various applications. Deshpande et al. (2019) studied requirement dependencies with the PURE 

corpus, and EzzatiKarami & Madhavji (2021) utilized both DePaul’s and PRUE corpora for 

constructing a more extensive training set. 
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Types of data Data type Sub-categories Included works  Count 

Document data 

Requirement 

documents 

Pseudo requirement 

specification 
(Cleland-Huang et al. 2007; Ormandjieva, 

Hussain, and Kosseim 2007) 
2 

Industrial requirement 

specification 

(Abualhaija et al. 2019; Falessi et al. 2010; 

Lyutov et al. 2019; Mahmoud 2015; Ott 2013; 
Winkler and Vogelsang 2017) 

6 

Publicly available 

requirement specification 

(Gulle et al. 2020; Halim and Siahaan 2019; 

Jeon, Lee, and Jeong 2021; Li et al. 2018; 

Myllynen et al. 2021; Rahimi, Eassa, and 
Elrefaei 2020; Riaz et al. 2014a) 

7 

Documents without a 

specified source  
(Ko et al. 2007; Polpinij and Namee 2021) 2 

Other documents 
(Barbosa et al. 2015; Gulle et al. 2020; Massey 

et al. 2013; Rodeghero et al. 2017) 
4 

Existing 

requirement 

corpus 

DePaul’s NFRs corpus  

(Abad et al. 2017; Asif et al. 2019; Canedo and 

Mendes 2020; Casamayor, Godoy, and Campo 

2009, 2010; Dalpiaz et al. 2019; Dekhtyar and 
Fong 2017; EzzatiKarami and Madhavji 2021; 

Gnanasekaran et al. 2021; Haque, Rahman, and 

Siddik 2019; Hussain, Kosseim, and 
Ormandjieva 2008; Khelifa, Haoues, and 

Sellami 2018; Navarro-Almanza, Juurez-

Ramirez, and Licea 2018; Rahman et al. 2019; 
Rashwan, Ormandjieva, and Witte 2013; Sabir 

et al. 2021; Tóth and Vidács 2018) 

20 

SecReq corpus 
(Dekhtyar and Fong 2017; Kobilica et al. 2020; 
Li 2018) 

3 

PURE corpus 
(Deshpande et al. 2019; EzzatiKarami and 

Madhavji 2021) 
2 

Others (Liu, Lu, and Loh 2007; Parra et al. 2015) 2 

User-generated 

content 

Produce 

review 

e-commerce 

(Bakiu and Guzman 2017; Chen, Zhang, and 
Niu 2016; El Dehaibi, Goodman, and 

MacDonald 2019; Han and Moghaddam 2021; 

Jo and Oh 2011; Kurtanovic and Maalej 2017b; 
Li et al. 2020; Liu et al. 2013; Qi et al. 2016; 

Singh and Tucker 2017; Suryadi and Kim 2019; 

Tang et al. 2019; Timoshenko and Hauser 2019; 
W. Wang, Feng, and Dai 2018; Yang et al. 

2019; Zhan, Loh, and Liu 2009; Zhou et al. 

2020) 

18 

App review 

(Carreno and Winbladh 2013; Chen et al. 2014; 

Dhinakaran et al. 2018; Fu et al. 2013; Guzman 
and Maalej 2014; Jha and Mahmoud 2019; 

Joung and Kim 2021; Lu and Liang 2017; 

Maalej et al. 2016; Martens and Maalej 2019; 
Noei, Zhang, and Zou 2021; Panichella et al. 

2015; C. Wang et al. 2018) 

17 

Social media 

Microblog 

(Guzman, Ibrahim, and Glinz 2017; 

Kengphanphanit and Muenchaisri 2020; 
Prasetyo et al. 2012; Stanik, Haering, and 

Maalej 2019; Stone and Choi 2013) 

5 

Other 
(Jones and Kim 2015; Lange 2008; Nyamawe 

et al. 2019) 
3 

Table 12.The data source categorization. 

User-generated Content (UGC) is another important source for building an ML-based requirement 

elicitation model. Research shows that requirements from system users are hidden in rich user-

generated content, such as user feedback, social networks, online software markets review, and 
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product discussion forums (Lu and Liang 2017; Maalej et al. 2015, 2016; Perini 2018). UGC 

contains any forms of data generated by platform users, like numerical ratings, textual product 

reviews, and videos. In recent years, a growing number of studies have focused on the extraction 

of requirement-related information from textual UGC. The majority of the selected studies favored 

three platforms: mobile app market, microblog, and e-commerce websites. The included collection 

contains 37 articles that aid requirement elicitation via textual UGC. The detailed distribution is 

shown in Table 12.  

4.3.4. Requirement data preprocessing  

Among various preprocessing activities found in reviewed studies, tokenization and punctuation 

removal are the most frequently applied strategies in the collected works. Other approaches 

include language filtering (e.g., excluding review in non-English language), special character 

removal, and many other methods applied by the selected studies. On average, most papers 

described at least one preprocessing methodology, with only ten papers omitting such information. 

Table 13 shows the preprocessing technologies utilized in the included investigations.  

Each row of the table includes a maximum of five articles because some techniques such as 

stemming (26 articles), case folding (31 articles), and removal of stop words (50 articles) are 

widely used in the included studies. We categorized these text preprocessing techniques into three 

groups: text chunking, text filtering, and text normalization. Text chunking is to segment input raw 

text down into smaller components, and there are different granularities of text chunks, such as 

paragraphs, sentences, and words. Most of the reviewed studies applied sentence segmentation in 

the preprocessing phase, splitting a given paragraph into several sentences.  

 



62 

 

Category Preprocessing tasks Included works 

Text chunking 

Sentence tokenization 
(Chen et al. 2014; Li et al. 2020; Petcuşin, Stănescu, and 

Bădică 2020; Rashwan et al. 2013; Zhan et al. 2009)  

Word tokenization  
(Barbosa et al. 2015; Jeon et al. 2021; Jindal, Malhotra, and 

Jain 2016; Liu et al. 2007; Wang 2016) 

Text filtering 

Stop words removal  
(Maalej et al. 2016; Mahmoud 2015; Qi et al. 2016; Rahimi 

et al. 2020; Tóth and Vidács 2018), and other 45 works.  

Rare word filtering 
(Chen et al. 2014, 2016; Fu et al. 2013; Joung and Kim 2021; 

W. Wang et al. 2018) 

Non-English word 

removing 
(Al-Subaihin et al. 2016; Fu et al. 2013; Noei et al. 2021) 

Punctuation removal 

(Joung and Kim 2021; Khelifa et al. 2018; Lyutov et al. 

2019; Martens and Maalej 2019; Noei et al. 2021) and other 

14 works. 

URL removal 
(Jo and Oh 2011; Lyutov et al. 2019; Mahmoud 2015; 

Prasetyo et al. 2012; Stone and Choi 2013) 

Special symbol removal 
(Ferrari et al. 2018; Fu et al. 2013; Gnanasekaran et al. 2021; 

Gulle et al. 2020; Stone and Choi 2013) 

Empty value handling (Chen et al. 2014) 

Emoticon handling 
(Kengphanphanit and Muenchaisri 2020; Khelifa et al. 

2018; Zhou et al. 2020) 

Filtering out non-

informative/ irrelevant 

(Chen et al. 2014; Guzman et al. 2017; Timoshenko and 

Hauser 2019; Zhou et al. 2020) 

Filtering inconsistency (Fu et al. 2013; Noei et al. 2021) 

Text 

normalization 

Stemming 
(Barbosa et al. 2015; Ferrari et al. 2018; Li et al. 2018; 

Mahmoud 2015; Rahimi et al. 2020)  

Case folding 
(Chen et al. 2014, 2016; Joung and Kim 2021; Timoshenko 

and Hauser 2019; Zhou et al. 2020) 

Lemmatization 
(Guzman and Maalej 2014; Kurtanovic and Maalej 2017b; 

Li et al. 2018; Lyutov et al. 2019; Maalej et al. 2016)  

Slang translation (Khelifa et al. 2018; Lu and Liang 2017; Zhou et al. 2020) 

Abbreviation replacement (Khelifa et al. 2018; Lu and Liang 2017; Noei et al. 2021) 

Typo correction  (Kengphanphanit and Muenchaisri 2020; Noei et al. 2021) 

Acronym replacement (Lyutov et al. 2019) 

Table 13. Preprocessing techniques. 

Text filtering is a group of preprocessing methods, which aim to eliminate as much redundant, 

erroneous, non-representative, inconsistent, and ineligible text data as possible. Text normalization 

is another text preprocessing category that aims to transform a text sequence into its standard form 

to reduce its randomness and feature size. Stemming and lemmatization are the most common text 

normalization methods. In a document, a word has various forms, and some of these forms can be 



63 

 

converted to one another by adding or removing the prefix or suffix (Manning, Raghavan, and 

Schütze 2008). Stemming is a crude heuristic procedure that removes the tails from words to get 

word stems, which are the fundamental word units, e.g. for word requirements, the word stem is 

“require”. In comparison, lemmatization yields a basic dictionary form of a word. For example, 

the lemmatization of “requirements” will yield “requirement”. Case folding is another popular 

text normalization approach that changes all letters in a word into lower cases (Manning et al. 

2008). Slang translations, abbreviation translations, typo corrections, and acronym substitutes can 

also be considered text normalization procedures since they convert text into a more generic form.  

Text pre-processing is a collection of techniques for transforming unstructured text input into a 

machine-readable format. This section introduces and summarizes the preprocessing techniques 

applied by the reviewed literature and categorizes the related techniques like chunking, filtering, 

and normalization. According to the selected studies, most preprocessing techniques positively 

impact the downstream tasks. Despite that, there is no conclusive evidence that the more 

preprocessing methods applied, the better the downstream results will be. So, such techniques 

should be chosen based on the dataset, downstream learning algorithms, and the results they will 

provide. 

4.3.5. Approaches of feature extraction from requirement text  

Text features utilized in the included papers are classified as follows: lexical features, rule-based 

features, embedding features, and pre-trained features. The lexical feature is built upon the Bag of 

Word (BOW) model, which uses a single (unigram) or several words (n-gram) as a fundamental 

feature to represent a document. The raw count (or frequency) is a common approach to 

quantifying the lexical feature. Term Frequency-Inverse Document Frequency (TF-IDF) is an 

advanced feature weighting method among the included works (Manning and Schütze 1999). TF-
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IDF neutralizes the term frequency with the number of documents containing that word to draw a 

weighted feature value, reflecting how important a feature (term or n-gram) is to a document in a 

corpus.  

The rule-based features are the second category in this section, usually tailored for specific tasks 

with sufficient domain knowledge and text mining experience. In the included articles, seventeen 

papers adopted this type of hand-craft feature. Linguistic features, sentiment-based features, meta-

data features, domain-specific features, quality features, and temporal features are commonly used 

by the rule-based features. Linguistic features are usually based on part-of-speech (POS) 

information in each sentence or other syntactic structural information. The related features such as 

POS n-gram (Kurtanovic and Maalej 2017b), number of Noun/Verb/Adj/Adv/Modal (Hussain et 

al., 2008; Kurtanovic & Maalej, 2017a; Liu et al., 2013), frequency of POS of the keywords (Halim 

and Siahaan 2019), and number of syntax sub-tree (Dalpiaz et al. 2019; Kurtanovic and Maalej 

2017b, 2017a). Textual descriptive statistics from the reviewed articles include the number of 

characters (Abualhaija et al. 2019), number of words (Kurtanovic and Maalej 2017b), number of 

sentences (Qi et al., 2016), number of paragraphs (Parra et al. 2015), and number of words per 

sentence (Ormandjieva et al. 2007). The Meta-data features include descriptive product data, 

review text, and user data. The product and review meta-data is descriptive information about the 

product, such as the average star ratings (Maalej et al. 2016) and the total number of reviews 

(Martens and Maalej 2019). The user meta-data includes the total number of reviews/ratings of the 

user performed (Martens and Maalej 2019), the account usage information, and the grade of the 

user (Qi et al., 2016). Temporal features include verb tense (Stanik et al. 2019), number of elapsed 

days (Liu et al., 2013), and temporal tags (Abad et al. 2017). Document quality features include 

the number of subjective/objective sentences in a review (Liu et al., 2013), the number of 
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ambiguous expressions in a requirement (Ormandjieva et al. 2007; Parra et al. 2015), and the 

number of the sentence referring product feature appeared in a user review (Liu et al., 2013; Qi et 

al., 2016). Domain features are based on domain knowledge and are usually based on domain 

terms and terminology, such as the number of design terms (Parra et al. 2015) and the number of 

keywords from the input text (Hussain et al. 2008; Stanik et al. 2019). Other features are not widely 

applied through the included works, such as smoothed probability measure (SPM), Unsmoothed 

Probability Measure (UPM) (Hussain et al. 2008), and named entities (Abad et al. 2017). 

The third type of text feature is the embedding feature, which effectively represents texts by 

iteratively learning through neural networks rather than calculating weighted frequencies (Mikolov 

et al. 2013). In recent years, word embedding has gained popularity in a range of natural language 

processing applications. The selected articles used a range of embedding techniques, including  

Word2vec, FastText, and Glove models, to represent words. Utilizing embedding features entails 

three strategies: training the embedding from scratch, using a pre-trained embedding, and fine-

tuning the previously trained embedding. The weights are initially set to random and continuously 

updated by backpropagation by training the embeddings from scratch. Pre-trained embeddings are 

usually trained earlier, and weights are saved in a particular file that may be used for other tasks 

without training it from scratch. Fine-tuning a model uses a task-specific dataset to retrain a pre-

trained model, adjusting it to fit the target task better. Sixteen works mentioned the embedding 

features, and eight were applied to the pre-trained word vectors. Word2vec is the most popular 

pre-trained model among the included studies, where six studies applied Word2vec models (Skip-
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Gram or CBOW model), and four of them (Dekhtyar and Fong 2017; Gnanasekaran et al. 2021; 

Gulle et al. 2020; Rahman et al. 2019) applied Google pre-trained Word2Vec model4. 

Feature Group Feature name  Included studies 

Lexical feature 

N-gram model with raw 

count weighting 

(Carreno and Winbladh 2013; Dalpiaz et al. 2019; El Dehaibi 

et al. 2019; Deshpande et al. 2019; Dhinakaran et al. 2018; 

EzzatiKarami and Madhavji 2021; Fu et al. 2013; Gulle et al. 
2020; Guzman and Maalej 2014; Han and Moghaddam 2021; 

Haque et al. 2019; Jo and Oh 2011; Jones and Kim 2015; Joung 

and Kim 2021; Kengphanphanit and Muenchaisri 2020; 
Khelifa et al. 2018; Kurtanovic and Maalej 2017b; Liang et al. 

2017; Liu et al. 2007; Lyutov et al. 2019; Maalej et al. 2016; 

Noei et al. 2021; Polpinij and Namee 2021; Prasetyo et al. 

2012; Rashwan et al. 2013; Singh and Tucker 2017; Stone and 

Choi 2013; W. Wang et al. 2018; Zhou et al. 2020) 

N-gram model with tf-idf 

weighting 

(Al-Subaihin et al. 2016; Asif et al. 2019; Bakiu and Guzman 
2017; Barbosa et al. 2015; Canedo and Mendes 2020; 

Casamayor et al. 2009, 2010; Chen et al. 2016; Cleland-Huang 

et al. 2007; Deocadez, Harrison, and Rodriguez 2017; 
EzzatiKarami and Madhavji 2021; Falessi et al. 2010; Guzman 

et al. 2017; Haque et al. 2019; Jha and Mahmoud 2019; Jindal 

et al. 2016; Jones and Kim 2015; Ko et al. 2007; Li et al. 2018, 
2020; Lu and Liang 2017; Massey et al. 2013; Nyamawe et al. 

2019; Petcuşin et al. 2020; Rahimi et al. 2020; Stanik et al. 

2019; Tóth and Vidács 2018) 

Rule-based features  

Linguistic feature  

(Abad et al. 2017; Abualhaija et al. 2019; Dalpiaz et al. 2019; 

Halim and Siahaan 2019; Hussain et al. 2008; Kurtanovic and 

Maalej 2017b, 2017a; Li 2018; Liu et al. 2013; Ormandjieva et 
al. 2007; Parra et al. 2015; Stanik et al. 2019) 

Frequency-based statistic 
(Dalpiaz et al. 2019; Kurtanovic and Maalej 2017b, 2017a; Liu 

et al. 2013; Ormandjieva et al. 2007; Parra et al. 2015; Qi et al. 

2016; Rodeghero et al. 2017; Stanik et al. 2019) 

Sentiment-based features 
(Dalpiaz et al. 2019; Kurtanovic and Maalej 2017b; Liu et al. 

2013; Stanik et al. 2019) 

Meta-data features 
(Dalpiaz et al. 2019; Kurtanovic and Maalej 2017b; Maalej et 

al. 2016; Martens and Maalej 2019; Qi et al. 2016) 

Domain Features 
(Abualhaija et al. 2019; Hussain et al. 2008; Li 2018; Parra et 

al. 2015; Stanik et al. 2019)  

Qualitative features 
(Liu et al. 2013; Ormandjieva et al. 2007; Parra et al. 2015; Qi 

et al. 2016) 

Temporal features (Abad et al. 2017; Liu et al. 2013; Stanik et al. 2019) 

Other features  (Abad et al. 2017; Hussain et al. 2008) 

Embedding feature  

Pretrained embeddings  
(Dekhtyar and Fong 2017; Gnanasekaran et al. 2021; Gulle et 
al. 2020; Jeon et al. 2021; Petcuşin et al. 2020; Rahman et al. 

2019; Stanik et al. 2019; Zhou et al. 2020)  

Embeddings from scratch  
(Baker et al. 2019; Chen et al. 2016; Jeon et al. 2021; Navarro-

Almanza et al. 2018; Sabir et al. 2021; Winkler and Vogelsang 
2017) 

Fine-tuned pre-trained 

embeddings 
(Han and Moghaddam 2021; Sabir et al. 2021) 

Table 14. classification of textual features in the selected literature. 

 

 
4 https://code.google.com/archive/p/word2vec/ 
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Additionally, two works applied Glove vectors (Jeon et al. 2021; Petcuşin et al. 2020), and two 

reviewed papers mentioned FastText (Stanik et al., 2019; Zhou et al., 2020), and one study utilized 

three different pre-trained transformer models for a comparison experiment (Myllynen et al. 2021). 

Five works completely trained the word embedding model from beginning with UGC data (Chen 

et al., 2016; Timoshenko & Hauser, 2019), NFR corpus (Sabir et al. 2021), and requirement 

documents (Winkler and Vogelsang 2017). Moreover,  a newer model such as BERT is fined-

tuned by another selected study (Han and Moghaddam 2021).  

The detailed categorization is shown in Table 14. In the same way as text preprocessing techniques, 

the choice of features will differ from project to project, depending on various factors, such as the 

corpus, downstream algorithms, and research concerns.   

4.3.6. ML methods for requirement elicitation 

All of the selected papers employed supervised or unsupervised learning methods to tackle various 

kinds of requirements elicitation problems. Regression models were applied in three reviewed 

papers (Chen et al., 2016; Liu et al., 2013; Qi et al., 2016) to predict a helpfulness score based on 

different scenarios. For example, Liu et al. (2013) used different regression methods to evaluate 

the relativeness of Amazon reviews from the designer’s perspective, and the score ranged from -2 

(very helpless) to 2 (very helpful).  

Most of the articles used classification algorithms for classifying requirement text. Out of the 

various classification algorithms, the Naïve Bayes algorithm was the most popular model in the 

included studies. Thirty-three articles discussed and applied the Naïve Bayesian technique to 

support the requirement elicitation activities. Among them, a total of four works adopted EMNB 

algorithms to improve the performance of the NB classifier with massive unlabeled data 
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(Casamayor et al. 2009, 2010; Chen et al. 2014; Yang et al. 2019). The EMNB algorithm was first 

introduced by Nigam et al. (2000) as a semi-supervised learning algorithm combining Expectation-

Maximization (EM) and Naïve Bayes (NB). Support Vector Machine (SVM) is another popular 

conventional ML model included in 30 articles.  

Neural networks (NN), particularly Deep Learning, have been broadly used in many fields. Among 

the 20 reviewed articles that utilized neural networks, 12 studies applied Convolutional Neural 

Networks (CNN), nine works applied Feedforward Neural Networks (FNN), and five papers 

introduced Recurrent Neural Networks (RNN). Gated Recurrent Unit (GRU) (Cho et al. 2014) and 

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) are two popular RNN 

variations. GRU was introduced in two of the included studies (Rahman et al. 2019; Sabir et al. 

2021), and Long Short-term Memory (LSTM) was adopted in four studies (Gnanasekaran et al. 

2021; Kobilica et al. 2020; Rahman et al. 2019; Sabir et al. 2021). The reviewed articles also apply 

a variety of supervised ML methods, including decision tree algorithms (e.g., C4.5, J48, CART, 

LMT), logistic regression, K-Nearest Neighbors, and random forests. 

Relatively few selected studies utilized unsupervised learning algorithms compared to supervised 

learning. In contrast to supervised learning, the input to unsupervised learning is not labeled. Text 

categorization is a family of algorithms that aim to divide input data into groups so that instances 

in the same groups are closer or more relevant than instances from other groups (James et al. 2013). 

The unsupervised algorithms applied by the included studies can be further subdivided into text 

clustering and topic modeling. Five studies used clustering algorithms, and 14 studies employed 

topic modeling to uncover the hidden information in user-generated content.  
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Types  Learning algorithms Included papers  
Total 

count 

Supervised 

learning  

Naïve Bayes 

(Asif et al. 2019; Canedo and Mendes 2020; Casamayor et al. 2009, 2010; 
Chen et al. 2014; Dhinakaran et al. 2018; EzzatiKarami and Madhavji 2021; 

Guzman et al. 2017; Halim and Siahaan 2019; Haque et al. 2019; Jha and 

Mahmoud 2019; Jones and Kim 2015; Kengphanphanit and Muenchaisri 
2020; Ko et al. 2007; Kurtanovic and Maalej 2017b; Lange 2008; Li 2018; 

Li et al. 2018; Lu and Liang 2017; Lyutov et al. 2019; Maalej et al. 2016; 

Martens and Maalej 2019; Nyamawe et al. 2019; Ott 2013; Panichella et al. 
2015; Polpinij and Namee 2021; Rahimi et al. 2020; Riaz et al. 2014a; Singh 

and Tucker 2017; Taj et al. 2019; Tóth and Vidács 2018; C. Wang et al. 2018; 

Yang et al. 2019) 

33 

Support Vector 

Machine 

(Abualhaija et al. 2019; Bakiu and Guzman 2017; Canedo and Mendes 2020; 

Dalpiaz et al. 2019; Deshpande et al. 2019; Dhinakaran et al. 2018; 

EzzatiKarami and Madhavji 2021; Haque et al. 2019; Jha and Mahmoud 
2019; Jones and Kim 2015; Khelifa et al. 2018; Kobilica et al. 2020; 

Kurtanovic and Maalej 2017b, 2017a; Li 2018; Li et al. 2018; Liu et al. 2007; 

Lyutov et al. 2019; Martens and Maalej 2019; Nyamawe et al. 2019; Ott 
2013; Panichella et al. 2015; Prasetyo et al. 2012; Rahimi et al. 2020; 

Rashwan et al. 2013; Riaz et al. 2014a; Rodeghero et al. 2017; Singh and 

Tucker 2017; Stone and Choi 2013; Tóth and Vidács 2018) 

30 

Decision Tree-based 

(Abad et al. 2017; Abualhaija et al. 2019; Asif et al. 2019; EzzatiKarami and 

Madhavji 2021; Halim and Siahaan 2019; Haque et al. 2019; Hussain et al. 

2008; Jindal et al. 2016; Kobilica et al. 2020; Li 2018; Lu and Liang 2017; 
Lyutov et al. 2019; Maalej et al. 2016; Martens and Maalej 2019; 

Ormandjieva et al. 2007; Panichella et al. 2015; Parra et al. 2015; Rahimi et 

al. 2020; Singh and Tucker 2017; Taj et al. 2019; Tóth and Vidács 2018; C. 
Wang et al. 2018) 

22 

Logistic Regression 

(Abualhaija et al. 2019; Asif et al. 2019; Canedo and Mendes 2020; El 

Dehaibi et al. 2019; Dhinakaran et al. 2018; EzzatiKarami and Madhavji 

2021; Falessi et al. 2010; Kurtanovic and Maalej 2017b; Li 2018; Nyamawe 
et al. 2019; Panichella et al. 2015; Rahimi et al. 2020; Rodeghero et al. 2017; 

Tóth and Vidács 2018) 

14 

Convolutional Neural 

Network 

(Baker et al. 2019; Dekhtyar and Fong 2017; Han and Moghaddam 2021; 
Jeon et al. 2021; Kobilica et al. 2020; Navarro-Almanza et al. 2018; Rahman 

et al. 2019; Sabir et al. 2021; Stanik et al. 2019; Tamai and Anzai 2018; 

Timoshenko and Hauser 2019; Winkler and Vogelsang 2017)  

12 

Feedforward Neural 

Network (Multi-layer 

Perceptron) 

(Jeon et al. 2021; Liu et al. 2013; Lyutov et al. 2019; Martens and Maalej 

2019; Myllynen et al. 2021; Petcuşin et al. 2020; Sabir et al. 2021; Suryadi 

and Kim 2019; Tóth and Vidács 2018) 

9 

K Nearest Neighbor 
(Canedo and Mendes 2020; Haque et al. 2019; Kobilica et al. 2020; Nyamawe 

et al. 2019; Riaz et al. 2014a; Singh and Tucker 2017; Tóth and Vidács 2018; 
C. Wang et al. 2018) 

8 

Random Forest 
(Abualhaija et al. 2019; EzzatiKarami and Madhavji 2021; Martens and 

Maalej 2019; Singh and Tucker 2017; Tóth and Vidács 2018) 
5 

Recurrent Neural 

Network 
(Gnanasekaran et al. 2021; Jeon et al. 2021; Kobilica et al. 2020; Rahman et 

al. 2019; Sabir et al. 2021) 

5 

Regression (Chen et al. 2016; Liu et al. 2013; Qi et al. 2016) 3 

Unsupervised 

learning 

Topic modeling 

(Carreno and Winbladh 2013; Chen et al. 2014; Fu et al. 2013; Gulle et al. 
2020; Guzman et al. 2017; Guzman and Maalej 2014; Jo and Oh 2011; Joung 

and Kim 2021; Li et al. 2020; Massey et al. 2013; Noei et al. 2021; Tang et 

al. 2019; W. Wang et al. 2018; Zhou et al. 2020) 

13 

Clustering 
(Al-Subaihin et al. 2016; Barbosa et al. 2015; Mahmoud 2015; Suryadi and 

Kim 2019; Zhan et al. 2009) 
5 

Table 15. Learning algorithms from reviewed studies. 

For clustering algorithms, Hierarchical Agglomerative Clustering (Al-Subaihin et al. 2016; 

Mahmoud 2015), K-medoids (Barbosa et al. 2015), X-means (Suryadi and Kim 2019), and 

Frequent word sequence-based Custom clustering method (Zhan et al. 2009) is applied by the 
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included studies. Topic modeling is a probabilistic approach for discovering hidden or abstract 

topics in a collection of documents and mapping a document into topics with a probability 

distribution (Blei, Ng, and Jordan 2003). Ten studies included in this collection used the Latent 

Dirichlet Allocation (LDA) algorithm (B. Fu et al., 2013; Gulle et al., 2020; Guzman et al., 2017; 

Guzman & Maalej, 2014; Joung & Kim, 2021; J. Li et al., 2020; Massey et al., 2013; Noei et al., 

2021; W. Wang et al., 2018; Zhou et al., 2020). Four studies proposed a custom topic model based 

on LDA, such as the Sentence-LDA model, the Aspect and Sentiment Unification Model (ASUM) 

(Jo and Oh 2011), and Tag Sentiment Aspect (TSA) model (Tang et al. 2019). 

Two included works studied the UGC with the ASUM model (Carreno and Winbladh 2013; Chen 

et al. 2014). The Bi-term Topic Model (BTM) is another LDA-like model designed explicitly for 

short text topic modeling. A study compared BTM and LDA and found that BTM produced more 

informative topics than LDA on requirement extraction tasks with a short text corpus (Guzman et 

al. 2017). The detailed categorization is shown in Table 15. 

4.3.7. Model evaluation methods  

The quality of models can be reflected in the evaluation metrics, which are a set of formulas and 

units of measurement that reflect how well the learning algorithm could perform (Hossin & 

Sulaiman, 2015). The evaluation metrics are employed differently in supervised and unsupervised 

approaches due to the differences between their learning methods. Manually annotated data corpus 

for supervised ML algorithms could be utilized for training and validation purposes. Hence, 

comparing machine predictions with actual values is a simple, straightforward way to evaluate a 

supervised learning algorithm. For regression models, metrics Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) are common error functions to reflect the accuracy of regression 

methods (Chai and Draxler 2014). Both MAE and RMSE are negatively oriented, which means 
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the better the model, the lower the errors. Common metrics for classification tasks are precision, 

recall, accuracy, f-score, and Area-Under-Curve (AUC) (Chai and Draxler 2014). The precision 

(n=58), recall (n=56), and F1 score (n=49) are the most applied metrics to evaluate a supervised 

classifier by the included works. Due to the differences in data and research questions, it is difficult 

to compare the included works. 

Observing the performance of a clustering method is more complex than determining the accuracy, 

recall, or number of mistakes in a supervised classification process. There are two strategies for 

evaluating an unsupervised learning method: internal and external evaluation (Palacio-Niño and 

Berzal 2019). Internal evaluation measures the quality of an unsupervised algorithm based on its 

input data. In internal evaluation methods, the cohesion and separation of the clusters will be 

determined by the efficacy of the clustering results, as cohesion shows how closely the elements 

cluster within the same group, and separation shows how far the clusters are separated from one 

another (Palacio-Niño and Berzal 2019). Zhan et al. (2009) applied cosine similarity-based intra-

cluster and inter-cluster similarity to measure the separation and cohesiveness. In addition, another 

measure of clustering cohesion, the Silhouette score, was used by the four included studies to 

assess clustering outcomes (Abad et al. 2017; Al-Subaihin et al. 2016; Barbosa et al. 2015; 

Mahmoud 2015). Furthermore, five papers introduced perplexity, a prevalent method to evaluate 

a language model (N. Chen et al., 2014; Joung & Kim, 2021; Massey et al., 2013; W. Wang et al., 

2018; Zhou et al., 2020). 

External evaluation either compares the clustering results to a manually built truth set or evaluates 

the results manually (Palacio-Niño and Berzal 2019). The procedure is similar to the one used to 

evaluate supervised learning algorithms. The clustering results are evaluated with precision, recall, 

and F1-score (Abad et al. 2017; Carreno and Winbladh 2013; Chen et al. 2014; Guzman and Maalej 
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2014). In addition, several reviewed articles examine the performance with manual inspection  (Al-

Subaihin et al. 2016; Gulle et al. 2020; Guzman et al. 2017; Massey et al. 2013).  

4.3.8.  Tools  

Most of the included works are built upon existing open-access tools and libraries. Scikit-learn5 

and Waikato Environment for Knowledge Analysis 6  (Weka) are the two most popular ML tools 

mentioned in the included articles. The primary focus of Scikit-learn is to bring ML to non-

specialists with easily encapsulated libraries (Pedregosa et al. 2011). Seventeen works applied 

Scikit-learn to build different kinds of algorithms such as Naïve Bayes, Support Vector Machine, 

and Random Forest. Another popular tool in the reviewed articles is Weka, with 19 articles 

reporting that they applied Weka for building their solutions. Weka is a stand-alone ML tool that 

integrates a variety of cutting-edge ML algorithms (Hall et al. 2009). Both Scikit-learn and Weka 

provide ready-to-use learning algorithms and have numerous tricks for preprocessing and feature 

extraction. For example, C. Wang et al. (2018) used the StringToWordVector package from Weka 

to produce TF-IDF word vectors. In contrast, Dekhtyar & Fong (2017) applied TfidfVectorizer 

from the Scikit-learn library for the same purpose.  

For Natural Language Processing (NLP), the most popular tool is the Natural Language Toolkit 

(NLTK)7, a Python library designed specifically for human language processing (Loper and Bird 

2002). The NLTK library is applied in selected papers for numerous preprocessing and feature 

extraction tasks, such as tokenization (Rahman et al. 2019), sentiment analysis (Noei et al. 2021), 

Part-of-speech tagging (Halim and Siahaan 2019),  lemmatization (Guzman and Maalej 2014), and 

 
5 https://scikit-learn.org/stable/index.html 
6 https://www.cs.waikato.ac.nz/ml/weka/ 
7 https://www.nltk.org/ 
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stemming (Jha and Mahmoud 2019). For POS and dependency parsing tasks, tools from the 

Stanford NLP group are mentioned, such as Stanford parser, CoreNLP, and POS tagger. 

TensorFlow and its high-level wrapper Keras are the most often used neural network libraries in 

the listed studies. Furthermore, SentiStrength is the most widely applied sentiment analysis tool to 

measure sentiment information quantitatively.  

4.4.Research findings and discussion  

This review extracted the main activities in the ML-based requirements elicitation process from 

86 included articles. First, the included articles are analyzed and categorized according to the 

requirement elicitation subtasks. Subsequently, the review demonstrates the current state of the 

ML-based requirement elicitation studies through seven primary aspects: tasks, data sources, data 

preprocessing techniques, text representation techniques, learning algorithms, evaluation methods, 

and tools. Our findings from the literature review will be discussed in this section. This section is 

organized according to the order of our research questions (section 4.2.2). The articles included in 

this review are categorized according to the different perspectives on the research questions. The 

summarization of our categorization is illustrated in Figure 26.  

4.4.1. Main tasks of ML-based requirement elicitation 

RQ1. In requirement elicitation, which specific activities are supported by ML algorithms?  

After analyzing the selected 86 papers in-depth, fifteen different ML-based requirement elicitation 

tasks are identified (as Figure 27). The identified tasks can be categorized into four main categories, 

which are Preparation, Collection, Inspection, and Negotiation.  

Preparation refers to a set of activities that engineers must undertake before the elicitation of 

requirements to ensure that the process is supported by sufficient knowledge. A total of five articles 
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are proposed to extract knowledge about the design from textual documents. For example, Liu et 

al. (2007) proposed an SVM-based design knowledge acquisition framework that can collect 

research articles according to organizational design knowledge taxonomy.  

In addition, extracting user preferences, requests, and complaints from massive UGC is also 

considered a Preparation task. The ML-based text mining algorithms would be used to extract 

useful information from UGC, providing engineers with insights and knowledge about the target 

product. For example, Maalej et al. (2016) proposed a supervised method to automatically classify 

user app reviews into four predefined categories: user experience, bug report, feature quest, and 

ratings.  

 

Figure 26. An illustration of the categorization schema of the collected studies 
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Liu et al. (2013) present a regression model which enables engineers to estimate the usefulness of 

customer reviews. UGC helpfulness analysis helps determine whether users' feedback is 

constructive. However, evaluating usefulness is a subjective activity that often entails a viewpoint. 

In a data-driven approach, the annotators represent the viewpoint. This review identifies two 

perspectives including the designer-perspective (Liu et al., 2013; Qi et al., 2016) and the consumer 

perspective (Chen et al., 2016).  

Stakeholder preference (or tendency, rationale) is another activity categorized as Preparation. 

Since UGC is the cumulative contribution of users over some time, it incorporates their preferences 

and emotions about the product, product functions, and product features. For example, combining 

the LDA and sentiment analysis techniques can help engineers to explain which features of the 

product are loved by users (Guzman & Maalej, 2014; Zhou et al., 2020), and which are the most 

dissatisfied product characteristics (Fu et al. 2013). 

The second group of tasks is Collection, which includes tasks related to directly extracting 

requirements or identifying specific types of requirements from a given collection of documents. 

In selected articles, all ML-based solutions in this category are supervised methods. The first type 

of collection task is requirement identification, which refers to the activity to determine whether a 

given sentence or paragraph is a user requirement. For example, Kengphanphanit & Muenchaisri 

(2020) proposed a requirement identification framework named ARESM, which can distinguish 

whether a given text is a requirement or non-requirements.  

Requirement classification is another task in the Collection category. The objective of this task is 

to categorize the given requirements based on a certain concern. For example, Hussain et al. (2008) 

proposed a decision tree algorithm that can classify natural language requirements into functional 
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requirements (FRs) and non-functional requirements (NFRs). The NFRs/FRs classification task 

takes NFRs or FRs as input and classifies them further into fine-grained sub-categories. Cleland-

Huang et al. (2007) proposed a TF-IDF-based classification algorithm that is capable of classifying 

textual requirements into predefined NFR subcategories. For this purpose, Cleland-Huang et al. 

(2007) established a manually labeled dataset for NFR classification, which we will discuss in-

depth in the next section. 

 

Figure 27. ML-based requirement elicitation tasks. 

The last type of task identified in the Collection is security requirement identification. Riaz et al. 

(2014) trained a K-NN classifier that can automatically detect six predefined security requirement 

types from natural text documents. Two articles introduce binary classifiers for identifying security 

requirements from written requirements (Kobilica et al., 2020; Li, 2018). Jindal et al. (2016) 
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trained a decision tree to further categorize security requirements into four specific categories, 

which are authentication-authorization, access control, cryptograph-encryption, and data integrity.  

The Inspection and Negotiation could happen at any stage during a requirement engineering 

process. Inspection refers to the ML-based methods applied to inspect and assure the quality and 

validity of the requirements. The Inspection category includes equivalent requirement detection 

(Falessi et al. 2010), requirement quality support (Ormandjieva et al. 2007; Parra et al. 2015), 

requirement dependency analysis (Deshpande et al. 2019), and fake review detection (Martens and 

Maalej 2019). The Negotiation category includes activities to support resolving requirement-

related conflicts, and there are three types of tasks were identified under this category. An SVM 

classifier was used by Khelifa et al. (2018) to automatically classify users' change requests into 

functional change and technical change, thereby assisting project managers to negotiate 

requirements and make appropriate decisions. In a recent paper, Lyutov et al. (2019) presented a 

supervised learning-enabled workflow that facilitates the automatic transmission of customer 

requirements to the corresponding department to facilitate the process of requirement negotiation. 

Moreover, a machine-learning-based software refactoring recommendation method is proposed to 

assist decision-makers in deciding which major update should be applied according to customers' 

requests (Nyamawe et al. 2019).  

4.4.2. Data sources 

RQ2. Which types of data sources are being used in current works?  

Based on an in-depth analysis of included studies, we found that current studies heavily rely on 

three types of data sources: Textual Documents, User-Generated Content (UGC), and Existing 

Requirement Datasets. The detailed categorization is listed in Figure 28. The category Textual 
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Documents includes product requirement specification (RS) from actual projects (n=9), RS from 

open access online resources (n=8), user stories (Barbosa et al. 2015; Rodeghero et al. 2017), 

policy documents (Massey et al. 2013), and research publications (Liu et al., 2007).  

DePaul’s NFRs corpus is the most extensively used (n=21) Existing Requirement Datasets, which 

was originally introduced by Cleland-Huang et al. (2006). The dataset is manually labeled by 

graduate students from DePaul University into 10 NFR sub-categories and one functional 

requirements category including Availability, Look and Feel, Legal, Maintainability, Operational, 

Performance, Scalability, Security, Usability, and FRs. In total, the dataset contains 358 FRs and 

326 NFRs from 15 different RS. Follow-up studies apply the DePaul NFR dataset to build binary 

classifiers to distinguish between FR and NFR (Canedo and Mendes 2020; Hussain et al. 2008), 

or multi-class classifiers to assign requirements to finer categories (Abad et al. 2017; Rahman et 

al. 2019). 

SecReq is another publicly available requirement dataset, which was created to assist in the early 

stages of security requirement elicitation (Houmb et al. 2010). The dataset contains 3 projects, 

which are Electronic Purse, Customer Premises Network, and Global Platform Specification. 

Three projects contain 511 requirements that are tagged as security-related requirements (sec) and 

non-security-related requirements (non-sec). Three works trained and tested their data-driven 

requirement elicitation methods with SecReq corpus (Dekhtyar & Fong, 2017; Kobilica et al., 2020; 

Li, 2018). 

The PURE dataset has 79 requirement specifications including about 35,000 sentences with an 

average length of fifteen words (Ferrari et al. 2017). Unlike the previously described two datasets, 

the PURE is not labeled; rather, the authors made it open for a variety of applications. Deshpande 
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et al. (2019) studied requirement dependencies with the PURE corpus, and EzzatiKarami & 

Madhavji (2021) merged both DePaul NFR and PRUE datasets for constructing a bigger training 

set for their study. 

User-generated data (UGC) is another important source for data-driven requirements elicitation. 

Research shows that the needs of system users are hidden in rich user-generated content, such as 

user feedback, social networks, online software markets review, and product discussion forums 

(Lu and Liang 2017; Maalej et al. 2015, 2016; Perini 2018). UGC contains any forms of data 

generated by users, like numerical ratings, textual product reviews, and videos. In total, half of the 

included studies (n=43) applied UGC to build their ML-based solutions. The UGC source, includes 

mobile application platform user reviews (Apple App Store and Google Play Store), e-commerce 

user reviews (Amazon and other online retailers), social media (Twitter and Facebook), and 

crowdsourcing platforms. 

 

Figure 28. The data source for building ML-based requirement elicitation solutions. 

4.4.3. Technologies and algorithms 

This subsection answers the following three research questions. 
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RQ3. What technologies are used by selected studies? 

RQ4. What criteria are used to assess data-driven solutions? 

RQ5. What are the available tools to support ML-based requirements elicitation methodology? 

Our study identified the technical approaches and algorithms used by the included studies and 

divided them into three categories: Textual Data Cleansing and Preprocessing, Textual Features 

Extraction, and Machine Learning (ML) ( as Figure 29 shows). The ML models are evaluated by 

two strategies, which are Manual evaluation and Metrics-based evaluation. In addition, we 

categorized several open-source tools identified from the reviewed articles into two categories: 

ML tools, and NLP tools. 

Textual Data Cleansing and Preprocessing 

Twenty different techniques were identified from the included papers specifically for cleaning and 

preparing data, which we categorized under the Textual Data Cleansing and Preprocessing 

category. In addition, due to the functional features of these techniques, we further group these 

techniques into three parts: tokenization, text chunking, and text normalization.  

Tokenization is a procedure to break a given sequence of text down into smaller parts, such as 

breaking a document into sentences (sentence tokenization) or breaking a sentence into individual 

words (word tokenization). Text filtering is a group of preprocessing methods, which aim to 

eliminate redundant, erroneous, non-representative, inconsistent, and ineligible data from a text 

document. In the reviewed articles techniques include stopword removal, rare word filtering, non-

English word removing, URL removing, special character handling, empty value handling, 



81 

 

punctuation removal, emoticon handling, non-informative/irrelevant word removal, and 

inconsistent information removal are considered under this classification.  

Text normalization aims to transform a text sequence into a standard form to reduce its randomness. 

Stemming and lemmatization are the most common text normalization methods. In a document, a 

word has various forms, and some of these forms can be converted to one another by adding or 

removing the prefix or suffix (Manning et al. 2008). Stemming is a crude heuristic procedure that 

removes the tails from words to get word stems, which are the fundamental word units, such as for 

word requirements, the word stem is required (Manning et al. 2008). In comparison, lemmatization 

yields a basic dictionary form of a word. For example, the lemmatization of requirements will 

yield requirements. Case folding is another popular text normalization approach that changes all 

letters in a word into lower cases (Manning et al. 2008). In addition, slang translations, 

abbreviation translations, typo corrections, and acronym substitutes are considered text 

normalization procedures since they convert text into a more generic form.  

Textual Features Extraction 

Textual Features Extraction includes a set of techniques to convert natural text into numbers. We 

found three major textual data representation strategies from the reviewed articles: Bag-of-word, 

Rule-based, and Embedding features. The Bag-of-word considers a sequence of text as a set (or 

multi-set) of the word regardless of word order and grammar (Manning and Schütze 1999). 

Various BOW representation strategies can be found in the included works, such as using simple 

raw counts for words, a bag of bigram or trigram (Kurtanovic and Maalej 2017a), and BOW with 

TF-IDF weighting (Li et al., 2018).  
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In addition to BOW features, studies included in this review also applied rule-based handcraft 

features, such as POS n-gram (Kurtanovic and Maalej 2017b), the number of 

Noun/Verb/Adj/Adv/Modal (Hussain et al., 2008; Kurtanovic & Maalej, 2017a; Liu et al., 2013), 

frequency of POS of the keywords (Halim and Siahaan 2019), and the count of syntax sub-tree 

(Dalpiaz et al. 2019; Kurtanovic and Maalej 2017b, 2017a). In addition, textual descriptive 

statistics are also applied to represent requirements, including the number of characters 

(Abualhaija et al. 2019), word count (Kurtanovic and Maalej 2017b), sentence count (Qi et al., 

2016), paragraphs count (Parra et al. 2015), and the number of words per sentence (Ormandjieva 

et al. 2007). Furthermore, temporal features including verb tense (Stanik et al. 2019), number of 

elapsed days (Liu et al., 2013), and temporal tags, such as time, duration, and time set (Abad et al. 

2017) were used to represent the temporal information of the requirements. For UGC-based 

research, some platforms provide metadata that can be extracted to represent user comments. Meta-

data features include star ratings (Maalej et al. 2016), review count (Martens and Maalej 2019), 

and the number of links (Parra et al. 2015).   

Moreover, some studies applied document quality features to represent textual requirements, 

including the number of subjective/objective sentences in a review (Liu et al., 2013), the number 

of ambiguous expressions in a requirement (Ormandjieva et al. 2007; Parra et al. 2015), and the 

number of the sentence referring product feature appeared in a user review (Liu et al., 2013; Qi et 

al., 2016). Additionally, some articles introduce domain-specific features, such as the number of 

design terms (Parra et al. 2015) and the number of keywords from the input text (Hussain et al. 

2008; Stanik et al. 2019).  

In recent years, word embedding has gained popularity in a range of natural language processing 

applications. The selected articles used a range of embedding techniques, including Word2vec 
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(Mikolov et al. 2013), FastText (Joulin et al. 2017), Glove (Pennington et al. 2014), and BERT 

(Devlin et al. 2019) to represent words. Three strategies associated with embedding features are 

identified in the included studies: training the embedding from scratch using a pre-trained 

embedding and fine-tuning the previously trained language models. 

 

Figure 29. Technologies and algorithms. 

Machine Learning 

In this review, the learning algorithms applied by the included studies are categorized into two 

categories: supervised and unsupervised learning. Under supervised learning categories, only 

three studies have applied regression models (Chen et al., 2016; Liu et al., 2013; Qi et al., 2016). 

The regression methods can help engineers to predict a numerical value to reflect the helpfulness 
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of a given user review. The rest of the methods in supervised learning are all classification 

algorithms. Topic modeling and clustering techniques are two frequently applied Unsupervised 

Learning methods and the LDA is the most widely applied unsupervised method in the papers 

included. 

Evaluation methods 

The quality of models can be reflected in the evaluation metrics, which are a set of formulas and 

units of measurement that reflect how well the learning algorithm could perform (Hossin & 

Sulaiman, 2015). For different types of learning tasks, the evaluation methods are used differently. 

In the included studies, the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) 

are employed for regression models. Both MAE and RMSE are negatively oriented, which means 

the better the model, the lower the errors. Precision, Recall, and F1-score are most frequently 

applied for classification models. On the other hand, the unsupervised method is evaluated by two 

strategies: internal and external evaluation. The included works applied Intra and inter-cluster 

similarity (or distance), Silhouette score, and perplexity to assess the clustering results for internal 

evaluation. In the case of external evaluation, domain experts are asked to evaluate the models' 

results manually. Additionally, a truth set can be built to evaluate the clustering results, similar to 

a supervised classifier. 

Available tools 

The included studies widely mentioned two types of tools: ML tools and NLP tools. The NLP tools 

such as NLTK and CoreNLP are applied to preprocess and extract the features from the textual 

data. The most widely mentioned ML tools are Weka and Scikit-learn, which integrate multiple 

ML algorithms and quickly build a data-driven solution. Keras is a popular deep learning library 
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among the included studies, which contains the most popular neural network architectures with 

compact and straightforward APIs.  

Table 16 lists the tools mentioned in the reviewed articles, arranged by their uses. In total, seven 

types of tools are extracted: ML tools (conventional), deep learning tools, language, and topic 

model tools, multi-purpose NLP tools, sentiment analysis tools, parsing tools, and single-purpose 

tools. 

Category Sub-categories Tool name 

ML tools  

ML  WEKA, Scikit-learn, MATLAB, Classifier4J (Java) 

Deep learning  TensorFlow, Keras 

Language/topic 

model tools  

JLDADMM (Java), Stanford topic model toolbox 

(Java), Spacy (Python), Genism (Python), tm text 

mining package (R) 

NLP tools  

Multi-purpose NLP 

tools 

NLTK (Python), LingPipe (Java), koRups package (R), 

CoreNLP (Java), Stanford NLP toolkit (Java/Python), 

WordNet, koRpus statistical readability package, IBM 

Watson NLU 

Sentiment analysis 

tools 

SEMAFOR (Java), SentiStrength (Java), 

VaderSentiment (Python), Textblob 

Parsing tools MaltParser (Java), Stanford POS tagger, Stanford 

parser, Berkeley parser, Stanford temporal tagger 

Single-purpose tools  Jazzy (spell-checker), Jieba (Chinese character 

tokenizer) 

Table 16. Tools mentioned by included works. 

4.4.4. The process of building ML-based requirement elicitation  

Building an ML-based requirement elicitation method contains four major steps: study design, 

data preparation, model construction, and model implementation. The first step is to design the 

ML-based requirement elicitation study by considering two fundamental elements: identifying the 

requirement elicitation subtasks treatable with ML and analyzing available datasets related to the 

subtasks. This review identifies three major tasks that support requirement elicitation, which 

various ML algorithms can facilitate. The performance of machine learning depends on the data 

set, which should be structured following the structure of the problem. Therefore, domain 
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knowledge is crucial to structure the requirement elicitation task into simpler, repetitive, and well-

defined problems solvable with ML methods. In achieving the objective, several questions must 

be answered, such as 1) what are the inputs and outputs of the concerned ML model? and 2) what 

is the operational environment of the ML model? The answers to these questions lead to different 

study designs. For example, both requirement documents and UGC data are studied in the selected 

research. The requirement documents are stored in plain text format, and the tasks usually focus 

on requirement text classification. On the other hand, the UGC data contain additional structured 

meta-data, which describes the UGC in many aspects, such as ratings and timestamps. With these 

additional data, studies such as the prediction of usefulness associated with user reviews(Liu et al., 

2013), and analysis of user preferences on a timely basis are possible (Fu et al. 2013). In addition, 

sentiment is another reason that causes differences in requirement document analysis and UGC 

analysis. Documents describing the requirements are usually written with neutral language; 

therefore, analyzing the sentiment of each requirement may not be as significant as analyzing the 

sentiment of UGC. As a result, sentiment analysis is not applied to requirement document analysis 

tasks but is commonly used in UGC-based research.  

The second step to build an ML-based requirement elicitation method is data preparation. In this 

step, the relevant data should be sampled from available sources based on the study design, such 

as databases, social networks, app markets, and e-commerce websites. Annotations and labels are 

required for supervised learning, where domain expertise is essential. Domain experts must assess 

the quality of the datasets and guide the development of rules for annotation and labeling.  

The third step is to construct a model with the help of the conventional ML pipeline, which relies 

heavily on the understanding of machine learning and related techniques. Data cleansing, data 

preprocessing, feature extraction, model training, and model evaluation are part of this 
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phase. Though the model construction pipeline can be independent of domain knowledge for 

unsupervised learning, domain expertise is still necessary to validate and evaluate the models.  

Finally, the model implementation is an important final step to build an ML-based requirement 

elicitation. Multiple aspects must be considered, such as culture, management, security, 

development, and operation. Hence, the major challenge comes from the gap between research and 

practice.  

In summary, machine learning algorithms can assist designers in analyzing and extracting needs 

from a variety of documents provided by traditional methodologies, such as interview transcripts 

and meeting minutes. Building an ML solution for requirement engineering is a transdisciplinary 

effort involving design, computer, and implementation sciences. At this stage, the machine 

learning-based requirement elicitation can only take on a supportive role that complements 

conventional methods. Conventional requirement elicitation cannot yet be replaced entirely by 

machine learning. 

4.5. The limitations, open issues, and future works  

4.5.1. The role of ML and its limitations in the requirement elicitation 

It is important to note that eliciting requirements is not one single activity, rather it comprises 

multiple sessions and operations that work together as a whole. However, there is no very detailed 

definition or uniform approach to this stage in academia and industry. For example, Young (2004) 

suggested a twenty-eight-step requirement gathering activities checklist including planning, 

managing, collecting, reviewing, tracing, etc. Wiegers & Beatty (2013) summarizes 21 best 

practices for requirements elicitation, including defining scope, identifying stakeholders, reusing 

existing requirements, modeling the application environment, and analyzing requirements 
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feasibility. Using a single ML model cannot accomplish so many different tasks. Therefore, ML 

techniques are only able to accomplish partial tasks involved in requirement elicitation. 

Furthermore, most of the included studies are all focusing on resolving a particular task with ML, 

rather than designing a complete system that supports requirement elicitation. In this regard, most 

of the ML-based methods developed so far have a supporting or complementary role to traditional 

methods. For example, in an ML-aided requirement elicitation system, conventional methods, such 

as interviews, questionnaires, and brainstorming, are responsible for producing and collecting 

requirement-related data. ML algorithms, however, are responsible for analyzing data or 

supporting follow-up data-related activities. 

In section 4.1, we summarized 15 ML-based requirements elicitation sub-tasks from included 

studies and categorize them into four groups. However, most works were classified as  Preparation 

(n=37), and Collection (n=41) tasks. Only eight articles were identified as Validation (n=5) and 

Negotiation (n=3). One of the reasons for this is that the validation and negotiation are hard to 

articulate due to the high complexity of the tasks. For example, tasks from Negotiations require 

collaboration, discussion, and trade-offs between stakeholders from many aspects. Therefore, most 

of the challenges related to these tasks are related to background knowledge, communication, 

budgets, or other limitations imposed by the real world. As a result, it is difficult to train a machine 

learning algorithm without a well-developed dataset that incorporates all required criteria and 

information. 

4.5.2. Open issues and future works 

It is still challenging to build an ML-based solution to fully automate requirement elicitation. First, 

since requirement elicitation is a comprehensive process composed of a variety of tasks and goals, 

it is difficult to develop an end-to-end ML model to fully automate the requirement elicitation 
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process Second, requirements could come from a large variety of sources, particularly in the big 

data era. In terms of data type and format, the datasets included in the study were highly 

heterogeneous. For example, sentiment analysis may be useful when analyzing UGC data, but it 

is not valuable when analyzing neutral document data. Hence, using the model specifically 

designed for UGC, such as ASUM (Jo & Oh, 2011), cannot perform as expected on document data, 

and vice versa. Third, the ML-based requirement elicitation approach is automatic but easily 

affected by errors and failure.  Unlike rule-based systems that can be debugged and fixed locally 

in the coded knowledge body, it is difficult to directly tune the ML model when dealing with 

known errors. In addition, the interpretation of ML models is still an open challenge in academia 

and industry. For example, deep neural networks learn features automatically, which makes it more 

challenging to analyze the reasons behind ML-based solutions. Furthermore, only a few research 

considered the changing nature of the requirements. Due to the dynamic nature of the requirements, 

in practice, requirement elicitation requires engineers to identify and modify requirements based 

on the unpredictable nature of user needs (Xie et al., 2017). Besides, in terms of both content and 

type of task, the current research is monotonous. The vast majority of studies still focus on 

categorical clustering.  

To tackle these challenges, the following future research directions are suggested by the authors. 

First, although, there are growing interests and works in building ML-based requirement elicitation 

methods, there is still a vacancy for a systematic guide on how to integrate the ML-based 

components into the requirement elicitation framework. Multiple aspects of the integrated system 

should be considered, such as how humans and machines interact in requirements elicitation, what 

is the input-output of the system and each sub-system, and which specific tasks should be 

performed by machines when expert involvement is required, among others. Hence, a systematic 
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study and guidance of AI system design, engineering, implementation, and management are 

required.  

Second, there is a lack of in-depth analysis of ML-based requirement elicitation failure and errors. 

For example, research papers and projects typically rely on statistical metrics for ML model 

validation and evaluation. This type of evaluation can tell us how good or bad a model is, but 

neglects to address the question of what leads a model to perform unexpectedly. Future studies 

should address this issue by introducing methods and techniques to explore the factors that affect 

the performance of ML-based requirement elicitation.  

Third, the ML-based methods, especially deep learning models are lacking transparency. Because 

deep neural networks derive their features not from experience and knowledge, but from data, 

which is more effective but less intuitive. Since requirement elicitation is knowledge-intensive 

human-involved activity, the engineers not only expect models to solve the problems but also to 

explain them. The significance of Explainable AI (XAI) is increased along with the widespread 

adoption of deep learning methods in recent years (Xu et al., 2019). In the future, research in ML-

based engineering of requirements will also need to leverage XAI techniques and methods to 

investigate the nature of decision-related requirements. 

Forth, a broad range of NLP tasks could be incorporated into the requirements elicitation. Apart 

from text classification, many other NLP techniques can be utilized to support requirements 

elicitation, such as neural summarization, text generation, neural conversational bots, question 

asking, question answering, and text-to-speech. Due to its wide range of tasks, requirements 

elicitation provides an excellent opportunity to practice cutting-edge NLP methods. Future 

research works should try more to incorporate these methods into requirement elicitation.  As an 



91 

 

example, neural text generation technologies such as Seq2Seq(Sutskever et al., 2014), GAN 

(Goodfellow et al., 2014), and T5 Text-to-Text transformers (Matena et al., 2019) have the 

potential to produce new mock requirements based on a particular context, which may provide 

innovative data-driven ideas from a new perspective. 

Fifth, aside from natural text, use requirements also can be mined from other data formats. E-

commerce platforms, for instance, allow individuals to upload videos and pictures to share usage 

experiences, complaints, and feedback. Although techniques such as neural image description 

(Karpathy & Li, 2017; Vinyals et al., 2015), and neural video description (Yao et al., 2015) are not 

as mature as text classification techniques, they are also of great research value and can play a 

major role in requirement engineering as well.  

Sixth, due to the data-intensive nature of ML methods, more requirements related to high-quality 

text data should also be introduced. However, some interest-related requirements are requested to 

be kept confidential by the relevant stakeholders. Hence, sharing high-quality requirement data 

with the requirement engineering community is challenging. Masking sensitive data or substituting 

entities can be effective means of modifying sensitive requirements, which can facilitate the 

sharing of information within the requirement engineering community. Another strategy to address 

insufficient training data is to develop a language model specifically for requirements engineering. 

Research shows that transfer learning techniques can overcome the limitations of insufficient data 

(Howard & Ruder, 2018). Future works could also consider building neural language models that 

are specifically trained with requirement specifications.  

Seventh, since user-requirement elicitation is a human-centric activity, analyzing user behavior 

may provide valuable insight into understanding and eliciting requirements. As the study of 
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representation learning, such as user embedding, is being applied to a variety of different domains, 

including recommendation and healthcare systems (Miotto et al., 2016; Pan & Ding, 2019). 

Analyzing user behavior can help to predict user preference and explore potential requirements 

change.  

Last, future work should address the issues caused by the dynamic nature of user requirements. In 

practice, stakeholder requirements are not always static; however, in the studies reviewed, ML 

algorithms were used to read the static text to identify requirements. Further research on ML-based 

methods should be focusing on changing requirements and reducing their impact is urgently 

needed. 

4.6. Limitations of the literature review 

We used PRISMA as the research framework to identify the primary research studies in this review. 

Unlike other popular methods, such as snowballing approach, in this study, we did not exhaustively 

identify further relevant studies by iterating through the reference lists. This review chose to use 

minimum evidence to reflect the current state of ML-based requirements elicitation rather than 

providing an exhaustive result. Thus, some relevant studies may have been omitted from this 

review. In addition, there is a paradox between literature review and search query generation. 

Before a literature review is completed, it is not easy to define a set of exact keywords to represent 

the topic. Simultaneously, the absence of good search queries and keywords could defy the effort 

to retrieve relevant papers effectively. Hence, it is challenging to develop a perfect set of search 

queries at the initial stage that covers all of the aspects related to the field. To deal with these issues, 

we dynamically adjusted the search queries for seven academic databases to reduce bias and loss 

in the search results.  
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Furthermore, the inclusion and exclusion criteria may exclude work related to the topic due to its 

qualitative and subjective nature. This review provides a synthesis of recent research by 

highlighting the techniques used to develop machine learning-based solutions for requirements 

elicitation. The purpose of this review is to provide an index of success stories of ML applications 

in the field of requirements elicitation, which supports the audiences in replicating existing 

solutions or building their own. Numerous publications are excluded due to a lack of technical 

details; this does not imply that those articles are unimportant to this field. Various ideas and 

concepts may still be derived from these works. Moreover, only one of the similar works by the 

same author has been retained in the study; however, it is difficult to define a clear boundary to 

decide which work to keep. As a precaution to minimize the risks associated with inclusion-

exclusion criteria, the authors discussed and evaluated the articles through meetings in cases 

wherever it was challenging to decide individually.  

Additionally, human errors could not be avoided in the data extraction phase due to its nature of 

subjectivity (section 2.4). As Table 4 illustrated, the reviewer needs to enter two types of data 

manually. The first type of data is the descriptive data of an article, which can be accessed from 

the article database and the journal website. However, the second type of data requires reviewers 

to assess and extract information based on personal understanding. Therefore, the data extraction 

process inevitably contains a certain amount of bias and subjectivity. In addition, since requirement 

elicitation is an interdisciplinary problem, many definitions may be disputed. For example, the 

definition of the requirement, requirement elicitation, and the lifecycle and the scope of 

requirement elicitation are all defined differently by various researchers. Thus, we cannot avoid a 

certain amount of subjectivity in some interpretations, citations, and descriptions. Besides, some 

information was not explicitly stated in the reviewed articles, which led to difficulties in 
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corresponding information retrieval. To overcome this limitation, the author team iterated and 

adjusted the data extraction table before reaching a final agreement 

4.7. Related works  

To our knowledge, eight existing review articles, as shown in Table 17, are relevant to our study. 

Meth et al. (2013) conducted a review mainly focused on the automated approach applied for 

requirement elicitation, mainly focusing on the degree of the automation of proposed approaches. 

Binkhonain & Zhao (2019) introduced ML algorithms in the requirement elicitation domain by 

dividing the 24 related articles into three sections: NLP techniques, ML algorithms, and evaluation. 

Perez-Verdejo et al. (2020) applied topic models and visualization techniques to analyze ML-based 

requirement classification articles. Wong et al. (2017) identified various software requirement 

elicitation methods, including manual, rule-based, and machine-learning-based approaches. 

Shabestari et al. (2019) proposed a systematic literature review that covers early product 

development phases, including various activities such as requirement elicitation, requirement 

identification, and requirement categorization. Similarly,  Sampada et al. (2020) focus on the early 

requirement phases but are more concerned with requirement elicitation and documentation. 

Ahmad et al. (2020) reviewed a collection of articles for identifying requirements for Q&A 

platforms.  

Among the existing studies, one existing work proposed by Lim et al. (2021) is the closest to our 

research, which was conducted almost concurrently with ours. Both works aim to introduce the 

current state of the works in data-driven requirement elicitation; however, the focuses of the two 

works are different. Lim et al. (2021) focus more on data sources, data types, learning techniques, 

and the degree of automation. In comparison, the present review focuses more on technical aspects. 
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Our work aims to provide a comprehensive overview of current work and include a more detailed 

investigation into the existing methods, algorithms, and tools. This review could provide a more 

practical guide to requirement elicitation researchers, data engineers, and designers to leverage the 

existing techniques in their projects. 

Title  
Works 

(#) 
Structure 

Included 

latest work  
Focus 

The state of the art in 

automated requirements 

elicitation 

36 Conceptual 2010 The automated approach in requirement 

elicitation; degree of automation; 

knowledge reuse; evaluation; and the 

relationship between the included 

works. 

A systematic literature 

review about software 

requirements elicitation 

42 Conceptual 2014 Level of automation; knowledge reuse; 

the importance of human factors; 

collaborative approach; and types of 

projects. 

A review of ML algorithms 

for identification and 

classification of non-

functional requirements 

24 Methodologic

al 

2017 ML algorithms for non-function 

requirements 

identification/classification 

A survey on the applications 

of ML in the early phases of 

product development 

40 Conceptual 2018 ML in requirements, modeling, and 

concept design. 

A Systematic Literature 

Review on Using ML 

Algorithms for Software 

Requirements Identification 

on Stack Overflow 

12 Methodologic

al 

2018 The ML and NLP techniques were 

applied for the requirement 

identification task on Stack overflow 

data. 

A review on advanced 

techniques of requirement 

elicitation and specification 

in software development 

stages 

13 

 

Methodologic

al 

2019 Introduced the application of NLP 

techniques and ML algorithms in 

requirement elicitation and specification 

activities.  

A systematic literature 

review on ML for automated 

requirements classification 

13 Methodologic

al 

2019 The ML algorithms are used in 

requirement classification tasks. 

Data-Driven Requirements 

Elicitation: A Systematic 

Literature Review 

68 Methodologic

al 

2020 Data; ML techniques; evaluation 

methods; degree of automation in 

requirement elicitation.  

Proposed study 86 Methodologic

al 

- Data; ML-based requirement elicitation 

subtasks; textual requirements 

techniques; feature extraction 

techniques; learning algorithms, 

process; and tools in requirement 

elicitation. 

Table 17. Related works. 
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4.8. Conclusions  

The review provides an overview of the current research on machine learning-based requirements 

elicitation. First, we categorized the included studies into four ML-based requirement elicitation 

tasks: Preparation, Collection, Validation, and Negotiation. Second, we examined the data sources 

and corpora used by the included studies to develop machine learning models for requirements 

elicitation. As a result, we identified three types of data sources for building ML solutions, which 

are  Textual Documents, User-Generated Content (UGC), and Existing Requirement Datasets. 

Third, in this review, general ML pipelines are extracted from the included studies: text cleansing 

and preprocessing, textual feature extraction, machine learning, and evaluation. Further, we 

identified nineteen tasks among the selected works and assigned them to three types of text 

cleaning and preprocessing groups: filtering, normalizing, and tokenizing. For the text feature 

extraction part, we classified the included works into three groups according to the technique used 

to extract the features. BOW language models and handcrafted features are frequently found in 

reviewed publications, but in recent years, an increasing trend towards using embedding features 

has been observed. In addition, we discovered the most popular algorithms, such as Naive Bayes, 

Support Vector Machines, Decision Trees, and Neural Networks in this review. Precision, Recall, 

and F1-score are the most prevalent evaluation metrics applied to assess model performance. 

Finally, we listed the most popular NLP tools, which are NLTK and CoreNLP, and the most 

commonly applied machine learning tools, Weka and Scikit-learn.  

Apart from the main findings, one major observation is that most research focuses on requirements 

categorization tasks. There is a notable majority of papers in the collection that are focused on 

supervised text classification, followed by topic modeling and clustering techniques. Second, we 

noticed that the existing articles are more focused on using machine learning to solve specific and 
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fine-grained problems in requirements elicitation, such as classifying NFRs and extracting main 

topics from massive user reviews. It has, however, been relatively rare for research to examine 

how to integrate machine learning-based requirements acquisition methods into existing 

requirements elicitation workflows. Hence, the lack of expertise in designing, engineering, 

implementing, and configuring ML-based requirement elicitation systems calls for further research. 

Furthermore, most studies lack concrete evidence that machine learning can assist designers and 

engineers in reducing time and effort in requirement extraction. Last, although supervised learning 

is prevalent in this field, we have found only two publicly accessible labeled datasets from the 86 

reviewed papers: DePaul’s NFRs dataset (Cleland-Huang et al., 2006) and SecReq (Knauss et al., 

2011).  

Thus far, ML-based solutions have been monolithic in eliciting requirements; however, the 

publications in this field provide sufficient evidence that machine learning can support 

requirements activities both theoretically and practically. Some labor-intensive, error-prone 

activities from requirement engineering are waiting to be supported by ML. Despite what has 

already been accomplished, the best is yet to come. 
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Appendix. The list of included works 

ID Reference of included works 

S01 
*Abad, Z. S. H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., & Schneider, K. (2017). What Works Better? A Study of Classifying 
Requirements. Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017, 1, 496–501. 

https://doi.org/10.1109/RE.2017.36 

S02 
*Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L. C., & Vaz, E. (2019). A machine learning-based approach for demarcating 
requirements in textual specifications. Proceedings of the IEEE International Conference on Requirements Engineering, 2019-

Septe, 51–62. https://doi.org/10.1109/RE.2019.00017 

S03 

*Al-Subaihin, A. A., Sarro, F., Black, S., Capra, L., Harman, M., Jia, Y., & Zhang, Y. (2016). Clustering Mobile Apps Based 
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Chapter 5. A data-driven qualitative 

data analysis framework 

5.1. Introduction 

Health data frequently consist of written statements, responses, and reports and require word-by-

word or line-by-line analysis, which is a time-consuming and skilled process of sense-making. 

Text-based analysis of health data refers to the process of studying and analyzing qualitative text 

data (Guetterman et al. 2018), which includes written text derived from open-ended surveys, 

patient complaints, discussions, discourses, dialogues, and interviews (Lacity and Janson 1994). 

Technological advances such as emails, text messages, comments, and the increasing use of 

electronic records and reports present a plethora of text-based digital data that may remain 

unattended or under-utilized. Text-based digital data and its analysis provide an opportunity for 

health care professionals to engage with patients in real-time dialogue-based communication, 

which has the potential to expedite assessing health concerns and providing prompt health 

recommendations (Elbattah et al. 2021). 

Traditionally, text-based data analysis is a time-consuming process carried forward manually by 

qualitative researchers. Artificial Intelligence (AI)-based text analysis, often referred to as natural 

language processing (NLP) and machine learning (ML), demonstrates capabilities of the 

automated process of textual data analysis by deriving meaningful inferences from patient 

interviews (Rustan and Hasriani 2020) and patient authored textual data (Dreisbach et al. 2019). 
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Applying AI-based methods to assist text-based health data analysis can reduce the analytic 

workload of qualitative researchers and produce instant results, which empower real-time 

dialogue-based communication between healthcare providers and patients (Chen et al. 2018). 

This study explored the use of AI-based algorithms in automating qualitative text-based data 

analysis to reduce the workloads of analysts. The objective of the study is to 1) present a framework 

empowered by AI-based methods to analyze interview transcripts and 2) evaluate the usability of 

the presented framework and its methods by comparing the results of manually analyzed findings 

of the same text. 

In this study, we aim to combine text mining technology with qualitative research methods to 

reduce qualitative researchers’ workload by providing automated time-saving analytic support to 

various coding procedures, qualitative decision-making processes, and summative outputs. The 

purpose framework takes raw interview transcripts as input and extracts key themes from large 

amounts of text.  

The rest of the chapter is structured as follows: 5.2 reports the research data and related study 

design; section 5.3 illustrate our case study and the final results;  section 5.4 provides the discussion 

and lesson we learned from this study; section 5.5 points out the potential issue and limitation that 

we encountered, and the section 5.6 is the conclusion. 

5.2. Study design  

5.2.1.  Research data 

Seven shopping mall managers’ in-depth interview transcripts from a previous study served as 

qualitative data for this study. The interviews were originally conducted in 2019-2020 to explore 

mall managers' barriers and facilitators in developing and implementing mall walk programs in 
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Alberta, Canada. All the interviews were conducted in the English language, recorded digitally, 

and transcribed verbatim after each participant provided written consent based on ethical approval 

from the Conjoint Health Research Ethics Board (CHREB) at the University of Calgary. 

The interview questions were focused on understanding mall managers' perspectives on what 

would help or hinder them in leading or supporting mall walk programs. Yet, the questions and 

their responses were non-standardized and frequently changed during the conversations and 

between the interviews thereby, generating unstructured text-based data. In total, there are 

seventeen questions are prepared for the interview including six types of major research interest 

from the interviewers, which are the mall manager’s role, location of the mall, mall’s business, 

the community of the mall, the mall manager’s interests in developing an in-mall physical program, 

and sustainable long-term activity support from the mall manager. 

There were seven different mall managers interviewed, with recordings being further transcribed 

by professional transcriptionists into plain text. In the interview transcripts, there are an average 

of 31 rounds of conversation.  

5.2.2.  Study framework 

The coding process involves inductive reasoning, where the qualitative researcher needs to read 

the data line by line and assign a code to each chunk of words. The nature of coding is to identify 

concepts, and similarities in the data (Chun Tie, Birks, and Francis 2019). However, working with 

large amounts of data can be challenging for qualitative researchers in terms of concept extraction, 

comparative and contrastive analysis, and coding. This article proposes a framework (as Figure 30) 

that will assist qualitative researchers in the initial coding stage of grounded theory in healthcare 

research. The input for the proposed framework consists of plain text transcripts of the interviews, 
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while the output is a summary of key themes derived from the interview transcripts. The 

framework contains five major steps, which are 1) data preprocessing; 2) feature extraction; 3) text 

clustering; 4) keyword extraction; and 5) interpreting. Raw interview transcripts provide the input 

into the framework, and the outputs are the main topics identified from the given qualitative data. 

 

Figure 30. The proposed framework for qualitative coding. 

i) Data cleaning and preprocessing 

Data cleaning is a general approach that simply inspects samples from the given dataset and 

decides which information should be kept and which information should be omitted. The text data 

preprocessing is to prepare the text document into a more digestible form for the following tasks. 

The input of this step is multiple interview transcripts that are written in plain text, and the output 

is cleaned and normalized sentences. A raw interview transcript follows a standard interview flow 

that contains a set of questions from the interviewer and the corresponding answers from the 

interviewee (Figure 31). Each turn/answer is composed of one or multiple sentences. The study 

framework analysis the answers from the interviewee in sentence granularity. Hence the output of 

the preprocessing step needs to be a set of cleaned individual sentences. In our study, the 
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preprocessing step includes data cleaning, special character and marks removal, sentence 

segmentation, contraction mapping, case folding, and tokenization. 

 

Figure 31. Sample of the interview transcript. 

ii) Feature extraction 

We extracted used both embedding features and TF-IDF features for text clustering and concept 

extraction algorithms. The pre-trained Sentence-BERT (SBERT) model (Reimers and Gurevych 

2020) from Sentence-Transformer8is a modification of the pre-trained-BERT model. With the pre-

trained SBERT model, each sentence is represented with a 784-dimensional dense vector, and in 

this article, this feature will be referred to as sentence embeddings. The sentence embeddings will 

be input into the downstream clustering algorithms to extract semantically related sentence groups.  

iii) Custom key concept extraction algorithms 

 
8 https://www.sbert.net/ 
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The ultimate goal of this study is to extract core concepts or themes from the given interview 

transcript. Hence, the goal of text clustering algorithms is to detect major clusters from the 

documents. A cosine similarity-based algorithm was built to extract major groups from the given 

files (Algorithm 1). Cosine similarity can reflect how close two given vectors are by measuring 

angles between two vectors. The cosine similarity between two vectors A and B can be illustrated 

as formula (1). The detailed algorithm’s implementation is described as Algorithm 1 below. The 

algorithm takes sentence embeddings as input and extracts the most coherent groups according to 

the rank of the cosine scores. There is only one hyperparameter required, which is the group size 

to indicate how many sentences we want in each cluster.  

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

      (1) 

For a large amount of qualitative data analysis, even if similar sentences are grouped, it is still a 

huge amount of work to read the sentences in each cluster line by line to understand the meaning 

of each cluster. To reduce the workload of experts reviewing the transcripts of each cluster, the 

proposed framework contains a keyword extraction algorithm that can extract keywords according 

to their occurrence. Using a list of keywords to represent each cluster can support experts to 

navigate the scope and domain of the cluster. 

Using the sentence clustering algorithm, the semantically related sentences are grouped. The next 

concern is to extract several most representative words and phrases to represent each group. A TF-

IDF-based key concept extractor has been developed which can simply extract words and phrases 

with a high TF-IDF score. The higher the TF-IDF score means the more representative the given 
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document (Jurafsky and Martin 2018). Top-n keywords are selected to represent each cluster, and 

in our experiment, we choose 5 keywords for each category 

iv) Interpreting  

From the previous step, there are several clusters, and keywords are extracted. With the help of 

sentence clusters and keywords, in this step, the qualitative researcher can manually assign topics 

to each cluster. 

Input E ← Embeddings; T ← threshold; M ← group size; N ← Number of sentences 

Output unique_clusters: Clustered sentences 

Initialize 

Let similarity_scores be an N×N Matrix.  

Let desceding_scores, and desceding_index be N×M Matrices.  

Let clusters, unique_sentence, and unique_clusters be empty lists;  

1 for i = 1 to N do 

2         for j = 1 to N do 

3                 similarity_scores[i][j] ← cosine_similarity(E[i], E[j]) 

4 for k = 1 to N do 

5         desceding_scores[k],  desceding_index[k] ← rank(similarity_scores[k])[: M] 

6          if last element of desceding_scores[k] ≥ T  

7                 clusters.add(desceding_index[k]) 

8 for c = 1 to length(clusters) do 

9         add ← Ture 

10         for s = 1 to length(clusters[c]) do 

11                 if s in unique_sentence 

12                         add ← False 

13         if add is True: 

14                for s = 1 to length(clusters[c]) do 

15                        unique_sentence.add(clusters[c][s]) 

16                  unique_clusters.add(clusters[c]) 

      Algorithm 1. Cluster detection algorithms 

5.3.  Experiment result  

5.3.1. Data cleaning and preprocessing 

a) Data cleaning 

The interview data are stored in seven spreadsheet files (.xlsx format). First, after merging all the 

files into one document, the empty turns are removed from the transcript. In the interview transcript, 
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some turns only contain questions without any answers. In such a case we simply removed the turn 

from the transcript. The second step was to extract each interview turn from seven interview 

transcripts and store it as a CSV file. Each turn corresponds to one question and one answer. Next, 

we removed special characters from the dataset, such as escape characters and tags that are used 

to indicate the role of the speaker. In our case study, there are two types of special conditions 

required to handle. First, the transcriptionist added special tags starting with “I” or “P” before the 

interview question and answers, where “I” specifies the given content is from an interviewer, and 

“P” indicates the turn is from an interviewee. Second, due to the anonymity requirement, the 

identifiable details are masked in the interview transcript. For example, the name of a mall is 

masked as “[name of the mall]”.  We applied a series of regular expression and dictionary-based 

algorithms to remove these special characters and mapped the identity mask to a regular format. 

Such as the text  “P1: Yeah.  So I'm the marketing manager here at [name of the mall]” would be 

mapped to “Yeah. So I'm the marketing manager here at the mall”. 

5.3.2. Text preprocessing 

Each turn is composed of one or multiple sentences. Based on our initial exploratory analysis, we 

decided to study at a sentence level. Sentence tokenization is a special case of text segmentation 

that refers to a technique to divide the written text into sentences (Manning and Hinrich Schütze 

1999). After the sentence tokenization, there are a total of 2601 individual sentences in the 

transcript, with an average word count of 15, where the maximum word count is 84 and the 

minimum word count is only one, such as "sure", "yes" or "no". Word counts in most sentences 

are ranged from eight to thirteen words, and there are only 2.2% of sentences are containing more 

than forty-one words (Figure 32). In the initial analysis of the data, we decided to filter out 
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sentences with fewer than three words and more than forty words. After removal, there are in total 

of 2284 sentences left for the experiment. 

 

Figure 32. The frequencies of words count. 

In addition, we applied several text normalization techniques to reduce the randomness, reduce the 

dictionary size, and increase the frequencies of certain terms. First, we built a dictionary-based 

algorithm to map most frequently appeared contractions into complete forms, such as “It’s” to “It 

is”, “I’d” to “I would”, and “we’ll” to “we will”. Second, we applied case folding a text-

normalization task, that simply converts uppercases into lower cases. Third, we run 

WordNetLemmatizer from (Natural Language Toolkit) NLTK9 to lemmatize each word into its 

dictionary form. For instance, “walking”, “walked”, and “walks” become “walk” after 

lemmatization.  

5.3.3. Feature extraction 

The bidirectional transformers for language understanding (BERT) are regarded as one of the most 

significant milestones in the NLP community in recent years. BERT achieved the best results with 

eleven downstream tasks in NLP, and soon became the most widely used pre-trained language 

 
9 https://www.nltk.org/ 
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model in the field (Devlin et al. 2019). In this case study, we used a pre-trained language model as 

a feature extractor, which takes plain text as input and generates corresponding 768 embeddings 

as output. The CLS token appears at the beginning of each sentence and stands for sentence-level 

classification task (Devlin et al. 2019). The output related to the CLS token is Hcls embedding, 

which contains all the information from all the other words. Hence, the 768-dimensional Hcls 

embeddings can represent the whole meaning of the sentence, which can be used as sentence 

embedding (Devlin et al. 2019). However, according to Reimers & Gurevych (2020) directly using 

CLS from BERT output has a relatively lower performance compared to the average pooling of 

the BERT embeddings. Hence, instead of directly applying CLS embeddings, we decided to use 

the average value of each word embedding. 

To extract sentence embeddings, we first applied the Tokenizer10 methods from the Hugging 

Face11 library to complete multiple tasks to prepare the input for the following works. In addition, 

we adopted the pre-trained language model from Sentence-Transformers12, which is specifically 

tuned for sentence-level text to get a more meaningful representation of each sentence (Song et al. 

2020).  

 

Figure 33. The inputs and outputs of BERT architecture. 

 
10 https://huggingface.co/transformers/main_classes/tokenizer.html 
11 https://huggingface.co/ 
12 https://www.sbert.net/docs/publications.html 
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5.3.4. Cluster detection and Keywords extraction  

The simple cluster detection algorithm we introduce in section 5.3.2. requires two hyperparameters, 

which are cosine similarity threshold, and minimum group size. The cosine similarity threshold 

indicates the minimum similarity that two sentences are considered as the same group. In addition, 

the minimum group size is another threshold that decides how big a group can be considered a 

cluster. The goal of this framework is to identify core themes from interviews, rather than grouping 

all semantically similar sentences into the same group.  

The clustering algorithms take feature vectors of the sentences from the previous step as input and 

group the vectors according to semantic similarity. If the cosine similarity score is greater than the 

hyperparameter "similarity threshold", the two sentences are considered to belong to the same 

group, and a group is identified as a cluster when the number of sentences it contains exceeds the 

"minimum group size". 

Once the clusters and their containing sentences are identified, the next step is to extract key 

concepts to represent the topic. The qualitative researcher can easily explain the key themes of 

each cluster using the key concepts obtained from each cluster. The key concepts extraction 

framework is an iterative human-in-loop procedure, which requires the expert with domain 

knowledge to evaluate the output and adjust the hyperparameter accordingly.  

In our experiment, we set the cosine similarity threshold as 0.6, and the minimum group size as 

15. As a result, the cluster detection algorithm returns 15 clusters. After we applied the keyword 

extraction algorithm, five keywords were generated for each cluster to explain its core themes. The 

extracted keywords are in Table 18 to Table 20. 
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Table 18. The experiment's results. 

 

 

 

 

 

Table 19. The experiment's results (Cont). 

 

 

 

 

 

Table 20. The experiment's results (Cont). 

As the result, a total of eight themes are extracted through the framework, which are “Community”, 

“Retail”, “Accessibility”, “Mall-walk”, “Shopping center”, “Mall manager”, “Event”, and 

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Keywords • Community 

• Business 

goal 

• Well 

established 

community 

• Marketing 

team 

• Surrounding 

community  

• Retailer 

• Marketing 

• Store 

• Partnered 

• Department 

• Accessibility 

• Location 

• Community 

• City 

• Come here 

• Walking 

• Program 

• Walking 

program 

• Started 

walk 

• Shopping 

center 

 

• Support 

community 

• Partnership 

• Closely 

• Work close 

• Charity 

•  

• Responsibilities 

• Manager 

• Marketing 

manager 

• Property 

manager 

• Leasing 

manager 

Expert’s 

interpretation 

Connecting 

community  

Retail and 

business 

Accessibility Walk 

program 

Support 

community 

Mall manager 

Cluster Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12 

Keywords • Event 

• Time 

• Here 

• Strategy 

• Lull 

•  

• Yoga 

• Pilates 

• yoga class 

• Zumba 

• Instructor 

•  

• Shopping 

center 

• Mall situated 

• C train 

• Across street 

• Community 

surrounding 

• Big 

liability 

• Managers 

• Security 

problem  

• Senior 

Overseeing 

• Diverse 

• Different 

• Awesome 

• City 

• Culture 

• Physical 

• Physical 

activity 

• Activity 

• Activity just 

• Gym 

Expert’s 

interpretation 

Events and 

activities 

Fitness class Mall location 

and transit 

Liability and 

security 

Cultural 

diversity 

Physical activity 

 

Cluster Cluster 13 Cluster 14 Cluster 15 

Keywords • Charity 

• Work 

• Community 

• Nonprofit 

organization 

• Library 

• Marketing 

• Medium 

• Insta 

famous 

• Social 

medium 

• leasing 

•  

• Dog 

community 

• Bring dog 

• Trick or treat 

• Certain event 

• Friendly 

Expert’s 

interpretation 

Cluster 13 Cluster 14 Cluster 15 
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“Fitness”. As we introduced in section 5.2.1, in designing the interview questions, the researcher 

deliberately chose the following six topics as the main interview content (as Table 21).  

Research interest from human experts Related theme extracted  

Mall manager’s role  Mall Manager (cluster 6) 

Location of the mall Location and accessibility (Cluster 3), mall location 

and transit (cluster 9) 

Mall’s Business  Business goal connecting community (cluster 1), 

retail, and business (cluster 2),  

Mall & Community Location and accessibility (Cluster 3), support 

community (cluster 5), charity and NGO (cluster 13) 

In-mall physical program Walk program (cluster 4), events and activities (cluster 

7), fitness class (cluster 8), physical activities (cluster 

12) 

Sustainable long-term activity support from the 

mall manager 
Walk program (cluster 4), events and activities (cluster 

7), fitness class (cluster 8), physical activities (cluster 

12) 

Table 21. The comparison between research interests and extracted themes. 

5.4.  Discussion 

With the development of artificial intelligence, the most tedious procedures in healthcare 

qualitative text analysis tasks can be partially replaced or supported by machines. However, the 

nature of qualitative research never changes, and human experts are still needed to observe and 

feel the subject’s thoughts, tendencies, feelings, and emotions about a particular topic, theme, or 

even a word. So, do machine learnings and artificial intelligence have a place in qualitative 

research? The answer is positive. We believe that AI techniques can support healthcare qualitative 

research in the following aspects. First, ML and AI techniques can aid qualitative research in the 

preparation stage. As an example, neural question generation technology has a great deal of 

potential to assist qualitative researchers in the preparation of interview questions (Zhou et al. 

2018). In addition, the machine learning methods can capture the interviewee's mood and attitude 
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through the analysis of video, voice, and notes during an interview, which can be used as an 

important reference for qualitative analysis (Fan et al. 2016; Raschka and Mirjalili 2019; Schuller 

and Schuller 2021). Third, as the framework proposed by this article, ML and AI technologies can 

help healthcare researchers with coding when analyzing qualitative data, as well as with topic 

generation. 

Qualitative research related to healthcare is a complex activity involving multiple steps and details 

(Chapman, Hadfield, and Chapman 2015). However, the above-mentioned ML and AI solutions 

can only support one or a few tasks in qualitative research. Furthermore, deep learning is notorious 

for its computational complexity, so it is impractical to use multiple neural network-based 

approaches in one qualitative research. Hence, research and studying how to integrate ML 

solutions and design a high-quality qualitative research support system in the healthcare domain 

is essential.  

5.5. Limitations and future works 

Several limitations can be found in this study, which we perceive can be resolved with further 

investigation of methodological development. The first limitation comes from pre-trained 

contextualized word representation. The selected word embedding method is pre-trained for the 

general-purpose down streaming task. However, due to the insufficient amount of qualitative data 

available for this study, we did not apply any fine-tuning procedure for domain adaptation. 

Although the clustering results are informative and intuitive, the performance could be better with 

customized fine-tuning. The second limitation comes from the evaluation of the purposed method. 

Since clustering methods lack labels, there is no standard method for evaluating them. Several 

measures have been proposed for calculating the goodness of text clustering, including manual 
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evaluation of results and extrinsic evaluation, which are applicable for most cases (Chang et al., 

2009; Wallach et al., 2009). Nevertheless, manual analysis of clustering results would add to the 

qualitative researchers' workload and consume more time, which is contrary to the purpose of this 

study. To close such a gap, future works should include an interactive visualization user interface 

and a well-designed system to aid researchers in adjusting the hyperparameters (similarity 

threshold, and minimum group size) and interpreting the results.  

Moreover, unlike conventional text clustering algorithms, the proposed work detects potential 

themes from the qualitative narrative text, rather than allocating all the data to different clusters. 

As a result, at this stage, the method cannot automatically code or suggest codes to qualitative 

researchers. Supervised text classification could be a solution for auto-coding.  Since the topics 

are extracted, these extracted topics can work as supervised labels for text classification tasks. Due 

to the characteristic of qualitative coding, transfer learning, and few-shot text classification has a 

vast potential for qualitative healthcare research coding (Geng et al., 2020; Howard & Ruder, 2018; 

Yogatama et al., 2017).  

Furthermore, as we discussed RQ3 in section 5, the textual data analysis and mining in health 

research contain various sub-categories, such as clinical research,  epidemiological research, and 

health promotion research described in this chapter. As a result, there is a great deal of 

heterogeneity in the data from different medical studies; therefore, understanding the textual data, 

and deciding which pre-trained LM should be applied is important. One of the future directions is 

to introduce new algorithms to examine research datasets to determine whether generic pre-trained 

models or domain-specific models are better suited to the research dataset.  
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Last, qualitative research related to healthcare is a complex activity involving multiple steps and 

details (Chapman et al., 2015). However, ML and AI solutions can only support one or a few tasks 

in qualitative research. Since deep learning is notorious for its computational complexity, it is 

impractical to use multiple neural network-based approaches in one qualitative research. Therefore, 

integrating ML solutions and designing a qualitative research support system to support health 

care research is crucial. 

5.6. Conclusion 

In this chapter, we first examined interview transcripts from a real-world health promotion project 

in Alberta, Canada, which included seven interviews between healthcare researchers and mall 

managers. In our analysis, the terms used in the interview transcripts are relatively generic, which 

is not surprising given the fact that most interviewees do not have the necessary healthcare 

expertise to participate in these projects. Hence, based on the characteristic of our data, we applied 

pre-trained BERT, which was trained with general articles. With the BERT model, the embeddings 

containing sentence information can be extracted to represent each sentence. Then, a Cosine 

similarity score-based cluster detection algorithm is introduced to identify important themes that 

occur frequently. The degree of similarity and frequency of occurrence are controlled by two 

hyperparameters of the algorithm as thresholds. As a result, the method extracted twelve mutually 

exclusive groups. Based on the extracted groups, we applied a TF-IDF score-based keyword (or 

phrase)  extraction algorithm to extract candidate themes, which are the most representative terms 

to represent each group. The healthcare researchers can easily assign a final theme based on the 

extracted candidate themes. The extracted themes cover all of the topics that healthcare specialists 

are interested in while designing the interview questions. The experiment results met the objective 

of using AI to support qualitative research, particularly when dealing with large amounts of data. 
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It is also useful to aid qualitative researchers in expediting their theorizing process by reducing the 

analytic workload. 

To conclude, AI-based technologies such as the combination of contextualized text representation 

techniques, clustering methods, and keyword extraction methods can help qualitative researchers 

by initiating summative topics on large text documents. The proposed AI-based candidate theme 

extraction method is significantly effective for analyzing text-based data at the level of line-by-

line initial coding and their categorization in focused coding. However, due to ethical and legal 

considerations, AI should provide sufficient support through recommendations and proposals, 

rather than making any decisions in human-related research.  
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Chapter 6. A Design Science Enabled 

Project-Specific Semantic Networks 

Construction Framework  

6.1. Introduction 

Design is a knowledge-intensive activity, which usually involves knowledge from more than one 

discipline. The nature of the design is to select and integrate atomic knowledge from a finite set of 

knowledge sources to build candidate design solutions and use principles from design science to 

select the best design solution to satisfy the design problem (Yong, 2011b). Thus, an understanding 

of the meaning of concepts is necessary to use, represent, manage, infer, and reason design 

knowledge.  

Engineering design knowledge is a compound knowledge that is closely connected with various 

domains such as engineering, business, aesthetics, healthcare, etc. (Tatlisu & Kaya, 2017). The 

compound characteristic of the knowledge brings challenges for communication, collaboration, 

and knowledge sharing between stakeholders from different backgrounds. Further, the tacit nature 

of design knowledge introduces a further barrier to engineering design (Wong & Radcliffe, 2000). 

As a result, designers need to frequently search for information to quickly acquire the knowledge 

needed for their projects. Graph-based knowledge such as knowledge graphs and semantic 

networks have a great research value in this regard because they can be used to model, organize, 

infer, and visualize knowledge (Yoshioka et al., 1998). 
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A knowledge graph refers to a large network that represents concepts and relationships between 

them in a linked data structure (Ehrlinger & Wöß, 2016; Fensel et al., 2020). The linked data 

structure connects concepts in the same context, which facilitate knowledge and information 

integration, and generate explicit knowledge representation for both human and machine. The term 

Knowledge Graph has received considerable attention since it was introduced by Google as part 

of the Search Engine Optimization (SEO) solution (Singhal, 2012). In recent years, this type of 

approach is widely valued in knowledge-focused fields, such as healthcare, education, ICT, 

chemistry, biology, engineering, etc. (Abu-Salih, 2021).  Research from the engineering design 

field has also been successful in yielding noticeable achievements on various knowledge graph-

related tasks (Han et al., 2022). 

With the development of different research fields, domain-specific terms, concepts, and keywords 

arise, and these terms, acronyms, and jargons become part of the engineering design knowledge 

barrier since its multidisciplinary characteristic. To close the gap by automated acquisition and 

modeling of lexical design knowledge, semantic networks are widely adopted by the engineering 

design domain in recent years (Geum & Park, 2016; He et al., 2019; Sarica et al., 2019, 2020). A 

semantic network is a lexical knowledge graph in which every node represents a word, and each 

node represents a specific semantic connection between linked two nodes (Hu & Liu, 2004). The 

notion of semantic networks is not new to the field of computer science. The construction of a 

semantic network requires intensive expert involvement, which is costly and time-consuming.  

We describe a novel approach RomNet for building engineering design semantic networks that are 

intended to be used for retrieval of design information, key phrase extraction, and various text-

related down-streaming tasks. Our semantic network construction approach is based on several 

key techniques including Environment-Based Design (EBD), a design science text modeling 
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technology known as Recursive Object Modelling (ROM), and Neural Network Language Model 

(NNML) (Bojanowski et al., 2017; Zeng, 2008, 2020). The proposed approach contains 3 main 

modules which are: 1) Environment analysis; 2) Data collection; 3)  RomNet construction.  

The rest of the chapter is structured as follows: Section 6.2 introduces the related works and 

theoretical background of the proposed study; Section 6.3 describes the proposed approach; 

Section 6.4 demonstrates a case study with the proposed framework, and last, section 6.5 is a 

conclusion. 

6.2. Related works 

6.2.1. Design knowledge modeling 

Design knowledge formalization, modeling, and representation are an ongoing research hotspot 

during the past few decades. For design knowledge modeling, ontologies are the most commonly 

applied frameworks, which conceptualize terms and the relationships among them with formal 

specifications (Gruber 1993; Noy and McGuinness 2001). The term “ontology” is a controversial 

concept, which was first proposed in the field of philosophy, and now it is extended to various 

domains such as Natural Language Processing (NLP) (Miller et al., 1993), design knowledge 

management (Štorga et al. 2010), and healthcare (El-Sappagh et al. 2018).  

Lin et al. (1996) proposed a design knowledge model called requirement ontology to support 

requirement analysis by modeling the product knowledge into concepts and different types of 

relationships. With the help of the requirement ontology, the engineer can refine, trace, validate, 

and change the customer requirement in the product design. Štorga et al. (2010) introduce an 

ontology framework that is based on a taxonomy of product concepts including objects, processes, 

attributes, design attributes, propositions, quantities, and relations. Each category is further divided 
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into subcategories of refinement. Some works proposed ontology to model the design itself, such 

as FBS ontology (Gero and Kannengiesser 2014),  generic design activity ontology (Sim and Duffy 

2003), TIPS ontology (Fernandes et al. 2007), PDO (Catalano et al. 2009), and DSO (Rockwell et 

al., 2009; Rockwell et al., 2010).  Ontology and a variety of models of knowledge were used in 

the early works of knowledge-based design systems, and it is required that domain experts 

participate in most of the design activities, such as acquiring knowledge  (Dixon et al. 1987), 

knowledge graph construction (Yoshioka et al. 1998), and knowledge validation (O’Leary 1991).  

However, at that time due to low computational resource building, a semantic network is also 

expensive for a task. Recently, many works are coming out in this domain to introduce semantic 

networks for the design knowledge representation. 

6.2.2. The EBD methodology 

Environmental-based design (EBD) is a systematic design approach that incorporates different 

environmental factors within the design of the target product to generate the best design solutions. 

The EBD method is aimed at solving problems caused by the target product’s environment to 

achieve a balance between the environment and the product (Zeng 2011). In EBD, step-by-step 

instruction is provided, that guides designers toward designing a product with the minimum 

amount of knowledge. The EBD method significantly lowers the barriers to system design, 

allowing novice designers to generate design solutions without sufficient domain knowledge. As 

an approach to interdisciplinary design, the EBD methodology has been applied successfully in 

many different fields, such as aviation geometric, education, medical, and traditional product 

design (Tan et al. 2013, 2011; Yi, Deng, and Zeng 2014).  
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The EBD methodology includes three major activities: environment analysis, conflict 

identification, and solution generation (Zeng 2011). The environment analysis helps designers to 

define the current environment by identifying primary objects and the relations between them. The 

environment refers to a scope that contains everything related to the product, such as user, parts, 

materials, input, output, and operational requirements. The objective of the EBD analysis is to 

collect potential design knowledge related to the production environment. Conflict identification 

is a process to identify conflicts and dependencies between objects from product knowledge. The 

solution generation is to make a design decision to find the optimal candidate design solution to 

the design problem by integrating, extending, and synthesizing atomic design knowledge.  

The EBD methodology explained the nature of design, and the relationships between design 

requirements, design knowledge, and design solution. The design is initiated with a valid design 

requirement that requirement is composed of multiple atomic design requirements. The atomic 

design requirements represent the user’s expected individual product facts, which include feature, 

function, and aspect. In some cases, these product facts will not resemble those of the final product, 

since they are only viewed from the perspective of the user. The design on the other hand requires 

designers to understand the design requirements and decompose the requirement into several valid 

design questions. With the design questions, the design team can decompose, distribute, track, and 

validate the design tasks. The nature of design solution generation is to collect and integrate design 

knowledge to satisfy the design questions, and the nature of design knowledge is a combination of 

facts about the target product (Figure 34). Hence, the nature of design is to collect and intergrade 

atomic design knowledge to satisfy the design requirements. The explicit atomic design knowledge 

is mostly represented by textual data, such as textbooks, requirement specifications, or other 

publications. 
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Figure 34. Relation between design, design requirement, design knowledge, and product. 

 

6.2.3. Recursive Object Modeling (ROM) and keyword extraction 

ROM is a graphical language model that models the linguistic dependency of words from a 

sentence (Zeng 2008). The ROM diagram follows the theoretical settings from EBD theory, which 

believes everything in the universe is an object, and there are relations between two objects (Zeng 

2011). Similarly, for natural language, the universe is composed of individual words, and each 

word is an object in this universe.  

For a sentence, the universe is bounded by the sentence, and the words from the sentence become 

objects in the sentence universe. The ROM diagram is a simple linguistic model that models the 

sentence-level lexical universe. There are three types of relations between objects in the ROM 

diagram, which are predicate, constraint, and connection (Zeng 2008).  
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ROM diagram is a directed cyclic graph, where the direction implies the relationships between 

objects. The predicate relation indicates an action, a constraint modifies an object, and the 

connections reflect two or more equally situated objects.  

The ROM diagram is an important component in environment analysis by helping designers to 

identify important environmental components (objects) from the design requirements and clarify 

the relationships between these objects. For atomic design, the object is the basic building block 

for atomic design knowledge. Understanding the meaning of each object and the relationships 

between objects is crucial to understanding atomic knowledge. 

6.3.  Method 

The overall RomNet Framework is applicable for both manual construction and automatic 

construction of project-specific engineering design semantic networks. The project-specific means 

the boundaries of a RomNet are scoped by a specific project that requires a semantic network. 

Unlike other semantic network construction strategies introduced in the previous section, RomNet 

utilizes EBD methodology during the construction process to analyze the environment of the target 

project. In general, the proposed framework is composed of three parts, which are 1) Environment 

analysis, 2) Data collection, and 3) RomNet construction, and the detailed procedure is illustrated 

in Figure 35. 

6.3.1. Environment analysis 

The environment analysis started with a statement that describes the desired product (Zeng 2020). 

The statement should be a description of the requirement, function, action, behavior, expectation, 

and relationships from the existing project.  
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Figure 35.The RomNet framework.  

Furthermore, the statement must be valid and accurately provided by an experienced engineer or 

expert from the target domain. The goal of an environmental analysis is to extract keywords for 

use in information retrieval. Based on the EBD analysis, a set of querying words can be extracted 

and prioritized based on their importance in the ROM diagram (Zeng 2020). Based on the existing 

ROM diagram generation tool named ROMA, which can transform the natural English text into a 

ROM diagram (Zeng 2008). ROMA can expert ROM diagram into XML or JSON format, which 

contains both ROM objects and ROM relationships. 

In the proposed method, we build a wrapper function called romGenerator that calls ROMA APIs 

to generate a ROM diagram for a given sentence. Using the ROM diagram as input, we developed 

a recursive algorithm to extract keywords and key phrases from the given sentence. The 

pseudocode of the algorithm is shown in Table 22. 
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INPUT S ← Seed Statement 

INITIALIZE noun _set = {}, noun_phrase_set = {}, verb_set = {}, verb_phrase_set = {} 

1 rom_diagram = romGenerator(S) //ROMA ROM diagram generation API 

2 object_set =  rom_diagram.obj    // is a set that stores all the ROM objects 

3 FUNCTION findModifier (obj) 

4         IF type(obj) is ROM Object THEN 

5                 obj = List(obj) // List() is creating a list data structure 

6         ELSE IF type(obj) is Set THEN 

7                 FOR neighbor in obj.last().neighbors // a.last() return last  

8                         IF neighbor.exist() THEN               // element of list a                    

9                                IF neighbor.pos is NOUN OR ADJ OR RB OR VBN THEN 

10                                        obj.add(neighbor) // a.add(b) will add b at the end of list a 

11                                        RETURN findModifier (obj) 

12                               ELSE RETURN obj 

13                         ELSE RETURN obj 

14         ELSE RETURN obj 

15 FOR obj IN object_set 

16         IF (obj.pos is NOUN) THEN 

17                 noun _set.add(obj) 

18                 IF findModifier(obj).last() is NOT obj THEN 

19                         noun_phrase_set.add(findModifier(obj)) 

20         ELSE IF (obj.pos is VERB) THEN 

21                 verb _set.add(obj) 

22                 IF findModifier(obj).last() is NOT obj THEN 

23                         verb_phrase_set.add(findModifier(obj)) 

24 END 

OUTPUT noun _set, noun_phrase_set, verb_set, verb_phrase_set 

Table 22. Pseudocode Algorithm for extracting keywords and key phrases. 

In our study, the seed statement is provided by our industrial partner from Bombardier Inc., which 

is a leading business jet manufacturer in Canada. The seed statement is: 

“The aircraft shall have the braking capability to stop the aircraft during all foreseeable 

landing conditions within the aircraft defined landing distance and runways”, 

which describes the basic requirements of a braking system in aircraft design. Based on the seed 

statement the ROM diagram is generated in Figure 36.  
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Figure 36. The ROM diagram for seed statement, generated with Graphviz13. 

 

With the keyword extraction algorithms, we extracted keywords and phrases for the data collection 

step. The extracted keywords and phrases are aircraft, brake, land, runway, condition, aircraft 

braking capability, aircraft runway, aircraft defined runway, braking capability, foreseeable 

condition, landing condition, landing distance, and landing runway. 

6.3.2. Data collection and preparation 

The input of this step is a list of key terms, and the output of this step is a collected title-abstract 

dataset retrieved from Semantic Scholar API14, which allows users to search papers by keywords. 

For the search query generation, Query expansion is applied when there are not many search results 

returned for a basic keyword search. The common method includes replacing or adding the original 

term with the synonyms, antonyms, meronyms, hyponyms, and hypernyms from available 

thesaurus WordNet. In addition, a scoping term is needed when the keyword is too generic. Once, 

the queries for literature search are ready, by calling Semantic Scholar API, the RomNet data 

 
13 https://graphviz.org/ 
14 https://api.semanticscholar.org/graph/v1/paper/ 
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collection module would be able to retrieve the title abstract of related papers. The retrieved data 

is stored in a comma-separated value (CSV) file, which contains the following fields: title, abstract, 

year (published year), citation count, and fields of study. In total research work from 19 different 

research fields is retrieved. Among the extracted 12,713 papers, approximately 55% (n=6,993) are 

from the engineering domain (as Figure 37). The second field that stands out above the others is 

computer science (23%, n=2,927). The rest of the fields have a relatively lower distribution in our 

sampled research works. Once retrieved the abstracts of project-related papers are, the first step is 

to prepare the data into machine digestible format. Some of the articles from Semantic Scholar 

API does not contain abstract, so the first step of data cleaning is to remove the empty values. 

Because the retrieved results might contain non-English articles, we applied an off-the-shelf 

language identification tools solution named LangDetect15 to keep papers written in English only. 

The LangDetect library is a Naïve Bayes algorithm that returns a language prediction based on the 

sequence of spellings (character n-gram). In total, 42 samples are excluded due to missing abstracts 

or being written in a non-English language. 

 

Figure 37. The distribution of top-10 filed of studies. 

 

15 https://github.com/fedelopez77/langdetect 
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Given that the granularity of our study is at the sentence level, a third step would be to split all 

abstracts into separate sentences for constructing a sentence dataset. The activity to split a given 

text by sentence is also called sentence tokenization. For sentence tokenization, we applied Stanza, 

which is an open-source Python toolkit that supports multiple NLP tasks, such as tokenization, 

lemmatization, part-of-speech tagging, dependency parsing, and named entity recognition (Qi et 

al. 2020). The English NLP functionalities of Stanza are trained on the CoNLL-2003 corpus, which 

is based on the Reuter Corpus which is a collection of newspaper textual documents. However, 

the format and style of scientific abstracts differ from those of newspapers. For example, in 

scientific abstract, we detect a list of numbered items that are contained by a single large sentence 

(Figure 38). Although this type of large sentence is grammatically correct, due to its complexity 

and the EBD analysis atomic feature, we implement a rule-based method to break this type of long 

sentence into several chunks. We successfully identified 102,943 sentences, from the collected 

abstract as the result.  

  

Figure 38. An example to illustrate styles in scientific paper abstract 

From the previous step, the collected abstracts are divided into individual sentences. Due to certain 

typesetting and formatting requirements of journals and conferences, some special characters may 

appear in the sentences. For example, the hyphen is widely used in research publications for 
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compounding multiple words (e.g., ‘self-rated’ in  Figure 39), or using a hyphen to break a word 

at the end of a line (e.g., ‘men-tal’ in Figure 39). 

 

Figure 39. Example of hyphen in the abstract. 

We implement a simple Regular Expression (RE) based algorithm for the hyphen and dash 

replacement. In this algorithm, we applied an existing Python library PyEnchant16 for checking 

spelling, which can detect whether a given word is valid according to the backend English 

dictionary. The RE algorithm first detects whether a sentence is containing a hyphen, if any hyphen 

is detected from the sentence, the algorithm simply chops the word before and after hyphen into 

two pieces and sends them to PyEnchant to check the validity. When both parts are valid words, 

the algorithms replace the hyphen ‘-’ with an underscore ‘_’ to merge these two words as a phrase, 

otherwise, it eliminates the hyphen to restore the original word. The word with an underscore is 

usually treated as a single word by most tokenization algorithms. In addition to the hyphen, special 

characters (e.g., "/n"), and URLs, can be frequently found in the sentences; however, unlike 

hyphens, most of the special characters do not influence the structure, meaning, or logic of the 

sentences; accordingly, they are removed without further consideration. 

After cleaning the sentences, the average sentence length is 23 words. The longest sentence 

consists of 819 words, whereas the shortest sentence consists of only one word. The frequency 

 

16 https://pyenchant.github.io/pyenchant/ 
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distribution of the word counts of the extracted sentences can be fitted to a normal distribution (as 

Figure 40) with a mean of 23.26 and a standard deviation of 10.98. For the purposes of ensuring 

the quality of the input sentences, we simply sampled the sentences within 2 standard deviations 

of the mean, which includes sentences containing more than 3 words and less than 43 words. Thus, 

97,487 sentences (94,7%) retained for the following step. 

 

Figure 40. The word count distribution of sentence dataset. 

6.3.3. Rom-based Phrase extraction 

There are four main activities during the RomNet construction phase, namely ROM diagram 

generation, domain-specific phrase extraction, fine-tuning of the language model, and building the 

semantic network. As we introduced in section 6.3.1, the ROM diagram is extracted with ROMA3. 

In this project, we developed a wrapper function that can invoke ROMA3 API requests to generate 

ROM diagrams and to receive and store the ROM diagram into an XML file as the output. From 

97,487 sentences, 86,726 ROM diagrams were successfully generated, representing approximately 

89% of the completed sentence list. The majority of failed sentences are sentences with less than 

five words, which usually consist of headings, subheadings, phrases, and sequences of words that 

are not structured in a grammatically correct manner. 
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With the generated ROM diagram, the next step is to extract a set of key concepts from the 

collected data. At the EBD analysis phase, a recursive algorithm for keywords and phrase 

extraction is introduced, in which nouns and verb phrases are recursively found in a ROM graph 

and continuously added to the phrase list until all nodes have been traversed. It begins by listing 

all nouns and verbs in the given ROM diagram. The algorithm then searches for other objects that 

modify the objects in the noun and verb lists.  

The modifying relationship is described as “constraints” in ROM. For example, in Figure 41, 

object 2 and object 3 are the constraint of object 1, and object 4 is the constraint of object 3. The 

recursive algorithm would start from node 1 to traverse the graph based on the Breadth-First Search 

(BFS) strategy. As the output, the algorithm will generate a list containing nouns, verbs, noun 

phrases, and verb phrases.   

For example, “fast” and “unmanned” are the constraint of “aircraft”, and “Extremely” is 

constraining “fast”. As the output, the proposed algorithm extracts the following phrases: 

“extremely fast”, “fast aircraft”, “unmanned aircraft”, and “extremely fast aircraft”. 

 

Figure 41. An example of constraint relations in ROM. 

With the extracted phrases, the next step is to train a neural network language model to 

automatically transfer words and phrases with dense, meaningful vector representations which are 
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also noted as word embeddings in academia and industries. There are various popular neural 

network-based language models are readily available. The latest state-of-the-art language models 

are based on transformer architecture, such as BERT (Devlin et al. 2019), GPT (Brown et al. 2020), 

and RoBERTa (Liu et al. 2019) which are much more complex than Word2vec models. These 

newly developed model can generate contextualized word embeddings, which determines the 

meaning of a given word by its context. In other words, these models can provide a more 

meaningful interpretation of a given sequence of text with an excessive amount of training or fine-

tuning time. However, in our task, the objective of the training a language model is to learn the 

relationships between domain-specific terms, which meaning usually does not change with context, 

such as the concept “flap setting” in aerodynamic means a maneuver of a pilot, and the word “flap” 

usually means “a part of aircraft wing” instead of “slap”. Therefore, since our task is domain-

specific and the terms are context-free, we selected the simple, efficient, and effective small neural 

network-based method word2vec for our language model. 

Our proposed method applied the Skip Gram model, which is also known as one of the Word2vec 

embedding techniques introduced by Google in 2013 (Mikolov et al. 2013). Compared to other 

language models, this method takes less computational resources, but is faster to train, and 

produces excellent results (Rong 2014). Skip-gram model is a three-layered neural network that is 

composed of an input layer, one hidden layer, and an output layer. By employing skip-grams, 

neural networks are trained to use the center word to predict its surroundings words. The input 

center word is represented by one-hot encoding, with the context words within a window size 

treated as the output (as Figure 42). 
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Figure 42. A simple Skip-gram algorithm illustration. 

The objective of the model is to maximize the probability of predicting correct context words. 

Hence, the likelihood of the context words by given center word 𝑤𝑖  with window size c and 

vocabulary size V can be illustrated by the following equation (1).    

 𝐿(𝜃) = ∏ ∏ 𝑃(𝑤𝑖+𝑗|𝑤𝑖; 𝜃)
−𝑐 ≤𝑗≤𝑐 .

𝑗≠0

𝑉

𝑖=1

  (1) 

When the length of the word window is C, the input would be a 𝐶 × 𝑉 dimensional matrix. The 

hidden layer is a neural network layer with N dimensions (N nodes) that also determines the feature 

size of the word embeddings. Then, after the calculation of the hidden layer, the data become a V-

dimensional vector. Each entry of the vector represents a possibility of a word from the vocabulary, 

and after a Softmax function, the sum of the probabilities is normalized to 1. Through a process of 

iterative training and back propagation, the weights are eventually updated to their optimal value. 

The proposed framework applied an existing NLP tool Gensim17, which is a Python library for 

topic modeling, information retrieval, and language modeling. Our hyperparameters were selected 

from a wide array of candidates and evaluated against a real-world truth set reviewed by an expert. 

 

17 https://github.com/RaRe-Technologies/gensim 
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The truth set randomly sampled 457 pairs of aircraft-related terms from NASA thesaurus18, which 

is an authorized Ontology for information retrieval and document indexing in NASA Technical 

Reports Server (NTRS, also known as STI repository). 

Hyperparameter Candidate values 

Window size (W) 3, 5, 7, 9 

Minimum frequency 2, 5, 7, 10 

Word embedding dimension 50, 100, 200, 300 

Negative samples 5, 9, 14, 20 

Learning rate 0.01, 0.015, 0.025, 0.05 

Table 23. Hyperparameters for the skip-gram model selection. 

The trained skip-gram language model is capable of converting a given term or concept into dense 

word embeddings. Based on the Cosine similarity algorithm the similarity or relatedness between 

two-word embeddings is calculated. The cosine similarity between two vectors U, and V is defined 

as follows:  

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑈, 𝑉) =  
∑ 𝑈𝑖𝑉𝑖

𝑛
𝑖=1

√∑ 𝑈𝑖
2𝑛

𝑖=1 √∑ 𝑉𝑖
2𝑛

𝑖=1

 
(2) 

Through the Cosine similarity algorithm, it is possible to quantify the relationship between two 

terms. Further, a Cosine similarity score can be used to determine the top n words related to a 

given concept. For example, Figure 43 shows the word vectors from the skip-gram model, which 

is related to the term ‘helicopter’. t-SNE (Maaten and Hinton 2008) algorithms are used for the 

 

18 https://sti.nasa.gov/nasa-thesaurus/ 
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visualization which is responsible for converting the original 300-dimensional word embeddings 

into 2-dimensional points. 

 

Figure 43. Vector visualization for words and phrases related to 'helicopter'. 

6.3.4. Semantic network construction 

The last step of the proposed approach is to generate a project-specific semantic network to assist 

engineers and designers in information retrieval.  First, a ROM diagram based on the skip-gram 

vocabulary is generated (as Figure 44). Second, the keyword extraction algorithm is applied to 

identify the important concepts from the generated ROM diagram.  

 

Figure 44. New generated ROM diagram for seed statement. 
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Concept Extracted concept 

Braking capability 

 

realistic assessment, winter runway, landing airplane, pavement grooving, using ground based, 

landing controller, gear steering, towed measuring, energy recovery, braking availability, overall 

energy, antilock, gear test, dynamometer system, NASA, FAA, deformable contaminant, 

photoelectric, SR radar, landing deceleration 

Landing conditions 

 

kinematical parameter, wing tank, safety boundary, occupation time, sink velocity, hydraulic force, 

flap configuration, gear configuration, elastic aircraft, cruise condition, different angle, full scale 

model, approach condition, presented model, upwash angle, landing case, takeoff procedure, total 

noise, engine arrangement, possible range 

Stop 
towing concept, tail hook, confines, overrunning aircraft, dispatch, mail, electrostatic charge, 

aerospace engineer, gate capacity, iterative algorithm, anti-skid control, maybe, pulley, mined, shut, 

huge, cable, fly by wire aircraft, temporarily, slowing, arrestment, feathering, desired location 

Landing distance 

 

CRFI table, LDA, following characteristic, mission fuel, takeoff distance, simulation based approach, 

take off distance, spoiler position, flap position, Canadian runway, climb performance, information 

publication, domestic airline, field length, different criterion, temperature effect, deceleration 

equation, climb gradient, take-off run, reference handbook, accelerate stop distance, design mission, 

friction index, naval carrier, CRFI, ground performance, turn rate, aircraft range, landing length, 

rejected takeoff 

Runways 

 

taxiway, touchdown zone, lighting system, lighted, RWY, slippery, center line, holding position, hard 

surface, taxying, practical solution, apron, rainfall intensity, big problem, overall throughput, taking 

off aircraft, occupation time, KSC, visual range, current position, touchdown area, drifted, computer 

calculation, localizer beam, arrival runway, undershoot overshoot, runway light, emergency facility 

Table 24. The extracted concepts are related to the project statement. 

 

Figure 45. Semantic network for seed statement. 

 

Figure 46. A zoomed part from the semantic network. 

 

Thirdly, the proposed approach adds the top-N most relevant concepts to the statement, based on 

a comparison of the semantic similarity between the extracted key concepts and words from the 

skip-gram vocabulary. We extracted the top 30 concepts for each core concept from the seed 

statement with a domain-specific skip-gram model to construct the semantic network. Due to some 
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concepts having fewer related terms, we applied a threshold which is a normalized average 

semantic score to each group of related concepts. When the semantic similarity score exceeds the 

threshold, the term would be considered a related concept. The extracted results are shown in Table 

24. 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
∑ ∑ 𝑠𝑖𝑚𝑖,𝑗

𝑛
𝑗=𝑖

𝑚
𝑖=1 − min (𝑠𝑖𝑚)

𝑚 × 𝑛(max(𝑠𝑖𝑚) − min (𝑠𝑖𝑚))
 (3) 

Figure 45 shows the final RomNet for the given seed sentences, and Figure 46 shows a part of the 

RomNet, as the figure illustrated the concept “landing condition” is connected with solid lines and 

dashed lines, the solid lines indicate the ROM relationships, and the dashed lines connect the terms 

extracted by trained skip-gram model.  

6.4.  Discussion, limitations, and future works 

In this chapter, the framework is presented in a methodological framework and illustrated with an 

actual project from the construction of aircraft semantic networks. The project team has no 

experience in aircraft design and does not have any prior knowledge of aviation terms. Based on 

the EBD design methodology and ROM tool, the RomNet framework can identify domain-specific 

keywords and phrases with relatively small data. This is entirely due to the sentence-level lexical 

knowledge provided by the ROM diagram. With the use of pre-defined relationships and part-of-

speech of each term, the proposed algorithm can extract a set of potential keywords and phrases. 

In addition, when the sample size is insufficient, the ROM key phrase extraction method may result 

in a higher frequency of rare possible phrases compared to the traditional co-occurrence-based 

method. For innovative activities, especially for design in aviation, the number of available 

research publications is relatively fewer than in other domains. For example, when we search 
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“aircraft braking system” from the Web of Science search engine, only 487 results would be 

retrieved; however, when we change the query to “car braking system”, there are 2,115 related 

research returned. Hence, using the proposed framework for the identification of domain-specific 

phrases would help engineers and designers collect project-related concepts effectively and 

efficiently. Training a skip-gram word embedding model allows us to convert these extracted 

project-related terms and phrases into dense vectors, which allows the framework to compute the 

semantic relatedness based on the Cosine similarity score. With the project-specific language 

model, the initial ROM diagram for the seed statement can be expanded with semantically related 

terms from language model vocabulary. These extracted terms and RomNet semantic networks 

have a great potential for various down streaming tasks such as information retrieval, 

communication, and idea generation.  

During the study, we identified several open issues and challenges that need to be addressed in the 

future. First, the study focuses solely on extracting project-specific terms and training language 

models to retrieve relevant terms but does not provide a method to provide the meaning for these 

terms.  By combining available resources, such as aerodynamic ontology (NASA thesaurus), 

generic semantic networks (such as WordNet), open encyclopedia (Wikipedia), online dictionary 

API ( such as Dictionary API ), etc., both common sense and domain-specific definitions can be 

retrieved.  

Second, in this work, we only focus on the semantic similarities between project-related terms. In 

addition to the similarity measurement, the embeddings trained on the project-related literature 

abstracts can express a certain degree of understanding of analogy. A famous example:  

“vector(”King”) - vector(”Man”) + vector(”Woman”) ≈ vector(Queen)” 
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by Mikolov et al. (2013) perfectly illustrated the potential of the language model. In engineering 

design and design science studies, Design-by-Analogy (DbA) is a growing research field, which 

encourages designers to seek related areas, concepts, experiences, and artifacts to solve the design 

problem (Moreno et al., 2014). The word-based ideation is a proven effective design methodology 

in modern engineering design and using word embedding that is specifically trained on the 

domain-related publication has a great potential to support the early stage of the design idea 

generation. For example, when a designer wants to design a wing for a flying car, the analogy can 

be represented by “Aircraft + wing – car = ?”. Our trained skip-gram model inferred several 

concepts that might be related to the problem, such as “movable flap”, “jet flap”, “racing car”, 

“unconventional configuration”, “composite wing” and many others.  

As part of the future work, we will continue to analyze design concept extraction from textual data 

and implement state-of-the-art architecture to represent design concepts accurately. Methods and 

frameworks can leverage vector semantics in DbA studies. 

 

Figure 47. The related terms to the given analogy question. 

Third, this chapter only focuses on technical feasibility and integration of NLP techniques and 

design science. However, due to the purpose of this study, this chapter is restricted to discussing 
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the application of down streaming. It is important to conduct follow-up studies in order to explain 

how engineers and designers will benefit from the RomNet, and how networks will be visualized 

to fill the knowledge gap.  

Forth, there are many challenges associated with training new employees to be able to actively 

participate in existing roles (Akondy & Murthy, 2016). In light of the complex nature of 

organizational design knowledge, there are usually few beneficial structured training resources 

that cover the broadest range of concepts. Future works also can combine RomNet and EBD 

methodology to aid organization training and education by locating and retrieving project-related 

documents and information. 

6.5.  Conclusion 

In this chapter, we proposed a design semantic network construction framework named RomNet. 

The framework leverages design science methodology EBD, design text analysis tool ROM, and 

neural network language model Word2vec techniques to extract key concepts from published 

paper abstracts related to the current project. The paper used a case study from the aviation domain, 

more specifically an aircraft braking system design project as a usage scenario to illustrate and 

explain the framework. The proposed RomNet is an automated framework that does not requires 

domain experts’ supervision or collaboration during the entire lexical knowledge extraction and 

construction phases. In the case study, we use Semantic Scholar API for information collection. 

To collect information, we developed a simple rule-based algorithm and user interface that takes 

seed statements as input and automatically generates search queries and collects title abstracts from 

Semantic Scholar API. Based on the EBD methodology, the proposed key phrase extraction 

method can recursively search from the ROM diagram to extract concepts related to the design 
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project. By training a skip-gram model with the extracted phrases, the framework can compute 

and measure the interrelatedness between concepts extracted from the related publication abstracts. 

Last, by ranking the relatedness scores for a given term, the framework can construct a small 

semantic network for seed statements provided by experts. 
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Chapter 7. Conclusion 

The content of this thesis includes 1) conducting a literature review on the current state of data-

driven requirement elicitation; 2) proposing a Natural Language Processing (NLP) based 

qualitative data analysis framework, which could assist the researcher in extracting knowledge 

narrative data; 3) to propose an EBD-based lexical knowledge acquisition framework that helps 

designers to extract project-specific semantic network from available textual data.  

Through these works, we have studied the nature of design knowledge and the relationships 

between design knowledge, design requirement, design solution, stakeholders, and the designer. 

The requirement reflects stakeholders’ expectation, understanding, imagination, or, more broadly 

and abstractly -- knowledge of the desired product or system. Stakeholder ideas and opinions can 

be gathered through various sources, such as interviews, questionnaires, meetings, documents, 

social networks, and product websites. By analyzing these available sources, the designer can have 

an initial idea about desired product or system. In this thesis, the first two works studied the early 

stage of the design, more specifically, requirement elicitation and analysis and its influence on 

design. Through the literature review, we identified the most current data-driven methods that 

extract design-related knowledge from massive textual resources, such as user feedback, design 

specification, research articles, and other written materials. The data-driven methods help the 

designers to have a holistic overview of the product from big data; however, due to the nature of 
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the computational analysis, the results tend to be biased and sometimes misleading. Hence, 

applying a human-computer collaborative analysis of the requirement is required. The second 

proposed work identified such a problem and aimed to propose a method that can fully use ML 

and NLP techniques features and let the machine do the tedious, laborious tasks. In addition to 

ML/NLP pipeline, we introduced a supplementary pipeline that allows qualitative researchers to 

do manual inspection and quality control.  

Apart from requirements, trustworthy resources from the internet also can provide valuable 

knowledge in the early stage of the design. The third study proposed a project-specific EBD-

enabled design knowledge framework, which includes project-specific knowledge scoping, key 

concept extracting, knowledge retrieving, and design knowledge modeling. The extracted design 

knowledge is stored in a graph database (Neo4j in our case study), which can be used to support 

communication, collaboration, concept generation, and initial design ideation. 

Design is complicated and knowledge-intensive. Researchers are trying to find a way to model 

design itself and other essential concepts in design, such as design knowledge, design techniques, 

and design tasks. Design, as one of the most natural human activities, sometimes happens without 

purpose. Hence, it is very challenging to model design activity correctly. Environment-based 

design (EBD) provides a complete theory about design, design modeling, and the designer’s 

capability. The designer's capability is modeled as knowledge, skills, and affect. The knowledge 

and skills represent the designer’s education and experience, and the effect refers to the designer’s 

emotional state, such as confidence and belief. Hence, modeling and quantifying an individual's 

knowledge will greatly contribute to analyzing an individual’s potential capability for a specific 

task, which helps in estimating the project design budget and schedule to project timeline. 
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One branch of our future works is related to design knowledge management, such as modeling 

individual design knowledge, organizational (or group, team) posed design knowledge, and 

managing design knowledge, including design knowledge retention and design knowledge 

education.  

The other branch of our future work relates to EBD-based decision support system design. Through 

the first work (literature review), we identified that most works try to build an end-to-end artificial 

intelligence solution that takes whatever textual data they have as input and group, categorize, 

generate, summarize, or rewrite it.  However, the drawbacks are obvious. First, the end-to-end 

machine learning algorithms are challenging to be debugged. When an error occurs, the system 

cannot be tuned as quickly as a rule-based system. Second, the end-to-end system generates design 

decisions without human permission, which makes design governance difficult. As a result, there 

would be potential liability issues occurs. Third, most current research related to NLP and ML in 

design studies uses classification and clustering methods to group similar requirements together, 

but only a few papers demonstrate what other follow-up procedures are required to complete the 

requirement analysis. As a result, most of the current research is not explicitly focused on 

providing alternative traditional demand elicitation solutions but on demonstrating how artificial 

intelligence can potentially play a role in demand engineering. Hence, to fill this gap, in the future, 

we will continue the design decision support system design, which combines both machine 

learning and human. The system should be a pipeline with multiple procedures instead of end-to-

end and allow a human expert to override any possible checkpoint.  

The second work introduces an NLP and ML-based system that supports qualitative research. 

However, the work only supports the initial coding stage by extracting the main topics from the 

interview transcripts. In the future, we will continue this study to expand the coverage of the ML 
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algorithms by analyzing the linguistic feature, semantic feature, and other potential features. In 

addition, the framework's current stage targets and supports the initial coding stage of the 

Grounded Theory (GT); in the future, interactive coding and theme-building tools should be built 

to support qualitative researchers. In this scenario, automated code recommendation, topic 

generation, and sample generation have great potential to support GT and other qualitative research 

activities. 
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