369 research outputs found

    On Ladder Logic Bombs in Industrial Control Systems

    Full text link
    In industrial control systems, devices such as Programmable Logic Controllers (PLCs) are commonly used to directly interact with sensors and actuators, and perform local automatic control. PLCs run software on two different layers: a) firmware (i.e. the OS) and b) control logic (processing sensor readings to determine control actions). In this work, we discuss ladder logic bombs, i.e. malware written in ladder logic (or one of the other IEC 61131-3-compatible languages). Such malware would be inserted by an attacker into existing control logic on a PLC, and either persistently change the behavior, or wait for specific trigger signals to activate malicious behaviour. For example, the LLB could replace legitimate sensor readings with manipulated values. We see the concept of LLBs as a generalization of attacks such as the Stuxnet attack. We introduce LLBs on an abstract level, and then demonstrate several designs based on real PLC devices in our lab. In particular, we also focus on stealthy LLBs, i.e. LLBs that are hard to detect by human operators manually validating the program running in PLCs. In addition to introducing vulnerabilities on the logic layer, we also discuss countermeasures and we propose two detection techniques.Comment: 11 pages, 14 figures, 2 tables, 1 algorith

    Battlefield malware and the fight against cyber crime

    Get PDF
    Relatório apresentado à Universidade Fernando Pessoa como parte dos requisitos para o cumprimento do programa de Pós-Doutoramento em Ciências da InformaçãoOur cyber space is quickly becoming over-whelmed with ever-evolving malware that breaches all security defenses, works viciously in the background without user awareness or interaction, and secretly leaks of confidential business data. One of the most pressing challenges faced by business organizations when they experience a cyber-attack is that, more often than not, those organizations do not have the knowledge nor readiness of how to analyze malware once it has been discovered on their production computer networks. The objective of this six months post-doctoral project is to present the fundamentals of malware reverse-engineering, the tools and techniques needed to properly analyze malicious programs to determine their characteristics which can prove extremely helpful when investigating data breaches. Those tools and techniques will provide insights to incident response teams and digital investigation professionals. In order to stop hackers in their tracks and beat cyber criminals in their own game, we need to equip cyber security professionals with the knowledge and skills necessary to detect and respond to malware attacks. Learning and mastering the inner workings of malware will help in the fight against the ever-changing malware landscape.N/

    MalFox: Camouflaged Adversarial Malware Example Generation Based on Conv-GANs Against Black-Box Detectors

    Full text link
    Deep learning is a thriving field currently stuffed with many practical applications and active research topics. It allows computers to learn from experience and to understand the world in terms of a hierarchy of concepts, with each being defined through its relations to simpler concepts. Relying on the strong capabilities of deep learning, we propose a convolutional generative adversarial network-based (Conv-GAN) framework titled MalFox, targeting adversarial malware example generation against third-party black-box malware detectors. Motivated by the rival game between malware authors and malware detectors, MalFox adopts a confrontational approach to produce perturbation paths, with each formed by up to three methods (namely Obfusmal, Stealmal, and Hollowmal) to generate adversarial malware examples. To demonstrate the effectiveness of MalFox, we collect a large dataset consisting of both malware and benignware programs, and investigate the performance of MalFox in terms of accuracy, detection rate, and evasive rate of the generated adversarial malware examples. Our evaluation indicates that the accuracy can be as high as 99.0% which significantly outperforms the other 12 well-known learning models. Furthermore, the detection rate is dramatically decreased by 56.8% on average, and the average evasive rate is noticeably improved by up to 56.2%

    Sleeping Android: Exploit Through Dormant Permission Requests

    Get PDF

    Protecting Software through Obfuscation:Can It Keep Pace with Progress in Code Analysis?

    Get PDF
    Software obfuscation has always been a controversially discussed research area. While theoretical results indicate that provably secure obfuscation in general is impossible, its widespread application in malware and commercial software shows that it is nevertheless popular in practice. Still, it remains largely unexplored to what extent today’s software obfuscations keep up with state-of-the-art code analysis and where we stand in the arms race between software developers and code analysts. The main goal of this survey is to analyze the effectiveness of different classes of software obfuscation against the continuously improving deobfuscation techniques and off-the-shelf code analysis tools. The answer very much depends on the goals of the analyst and the available resources. On the one hand, many forms of lightweight static analysis have difficulties with even basic obfuscation schemes, which explains the unbroken popularity of obfuscation among malware writers. On the other hand, more expensive analysis techniques, in particular when used interactively by a human analyst, can easily defeat many obfuscations. As a result, software obfuscation for the purpose of intellectual property protection remains highly challenging.</jats:p

    Management and Security of IoT systems using Microservices

    Get PDF
    Devices that assist the user with some task or help them to make an informed decision are called smart devices. A network of such devices connected to internet are collectively called as Internet of Things (IoT). The applications of IoT are expanding exponentially and are becoming a part of our day to day lives. The rise of IoT led to new security and management issues. In this project, we propose a solution for some major problems faced by the IoT devices, including the problem of complexity due to heterogeneous platforms and the lack of IoT device monitoring for security and fault tolerance. We aim to solve the above issues in a microservice architecture. We build a data pipeline for IoT devices to send data through a messaging platform Kafka and monitor the devices using the collected data by making real time dashboards and a machine learning model to give better insights of the data. For proof of concept, we test the proposed solution on a heterogeneous cluster, including Raspberry Pi’s and IoT devices from different vendors. We validate our design by presenting some simple experimental results
    • …
    corecore