
Sleeping Android:

Exploit through Dormant

Permission Requests

James Sellwood

Supervisor: Jason Crampton

Submitted as part of the requirements for the award of the MSc in Information

Security at Royal Holloway, University of London.

I declare that this assignment is all my own work and that I have acknowledged all

quotations from the published or unpublished works of other people. I declare

that I have also read the statements on plagiarism in Section 1 of the Regulations

Governing Examination and Assessment Offences and in accordance with it I

submit this project report as my own work.

Signature:
Date: August 28, 2012



Contents

1 Introduction 5
1.1 A Very Brief History of Telecommunications . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Mobile Internet and Ubiquitous Connectivity . . . . . . . . . . . . . . . . . . . . . 6
1.3 Mobile Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Device Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 The Operating System Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Motivation & Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Android Security Architectures 12
2.1 Sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 App Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Android Permissions Architecture 24
3.1 Permission Categorisation Investigation . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Permission Evolution Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Summary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Dormant Android Permission Requests 41
4.1 Third-party Permission Requests Investigation . . . . . . . . . . . . . . . . . . . . 41
4.2 Dormant Permission Requests Investigation . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 The Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Permission Test Jelly Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 The Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Repercussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Potential Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 53
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Ongoing and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Third-Party Permission Requests Revisited . . . . . . . . . . . . . . . . . . 55
5.2.2 Other Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1



List of Figures

1.1 Smartphones Surpass Feature Phones (timeline) . . . . . . . . . . . . . . . . . . . . 7
1.2 EU5 Smartphone Market Share by OS (graph) . . . . . . . . . . . . . . . . . . . . 9
1.3 US Smartphone Market Share by OS (graph) . . . . . . . . . . . . . . . . . . . . . 10

2.1 Partial directory listing showing User and Group IDs (screenshot) . . . . . . . . . 13
2.2 Pre-installation permission authorisation prompts (screenshots) . . . . . . . . . . . 15
2.3 Be honest - do you check app permissions when installing? (survey) . . . . . . . . 16
2.4 Total number of permissions requested by apps (table) . . . . . . . . . . . . . . . . 17
2.5 Google Play web site triggered app installation (screenshots) . . . . . . . . . . . . 20
2.6 Unknown Sources, app installation configuration setting (screenshots) . . . . . . . 21
2.7 App Store Review Status (screenshot) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Do you have to enter a password to access your smartphones? (survey) . . . . . . . 22

3.1 Android platform versions - July 2012 (graph) . . . . . . . . . . . . . . . . . . . . . 24
3.2 Permission Test ‘AndroidManifest.xml’ (screenshot) . . . . . . . . . . . . . . . . 26
3.3 Permission Test app information (screenshots) . . . . . . . . . . . . . . . . . . . . 27
3.4 Ice Cream Sandwich permissions breakdown (table) . . . . . . . . . . . . . . . . . 28
3.5 Package Manager log entries (screenshot) . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Permission Evolution results - Protection Levels - part 1 (table) . . . . . . . . . . . 33
3.7 Permission Evolution results - Protection Levels - part 2 (table) . . . . . . . . . . . 34
3.8 Permission Evolution results - Protection Levels - part 3 (table) . . . . . . . . . . . 35
3.9 Permission Evolution results - Groups - part 1 (table) . . . . . . . . . . . . . . . . 36
3.10 Permission Evolution results - Groups - part 2 (table) . . . . . . . . . . . . . . . . 37
3.11 Permission Evolution results - Groups - part 3 (table) . . . . . . . . . . . . . . . . 38

4.1 Third-party Permission Request Experiments (workflows) . . . . . . . . . . . . . . 42
4.2 Permission Test Creator installation (screenshots) . . . . . . . . . . . . . . . . . . 42
4.3 Permission Test Requestor installation (screenshots) . . . . . . . . . . . . . . . . . 43
4.4 Permission Test Requestor app information (screenshots) . . . . . . . . . . . . . . 44
4.5 Jelly Bean update on Ice Cream Sandwich (screenshots) . . . . . . . . . . . . . . . 45
4.6 Dormant Permission Request Investigation (workflow) . . . . . . . . . . . . . . . . 46
4.7 Permission Test Jelly Bean on Ice Cream Sandwich (screenshots) . . . . . . . . . . 47
4.8 Permission Test Jelly Bean running on Ice Cream Sandwich (screenshots) . . . . . 47
4.9 Permission Test Jelly Bean running on Jelly Bean (screenshots) . . . . . . . . . . 48
4.10 Permission Test Jelly Bean app information on Jelly Bean (screenshots) . . . . . . 49

5.1 Android platform versions - August 2012 (graph) . . . . . . . . . . . . . . . . . . . 54

2



List of Tables

3.1 Ice Cream Sandwich permission groupings . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Android permissions breakdown across platform versions . . . . . . . . . . . . . . . 31
3.3 Key for Figures 3.6 through 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Protection Level changes across platform versions . . . . . . . . . . . . . . . . . . . 39

3



Executive Summary

This report begins by providing a very brief history of telecommunications, followed by back-
ground into the usage and capabilities of modern smartphone devices. As this report focuses on
information security considerations, it highlights some of the security requirements associated with
the significant usage of these ubiquitous devices. The aspect of mobile device information secu-
rity that is considered within this report is the security architectures employed to achieve those
security requirements. In particular, the major security relevant architectures within the Android
platform are described: Sandboxing, Permissions and App Stores. Following the description of
these significant security concepts, a number of detailed investigations into the Android permission
architecture are performed and discussed. The investigations are structured around four distinct
topics.

The Permission Categorisation Investigation looks at how Android permissions are organised
both regarding severity, through the use of protection levels, and regarding logical subject area,
through the use of permission groupings. The 130 currently documented Android permissions are
investigated through the development and use of a test app, Permission Test, which allows them
to be categorised. This investigation provides information not currently documented within the
Android documentation and thereby not obvious to developers.

Following the categorisation of the 130 permissions on Android 4.0.4 (Ice Cream Sandwich),
a Permission Evolution Investigation is performed tracking the categorisation and labelling of
the permissions across six of Android’s platform versions. The versions tested cover the Android
API versions 8, 10, 13, 14, 15 and 16 — platforms Froyo through to the recent release, Jelly
Bean (Android’s platform versions are named alphabetically after desserts). This investigation
highlights the changes that have occurred across platform releases and in particular identifies
several potential discrepancies in the Android documentation.

Having built up considerable information and understanding through the first two investiga-
tions, the third investigation looks specifically at Third-party Permission Requests. Unlike the
130 permissions already discussed, third-party permission requests are defined by app developers
themselves and are used to provide limited authorisation in relation to Inter-Process Commu-
nication (IPC). This investigation makes use of two more test apps, Permission Test Creator
and Permission Test Requestor, and helps frame a hypothesis which forms the basis for the final
investigation.

The most significant investigation of this report identifies the existence of a weakness in the
Android permission architecture, exploitable through the use of Dormant Permission Requests.
A fourth test app, Permission Test Jelly Bean, is developed and demonstrates exploiting this
weakness. The repercussions and potential mitigation of the weakness are then discussed.

The conclusion highlights related work in this field, covering relevant research which has been of
significant value. Whilst other work in this field has discussed several mechanisms through which
malicious apps can exploit the Android permission architecture, to my knowledge the Dormant
Permission Requests weakness I describe in this project has not previously been identified. I
believe this contribution to therefore be unique within the existing body of knowledge. Finally,
ongoing and future work is introduced with this report as the principle basis.

4



Chapter 1

Introduction

1.1 A Very Brief History of Telecommunications

The first electrical telegraph systems were developed in the late 1830s in the UK, by Charles
Wheatstone and William Cooke, and in the US by Samuel Morse [105]. Initial significant installa-
tions were put in place, over distances of around ten miles, but relied on physical wires to transmit
the electrical signal from one end to the other. Following on from the development of the electri-
cal telegraph and in particular the use of electromagnets, Alexander Graham Bell communicated
clearly using the first telephone in 1876 [105]. This was the birth of electrical telecommunications;
the next fundamental step was taken as the 20th century began, when Guglielmo Marconi (hav-
ing been working on wireless since he was 21 years old) transmitted the first message across the
Atlantic — over a distance of 2100 miles [29].

Advances continued through the early 1900s with a significant drive coming from the invention
of the transistor in 1947 by John Bardeen, Walter Brattain and William Shockley at Bell Labs [59].
Amplification was a necessity to break through the otherwise crippling limitation of the weakening
of radio signals as they traveled further distances. Up until then, it had been provided by the larger,
less reliable and more energy demanding vacuum tubes. Whilst devices used for computation were
developed far before the transistor, the first electrical computer to make sole use of transistors
(and no vacuum tubes) was the IBM 608 calculator announced in 1955 [33]. The introduction
of transistor only computers allowed them to be significantly more compact and more reliable, a
change which would continue through the years to today’s lightweight portable computing devices.

The mobile telephone started its life as a car telephone in 1946 [19] with the first personal
mobile telephone call made by Martin Cooper from AT&T in 1973 [2]. The existence of a cellular
network allowed Martin Cooper to call his opposite number Joel Engel, also working on the
technology, at Bell Labs. Following the initial use of analog networks, digital networks in the
form of GSM started to be adopted in 1990 with the first call made in 1991 [20]. At this time
communications were just voice, with SMS (Short Messaging Service) introduced in 1992. GSM
mobile data communications were enhanced with the introduction of GPRS (General Packet Radio
Service) in 2000.

The ’90s saw a dramatic increase in the development of mobile phones as well as the compa-
nies which have since become household names, their logos branded on devices in many people’s
pockets. Ericsson began as a telegraph repair shop in 1876 with their first mobile system produced
in 1981 [30]. Samsung, which had developed its first computer in 1983, developed its first mobile
handset in 1991 [50]. Nokia in contrast, started out as a maker of paper in 1865 but went on to
focus on electronics and to produce the first retail GSM (Global System for Mobile) mobile in
1992 [58]. HTC Corp, was founded in 1997 [3] and has since been at the leading edge of mobile
devices, whilst the most recently launched, prominent company is RIM, who produced their first
BlackBerry in 1999 [4]. Apple was incorporated in 1977 [14] producing computer parts and whilst
it has had possibly the greatest impact so far on the mobile phone and its usage, it was the last of

5



these big names to produce a mobile handset. The introduction of the iPhone in 2007 ultimately
heralded a world of smartphones and rather rapidly changed the way we use mobile devices for
ever [16]. With the release of the iPhone 3G, Apple also introduced the App Store [13] — bringing
applications to consumers in a way that had never been done before. The App Store concept has
since been duplicated my multiple mobile platform vendors to produce the likes of Google Play
(until recently, known as Android Market), Microsoft Marketplace and Nokia Ovi Store.

All in all these developments took place over a period of some 180 years but the advancements
of the last 30 years have seen a step change in technology, usability and the penetration of mobile
devices that far exceeds anything that has gone before. The International Telecommunication
Union estimated in November 2011 that there were a little under 6 billion mobile subscriptions in
the world, over double the 2.7 billion which there had been in 2006 [40]. This number includes an
estimated 119.5 subscriptions per 100 inhabitants within Europe — nearly 120% penetration [43].

1.2 Mobile Internet and Ubiquitous Connectivity

Whilst the development of telecommunications, computers and mobile phones were all significant
and wide reaching advancements in terms of our technological capability, it was another develop-
ment which started the revolution in the distribution and access to information. The ARPANET,
the Advanced Research Projects Agency Network, was decommissioned in 1990 (having been
started in 1969) following successful initial demonstrations and limited usage of the Internet [82]
as a TCP/IP based packet switching network. Growth of the Internet provided connectivity like
never before but it was the invention of the World Wide Web (WWW or Web) by Tim Berners-Lee
that brought together the concepts of hypertext, the linking of documented content to get around
the inherent linearity of paper, and the newly available connectivity to produce a global publish-
ing technology. With the Web, publishers of content could link relevant information together in a
manner such that the reader could follow the logical story path that had been laid out for them,
stepping from one piece of information to the next.

As the Internet and the Web matured and as computers became more powerful, advanced
graphical technologies became integrated with the initial HTML standard (Hypertext Markup
Language) for consumption through the Web. Soon video and 3D rendering were possible and
with ever increasing communications capabilities this kind of content became ever more popular.
Today the web site YouTube, which hosts video uploaded and viewed by people from all over the
world, receives 60 hours of video uploaded every minute and over 800 million unique visitors a
month watching over 3 billion hours of video [61]. The site was originally started in December
2005 [62] following a beta launch in May. As well as being popular on home computers, YouTube’s
mobile site, launched in June 2007 [62] gets over 600 million views a day after traffic tripled in
2011 [61]. This leap in visitors is no doubt attributable to the growth in popularity and connectivity
in modern smartphones.

Mobile devices are today commonly sold with a myriad of connectivity technologies. The new
iPad, released in March 2012, is not atypical in its support for Bluetooth (version 4.0), mobile data
in the form of GSM/EDGE (850, 900, 1800 and 1900MHz), UMTS/HSPA/HSPA+/DC-HSDPA
(850, 900, 1900, 2100MHz) and 4G LTE (700 and 2100MHz) as well as Wi-Fi (802.11a, b, g and
n) [15]. This is not withstanding the physical USB based connector and the 3.5mm audio port.
Devices commonly also support GPS (Global Positioning System) for location based services and
a myriad of sensors.

This wide selection of communications capabilities allows mobile devices of today to establish
and maintain connections to a variety of devices, as well as the Internet, as their owners make
their way through their daily lives.

6



1.3 Mobile Applications

According to Oxford Dictionaries, a smartphone is “a mobile phone that is able to perform many
of the functions of a computer, typically having a relatively large screen and an operating system
capable of running general-purpose applications” [54]. Other definitions are similar, with a recur-
ring emphasis on the theme of a mobile phone being capable of running applications [53, 51, 52].
These definitions should be compared to that of a feature phone, defined by Oxford Dictionaries
as “a mobile phone that incorporates features such as the ability to access the Internet and store
and play music but lacks the advanced functionality of a smartphone” [25]. One could be forgiven
for struggling to explicitly distinguish between the two, especially as modern feature phones are
becoming more feature rich, making them more attractive and functional for those unable or un-
willing to purchase a smartphone. Figure 1.1 highlights, for a number of countries, the month
when smartphone devices started outselling feature phones [73].

Figure 1.1: Smartphones Surpass Feature Phones as the Top Acquired Device Type

The defining capability that all smartphones do possess, as do some feature phones to a lesser
extent, is the capacity to download and install any of a wide variety of applications to further
enhance the device’s functions and usefulness. Prior to the introduction of Apple’s App Store,
whilst this process was possible, the discovery of new applications was haphazard. Whilst individ-
ual developers would provide their own software for download, consumers had to search amongst
all other Internet content for applications suitable for their device and their needs. The concept
of a mobile application store brought together a wide variety of applications (as well as digital
content such as books, music and films) into a single, searchable, categorised store such that con-
sumers can easily locate and download anything on offer. These application stores are huge too.
In March 2012 Apple’s App Store reached 25 billion downloads to 315 million devices worldwide in
an app store which has over 550,000 applications to choose from [18]. The month before, Google
announced that the Android Market (as it was still known at that time) had in store more than
450,000 applications available to more than 300 million devices [6] having previously announced
in December 2011 that it had reached 10 billion downloads [1].

To make finding applications easier and to allow for browsing of the app stores, mobile app
stores are categorised. Categories commonly exist for books, business, games, productivity and
social applications amongst the many others. As many applications attempt to provide some
form of personalised service to the user it is frequently necessary to enter at least some basic
information into the application to configure or make use of it. This combined with the fact that
“smartphones are often uses for privacy-sensitive tasks” [98] means that in addition to the already
present telephone contact information it is common to find far more personal information such as
calendar entries, e-mail messages, social networking status information and even usernames and
passwords [106].

1.4 Device Usage

Whilst it was once said that “the killer app for phones is voice” [86], as the capability of devices
continue to grow consumers are making use of their mobile phones for an ever increasing number

7



of activities. These capabilities are backed by manufacturers producing ever more complex combi-
nations of hardware with the mobile phone industry being one of the most competitive and rapidly
developing electronics markets. At a recent mobile security conference, Mike Gibson (Director,
Enterprise: UK & Ireland at RIM) emphasised this point with the statement “A year in smart-
phones is like six years in other industries” [91]. Mobile devices have become a staple of modern
life to such an extent that it is not uncommon to see school children with their own personal
mobile phones — something which would have been unheard of some 30 years ago or less. In a
similar way consumers don’t leave home without their smartphones — 78% in the UK and 80%
in the US according to a recent Google study entitled “Our Mobile Planet” [83, 84]. It is worth
considering for a moment just some of the many activities that today’s smartphones are used
to perform on an hourly basis. (Note: This list applies an approximate popularity order, where
information available, based on some of the many studies on smartphone usage [31, 32, 56, 73].)

∙ Text messaging

∙ Taking photos

∙ Browsing the Internet

∙ E-mail

∙ Telling the time

∙ Downloading apps

∙ Alarm clock

∙ Playing games

∙ Social networking

∙ Navigating

∙ Listening to music

∙ Watching video

∙ Voice calling

∙ Recording video

Many of the activities listed above involve the creation, transmission or storage of information.
In some cases that information is likely to have little sensitivity as far as a specific individual is
concerned — the data that makes up a music track or the content of a public web page for example.
That said there is considerable information which is considered sensitive — for example, personal
e-mail and text messages or Internet search history. In many cases this distinction may not be so
definite or consistent, with the sensitivity changing over time as the specific information changes or
as the relationships that that information relates to change. It is therefore often difficult to identify
globally accepted rules, which can be successfully applied across wide cross-sections of consumers,
identifying what types of information they will consider sensitive. Further to this, sensitivity
perception is a spectrum commonly influenced by an individual’s culture and upbringing. Thus
two individuals can potentially have very different sensitivity viewpoints in identical scenarios.
As well as the information associated with these common tasks, consumers may also be using
their smartphones specifically to securely store sensitive information. There are numerous ‘vault’,
‘wallet’ or ‘password keeper’ apps which claim to provide secure storage for information such as
account details and passwords. Access to such apps is usually secured with a ‘master password’
which enables the decryption of the information held within the vault.

Ignoring the specific complexity of classifying what information is sensitive to a particular
individual, there is no doubt that sensitive personal information commonly exists on smartphones
and the increasing usage being seen suggests the volume of this information is only likely to grow.
This demand is being supported by the growing device and memory card capabilities resulting in
high end smartphones being capable of directly or indirectly (through the use on-board or external
memory card storage) providing tens of gigabytes of storage space. It is no wonder that it has been
said that “smartphones in general are perhaps the one electronic device that knows the most about
an individual” [87]. All this information must be secured to a level acceptable to consumers so as
to maintain privacy and avoid the user being a victim of fraud, theft and other illegal activities.

8



1.5 The Operating System Market

There are a number of operating systems currently in use on smartphone devices with the exact
balance of their distribution depending on the country. In European countries, as can be seen
in Figure 1.2, the share held by each operating system varies, with the older Symbian OS being
particularly popular in Italy and Spain whilst newer operating systems like iOS and Android
compete more strongly in UK and France [73]. No matter the country, it is clear that Google’s
Android has seen significant growth in recent years with on average a tripling of market share seen
between December 2010 and December 2011 over the European countries shown.

Note: comScore confusingly fails to be consistent in the labelling of both Figure 1.2 and 1.3. Android and iOS are the
full names of the operating systems from Google and Apple respectively. Symbian and Palm are shortened versions of the
operating system names Symbian OS and Palm OS whilst also being part of the company names Symbian Limited and
Palm Incorporated. RIM’s operating system is called BlackBerry OS whilst Microsoft have actually had several mobile
platform operating systems including two during the time period concerned — Windows Mobile and Windows Phone.
For consistency when referring to these figures I have used comScore’s naming convention — even though this involves
referring to company names as operating systems in some cases.

Figure 1.2: EU5 Smartphone Market Share by OS

Figure 1.3 highlights the trends in operating system share experienced over the last seven
years in the US [73]. There have been several dramatic changes in that time with Palm, Microsoft
and Symbian all losing significant amounts of their market share to the rising giants of iOS and
Android.

Historically the operating systems seen in use in 2005 (from Figure 1.3) where far more limited
from a user’s point of view than those taking the lion’s share in 2011. Whilst each of those
operating systems (Symbian, RIM, Palm and Microsoft) allowed the installation of applications,
the lack of centralised app stores, as introduced by Apple in 2008, meant that the process of
discovery, purchase and installation was a disjointed one. I believe that the success of today’s
leading smartphone operating systems is in no small part driven by the mobile app culture that
has developed from the creation of the centralised app store and the ease of digital consumption
which flows from this.

Through the rest of this report I will focus on the Google Android platform whilst also providing
considerable reference to Apple iOS. The reasons for focusing on Android are firstly, as attested
by Figure 1.2 and 1.3, it is currently the most popular operating system in the UK and US and
secondly as it is an open platform there is considerable information available and research targeting

9



Figure 1.3: US Smartphone Market Share by OS (Expanded Trend)

it. There are many similarities, as well as some interesting disparities, with iOS which make this
an interesting platform for comparison.

1.6 Security Requirements

As consumers have seen benefit from the use of smartphones in their personal lives these devices
have become integrated into their daily activities. In the UK, 59% have used their smartphone
every day in the past seven days whilst in the US the figure is slightly higher at 62% [83, 84]. This
level of integration has resulted in an expectation within consumers that smartphone devices can
bring benefit to working activities in the same way as they do to personal ones. A recent Cisco
study entitled “The Future of Work” found that seven out of ten college students “believe that
company-issued devices should be allowed for personal and business use because of the blending
of work and personal communications in their daily lifestyles” [72]. The same study also found
that 81% of college students “want to choose the device for their jobs — either budget to buy their
own or use their own personal device”.

It is clear that to many people, smartphones are both popular and important, holding signifi-
cant amounts of personal and corporate information in an extremely portable form factor. Users
are reliant on the security of these devices to protect this information. In reality, it is not just
the device, but the apps which they download which must provide the necessary security features
to ensure user information is kept safe. Whilst this may be the need, a study by viaForensics
identified “10% of apps stored passwords in plain text, perhaps the most direct threat to user
security in this study” having been “able to recover 76 out of 100 Usernames for apps tested” [106].
Even when not in plain text such information may still be at risk. Researchers at Zvelo were able
to identify the location of the hash of the user’s PIN for the Google Wallet app and subsequently
discovered the PIN’s value through a quick exhaustive search of the possible 10,000 hashes [28].

Consumers rely on the manufacturers of smartphones and the developers of their apps to pro-
vide protection that might be deemed ‘normal’ or ‘suitable’ given the application. For example, a
recent small study found that “most users think that software vendors should be most responsible
for the security on mobile devices” [68]. In some sense, consumers’ expectations that such protec-
tion should be built-in are not unwarranted; after all we rely on similar expectations with regard
to many other products and services. This ‘trust’ in the existence and proper functioning of a

10



basic level of protection could be considered equivalent to what is expected of modern automobiles,
building security systems or lift control systems. That said, smartphones are both multifunction
devices (in fact they could be considered the quintessential multifunction device) and designed to
support extensibility through both hardware and software additions. The need to support such
a variety and flexibility of operations has dramatic affect on how intrinsically ‘locked-down’ or
secure something can be. It is also important to remember that security features often impact
the usability of a product and consumers rarely, if ever at all, buy products with a security over
usability mindset.

The next chapter, Chapter 2, looks at the security architectures found in the Android operating
system in order to highlight the mechanisms employed to protect user information. Subsequent
to this, Chapter 3 looks in detail at the permissions architecture within Android and shows how
the permissions have evolved through recent versions of the operating system. Chapter 4 then
identifies a specific weakness in the permissions architecture and, through the use of a test app,
demonstrates how this weakness can be exploited. The repercussions of this exploit and potential
mitigation is also discussed. My conclusions, along with related and future work are covered in
Chapter 5.

1.7 Motivation & Objective

I have been interested in information security for a number of years, having gravitated towards
the subject as security concerns became ever more obvious and important to me through the
many other computer-related subjects I have worked with. I have always had an aptitude towards
technology and a deep need to understand the exact workings of those technologies I come across.
This desire, combined with a highly procedural approach to my learning and research, has meant
that I have never accepted the ‘just because’ answer and have chased down the details involved
in technologies in order to understand and visualise their operation. This detailed understanding
and inquisitive approach has often led to more questions and ‘what-if’ scenarios which align well
to security research.

My objective through this report has been to direct my attention towards the inner workings of
the Android permissions architecture. Mobile devices are becoming ever more prominent in daily
life and their features and capabilities continue to grow. This increased reliance on them amongst
the general population and my existing fascination with technology in general, and mobile in par-
ticular, identified it as an excellent target for investigation. The Android permissions architecture
whilst easy to understand at a high-level, at least for technical individuals, is not fully documented
and has evolved in recent years across versions of the Android platform. I therefore have chosen
to investigate the detail of Android permissions and the evolution of the architecture, identifying
differences between platform versions. Where specific differences are identified, and found to be
worthy of further research, specific investigations will be carried out to explore deeper into those
platform variations.

11



Chapter 2

Android Security Architectures

2.1 Sandboxing

One of Android’s core security architecture components is the way that installed apps run. Apps
are sandboxed from one another — partitioned so as to prevent unauthorised interference. This is
done through the use of standard Linux capabilities associated with user and group memberships
but it is also related to the Dalvik Virtual Machine (VM), in which apps run. That said, the
Android developer documentation is very clear (in several places) that “the Dalvik VM is not
a security boundary” [23, 45] although this is specifically referring to the VM boundary itself.
The VM allows interaction from inside to outside, thus allowing an app to have a native code
component running on the device. This facility precludes the Dalvik VM from being a security
boundary itself, however, it is directly involved with the sandboxing process.

Firstly each “Android application runs in a separate Dalvik virtual machine in its own process
context” [90]. These instances of Dalvik are spawned from a parent process called Zygote. This
provides process separation of the apps, reducing the likelihood of issues such as “buffer overflows,
remote code execution, and stack smashing” [101]. Secondly apps “are stored in directories that
are assigned unique Linux UIDs during installation” [90]. In fact both a User ID and Group ID
are created for each freshly installed app as seen in Figure 2.1. When the app is run in its Dalvik
instance, that process is run using the app’s specific User ID. This results in each app being limited
to accessing the files in its own directory with this access control managed by the underlying Linux
kernel.

Note that several directories in Figure 2.1 break the standard with regards to a unique app
based ID. These directories relate to certain system installed apps which come pre-installed with
the operating system and employ different rules because they must be accessible to other apps.

As further protection the production builds of Android that come on smartphone devices do
not include a ‘su’ (switch user) command binary, thereby preventing elevation of privileges by
switching to a different (e.g. root) account once running under their specific user account. Part
of the process of ‘rooting’ an Android device therefore involves loading an ‘su’ binary onto the
device for this very purpose.

Using these sandboxing mechanisms, Android segments each app, controls its access and man-
ages its scope so as to protect both the operating system and other apps. That said, there is
one way in which apps can interact with each other’s files. “During file creation, the application
may explicitly define that the created file should be readable or writable by other applications as
well” [90]. This is done through the use of ‘MODE_WORLD_READABLE’ or ‘MODE_WORLD_WRITEABLE’
and is obviously a specific choice made by the developer (or the user if the developer defers the
choice to them). Usually these modes are used in circumstances such as when an e-mail or web
app downloads files which the user may want to access through other apps on the device.

Android also makes use of external storage which is designed for shared files, and thus can not
be considered as belonging to one app or another. Anything saved here is automatically world

12



Figure 2.1: Partial directory listing showing User and Group IDs (e.g. app_1)

readable so as to allow for the reading of files on other devices when the memory card is transferred.
Technically some Android devices have built-in external storage which is not removable, but we
will ignore that nuance for now. By default there are a set of directories within the external
storage which give an idea to the kind of information that this facility may be used for:

∙ ‘Music/’

∙ ‘Podcasts/’

∙ ‘Ringtones/’

∙ ‘Alarms/’

∙ ‘Notifications/’

∙ ‘Pictures/’

∙ ‘Movies/’

∙ ‘Download/’

Whilst these protections are in place there are many reasons why apps need to be able to
interact. Without any ability to cross-communicate how could a user, for example, trigger a web
page to open via a URL in an e-mail? In order that such interactions can occur but are carefully
marshalled, Android provides an Inter-Process Communication (IPC) mechanism passing ‘Intents’.
Whilst this IPC does support a filtering mechanism, this is not an access control or security feature
but is instead designed as a means to determine a destination app’s capabilities.

The sandboxing provided within the Android platform provides a considerable foundation
for the security requirements discussed previously. In limiting an app’s access to both the data
and processes of other apps, the sandboxing greatly reduces the risk of unauthorised disclosure
or modification of sensitive information. This protection does have boundaries though, as has
been highlighted above, with the ability for files to be written as world readable/writable, either
explicitly or through the use of external storage. This is one important case where the user is likely
to be reliant on the practices of the app developer. If the developer has, for whatever reason, coded
their app so that sensitive files are stored in this manner then the information will be exposed.
Whilst the default directories, within the external storage, align with information of the types

13



likely desired as accessible to multiple apps, there may be circumstances where such information
is considered sensitive by a user. As discussed previously any sensitivity likely depends upon
subject matter, context and the user’s viewpoint.

iOS Comparison Apple iOS also employs sandboxing which it defines as “a system feature
that provides fine-grained control of the ability of processes to gain access to system resources,
therefore limiting the amount of damage that can be done by a malicious hacker who takes control
of an app” [65]. In iOS, any third-party app is sandboxed by placing “each app (including its
preferences and data)”[63] in a unique home directory “which is randomly assigned when the app
is installed” [64]. System resources are protected due to the fact that the third-party apps run
as a user ‘mobile’ which is ‘non-privileged’ as far as the operating system is concerned. These
protections are very similar in concept to the sandboxing provided by Android although the
fact that all third-party apps run as a single user has been considered by some as a “cause for
concern” [93].

2.2 Permissions

We have seen how Android uses sandboxing to control which processes and files a particular
app can interact with. A further sandboxing control applied to apps, comes from the fact that
they must explicitly request permissions so as to successfully use the API calls which access cer-
tain system features. For example there are permissions for accessing location based services
(‘ACCESS_COARSE_LOCATION’ and ‘ACCESS_FINE_LOCATION’) as well as for using the device’s
Internet connection (‘INTERNET’) [42]. “Each application must declare upfront what permis-
sions it requires” through the setting of the one or more <uses-permission> tags within its
‘AndroidManifest.xml’ file [94]. Permissions “must be accepted by the user at install time”
after the user has been “prompted to accept or deny the permissions requested by the application”
within its manifest [67]. This process is atomic in that the “users may only grant all requested
permissions or deny them all by not installing the application” [66].

By default only ‘dangerous’ permissions are displayed to the user during the pre-installation
permission authorisation request (Figure 2.2a), with less worrying (‘normal’) permissions initially
being hidden in a collapsed display area (Figure 2.2b). Along with the permission label and
grouping (figures 2.2a and 2.2b), a more user-friendly textual description is also provided (Figure
2.2c) in certain circumstances. When the permissions are accepted the “granted permissions are
stored in an in-memory data structure and also serialised to disk” [69].

As of July 2012 there are some 130 permissions currently listed within the Android docu-
mentation [42] (see Chapter 3 for a detailed investigation into these permissions). These are
manifest permissions, the majority of whose identifier string begin ‘android.permission.’ (e.g.
‘android.permission.INTERNET’). Currently there are four manifest permissions which do not
fall under the ‘android.permission.’ hierarchy. These are:

∙ ‘com.android.alarm.permission.SET_ALARM’

∙ ‘com.android.browser.permission.READ_HISTORY_BOOKMARKS’

∙ ‘com.android.browser.permission.WRITE_HISTORY_BOOKMARKS’

∙ ‘com.android.voicemail.permission.ADD_VOICEMAIL’

As well as being able to request any combination of these predefined permissions, an app may
define and/or request bespoke third-party permissions. Whilst these third-party defined permis-
sions do not restrict access to any underlying Android system functionality, they are designed to
be used as part of the marshalling of IPC between apps or app components.

Permissions are defined, by the system or a developer in the case of third-party permissions,
under one of four protection levels. The default value is ‘normal’ which indicates the lowest
risk features. Permissions defined under this protection level are automatically approved without
requiring the user’s explicit consent. Next is ‘dangerous’, which represents higher risk features.

14



(a) ‘dangerous’ only (b) ‘dangerous’ & ‘normal’ (c) user-friendly description

Figure 2.2: Pre-installation permission authorisation prompts

Any permissions marked with this protection level will require explicit approval from the user.
The third protection level is ‘signature’. Permissions under this protection level will only be
granted by the system to an app which is signed with the same certificate as the app that declared
it. In the case of third-party permissions, this ‘signature’ protection level allows a developer
to tie permissions to their own apps. The final protection level is a variant of the ‘signature’

level and is called ‘signatureOrSystem’ [44]. Permissions under this protection level are only
granted to apps within the Android system image or apps signed with the certificate used to sign
apps within the system image. Two further protection flags are mentioned in the documentation
(‘system’ and ‘development’ [48]) and are used by certain manifest permissions in Android 4.1.
These protection flags are discussed further within Chapter 3.

Whilst the authorisation to use the requested permissions is achieved through the user’s ac-
ceptance to install an app, the enforcement of these permissions is performed by the Android
operating system at runtime. There are, in fact, several instances when permissions are checked,
with attempts to use functionality without the necessary permission resulting in a security excep-
tion. According to the Android documentation, the specific locations of these permissions checks
are [45]:

∙ At the time of a call into the system, to prevent an application from executing certain
functions

∙ When starting an activity, to prevent applications from launching activities of other appli-
cations

∙ Both sending and receiving broadcasts, to control who can receive your broadcast or who
can send a broadcast to you

∙ When accessing and operating on a content provider

∙ Binding to or starting a service

The permission model within Android is possibly one of the most researched areas of the
operating system with a variety of interesting findings having been made (see Section 5.1 for
Related Work). One of the primary observations is that a developer requests permissions through
the ‘AndroidManifest.xml’ file separate to making any permission-requiring API calls in their
app’s code. You can imagine there being two lists — one of required permissions and the other of
requested permissions (in reality no list of required permissions is maintained and there is in fact

15



a third list, that of the granted permissions which may be different again). The fact that these
two lists are distinct means that actually the permissions requested (and thereby prompted for
the user to check) may be different to those actually required by the app itself [66, 85].

Following on from that thought, there are a number of scenarios that can be imagined whereby
the two lists (requested versus required) get out of sync. An obvious starting point is that either list
could include permission entries not on the other list. If the additional entries are on the requested
list, then the app is asking the user to authorise permissions that it will not require [66, 94]. If we
were to assume that the user installs such an app, then it could be argued that no harm is done.
After all, the user has approved those permissions for the app (thus allowing it to be installed), if
it does not use them (or more specifically isn’t coded to use them) what harm could that be. It has
however been pointed out that “overdeclaring breaks the principle of least privilege” with “severe
consequences should the overprivileged application have an exploitable vulnerability” [66]. The
impact of the consequences is obviously highly dependent on both the type of vulnerability exposed
and the capability associated with the unrequired yet requested permission. It is possible, that
excessive permission requests could result in exploitable vulnerabilities where an app limited to the
necessary permissions remains secure. The principle of least privilege is a long standing security
concept for good reason [99] and whilst the likelihood of such a combination of vulnerability and
permission may seem far fetched, experience would suggest that ignoring this principle is unwise.
Whether or not such an event does occur, the developer is running the risk that a user will decide
not to install the app because of a requested permission that is actually not required. That said,
Shabtai et al feel that “in practice, the user is unlikely to deny installation of an application he or
she wants based on such a list” [100]. This view is backed up by the results of an Android Central
poll shown in Figure 2.3 where the majority (58.02%) of the 5,950 respondents admitted “I just
click right through” [41] when prompted to authorise permissions during installation.

Figure 2.3: Be honest - do you check app permissions when installing?

As an alternative the additional entry may be on the required list rather than the requested
list. In this case, a security exception will be raised when the app comes to use the API call for
which it has not requested the appropriate permission. One would hope that such an issue would
be identified during the testing of the app however bugs are common within software development
and there is no reason to think that such an issue will not happen here. In fact research done
in this area has found that this scenario may actually be quite common. For example, Enck et
al found that out of the 1,100 apps they investigated, “246 applications (22.4%) included code
to obtain a phone identifier; however, only 210 of these applications have the READ_PHONE_STATE
permission required to obtain access” and that whilst “505 applications (45.9%) attempt to access
location, only 304 (27.6%) have the permission to do so” [78]. It is not clear from their paper as
to whether the resultant security exceptions are handled within the app’s code or not.

Aside from requesting permissions which are not required and failing to request permissions
that are, several other permissions-related issues have been identified. Both duplicate requests,
where a single permission is listed multiple times in the manifest, and incorrectly spelt permissions

16



have been seen during permission reviews [67]. Duplicate permissions are simply ignored, whilst
incorrectly spelt permissions may be assumed to be third-party permissions depending on the
nature of the error. This in turn raises the same concerns around the principle of least privilege
as with requesting manifest permissions which are not required, as a misspelt permission could be
seen as both an additional unrequired permission and a missing required one.

So far we have considered the total number of permissions available to Android but it is
worth understanding that whilst there are 130 permissions available such large numbers are not
requested by commonly used apps. There have been several pieces of research which have looked
at the average number of permissions in various circumstances. Zhou et al found that “the average
number of permissions requested by malicious apps is 11 while the average number requested by
benign apps is 4” [109]. Hui Chia et al found similar results within their research, they calculated
the mean number of permissions for 650 randomly selected popular (top-selling-free and top-selling-
paid) Android apps as 4.5 compared to 3.0 for 1210 new Android apps (first appearing mid June
2011) [70]. The results shown in Figure 2.4 provide a similar picture when considering 1,100 apps
taken across each of the categories in the Android Market (now called Google Play) [67]. From all
these numbers, an average of three or four permissions seems an acceptable approximation and
also an amount which, assuming adequately explained, one would hope should be manageable for
consumers to consider.

Figure 2.4: Total number of permissions requested for each of the 22 categories in the Android
Market

Whilst the permissions architecture is a critical component of Android’s sandboxing it is clear
that there are issues related to how it is being utilised within developed apps. Whilst it would
be easy to solely blame developers for these mistakes, several researchers have felt that the struc-
ture, number and documentation of Android’s permissions contribute a significant amount to the
problems seen. Wain Yee Au et al analysed the Android documentation associated with platform
releases and identified that “there has been an Android release every three months on average with
four permissions changing on average (either added, removed or deprecated) with each release” [66].
Porter Felt et al identified that the Android “documentation lists permission requirements for only

17



78 methods, whereas our testing reveals permission requirements for 1,259 methods (a sixteen-
fold improvement over the documentation)” [94]. In a similar way Grace et al “found out that
though Android’s permission based security model might be comprehensive enough in specifying
the permissions required to access sensitive data or features, the available API documentation is
incomplete about which APIs a permission grants access to” [85]. It seems likely that part of the
reason why developers are struggling to specify permissions correctly is that the documentation
required for them to accurately and completely identify their requirements does not exist. This
topic is investigated further within Chapter 3.

iOS Comparison There is not much to compare when you consider permissions and iOS. As has
been highlighted in the past, “Android presents 124 permissions to users with install-time warnings,
whereas iOS obtains user consent for two permissions with runtime confirmation dialogs” [95]. It
is expected that the next version of the iOS platform (iOS 6) will require user consent when apps
first attempt to access several more pieces of user information. Currently the prompts are related
to location information however recent issues with malware have led Apple to look at introducing
prompts in the areas of contacts, calendars, reminders and pictures [17].

Based on this comparison, some may consider iOS far behind Android from a permissions
based, user choice perspective. In reality, in both Android and iOS the user only has two options
— install the app, or do not install the app. Whilst it may be possible to make a more informed
decision with regard to Android apps, if Figure 2.3 is anything to go by most consumers aren’t
taking advantage of that additional information (assuming they have the understanding to be able
to).

Some have indicated that a more selection based authorisation process could be beneficial [100,
92, 69], whereby rather than not installing an app because of the permissions it has, a user instead
only authorises those permissions they are willing to allow it. Such a situation could allow the
user a level of ‘testing’ the app before becoming satisfied it is trustworthy and enabling those
previously disabled permissions. Assuming the average number of permissions per Android app
so far seen and the total number of iOS permissions such a proposition may seem eminently
manageable from a user perspective. In reality it is not the number of permissions which is the
current block — after all, the average of three or four quoted previously is from studies taken over
the last three years. It is far more likely that consumers are simply failing to engage with the
security warnings themselves either because they see them as a nuisance, slowing their access to
new functionality or because the information they hold has little resonance with them [97, 89]. If
selective permission authorisation were to be made available, based on current understanding of
user habits it would likely benefit very few users — only those with an existing desire to engage in
security decisions. For those without that desire, or limited understanding of the permissions and
associated capabilities, selective permissions would probably be overwhelming. For this majority,
I am not convinced that simply more choice is what the user requires. I believe, it is the issues
of usability and risk communication which must be resolved in order that consumers will interact
with security messages. This requires a focus on providing useful and engaging decision-making
information and is a problem not limited to smartphones.

2.3 App Stores

There are currently two mechanisms by which a user can install a newly developed Android app.
The first method involves using the Android app store, called Google Play (previously Android
Market) whilst the second involves the direct installation from a third-party source. Google
Play offers a number of benefits to both developer and user. For the developer, Play acts as an
advertising, purchasing, fulfillment and reporting platform for their apps and allows configuration
of the categorisation, branding and cost (unless free) prior to user discovery. For the user, Play
provides a central location for media content such as apps, movies and music with the power of
Google search to help identify and locate potential content of interest. Where necessary, Google
act as the financial payment processor, allowing consumers to only provide their credit card details

18



to Google, whilst in turn purchasing content from a variety of different developers and providers.
Google has also established a community within Play, by enabling consumers to rate and comment
on apps they have installed as well as by showing installation statistics. Google’s intention is to
strengthen this community by allowing developers to reply to comments in the future with those
replies visible along with all the user comments.

As well as making the initial discovery and purchase of apps an easy process, Google Play
provides an app management and update service. This tracks installed, previously installed and
purchased apps in order to allow the user to easily uninstall or reinstall apps on the same or a
future device. With regards to app update, Google Play identifies when an app update has been
uploaded by the developer and notifies the user. It will even automatically download and install
the update if the user has configured that behaviour for that specific app.

Google Play is made available to consumers via two interfaces — a pre-installed Android app
and a web site. The two make available similar functionality with the web site able to send install
and uninstall commands to the device following the mandatory authorisation of permissions, as
seen in Figure 2.5. The Google Play app does provide some device specific security settings which
are not accessible through the web site. These include controls for auto-updating, content filtering
and the ability to set (and manage) a PIN used to restrict both the security settings and the
ability to make purchases of paid content.

Whilst Google Play has many benefits, the barrier to entry for malicious developers is quite
low with the Android Developer site informing developers they can “set up to start publishing
on Google Play in only a few minutes” [27]. The process involves creating a developer profile,
agreeing to the Developer Distribution Agreement (about a seven page document) and paying a
registration fee of $25.00. For a malicious developer who will likely provide false information and
probably not read the agreement, the entire process will indeed take minutes. Once signed up, a
developer (malicious or otherwise) can upload an app for distribution with minimal effort.

In an attempt to control malware, Play does incorporate two security mechanisms. Firstly
an automated system called ‘Bouncer’ is used to scan apps during the upload process. It does
this in an attempt to identify malicious or undesirable activity within apps. This service was
first announced in February of 2012 [5] and whilst no clear indication was given as to when it
was introduced, the information provided would suggest this was sometime during the first half
of 2011. The fact that Bouncer “actually run[s] every application on Google’s cloud infrastructure
and simulate[s] how it will run on an Android device” [5] has been utilised by two researchers as
a means to identify how to subvert the automated scanning system [49]. They wrote test apps
which called back to their servers when run and using this information they identified that the
app-under-test runs in an emulator, which they then worked out how to subvert.

As a second layer of protection, Google performs post upload, house-keeping operations on
Google Play, identifying or reacting to malicious apps being downloaded by consumers, which
it then removes from the listings and can even forcibly uninstall from Android devices already
‘infected’. Historically, malware has successfully gotten onto Google Play then to be downloaded
by tens or hundreds of thousands of consumers. This secondary protection mechanism has then
been employed to clear up the mess after the fact. For example, “Google removed more than 100
malicious apps from the Android Market in 2011” [103]. Reports suggest that malware on Android
is growing where “a comparison between the number of malicious Android application package files
(APKs) received in Q1 2011 and in Q1 2012 reveals a more staggering find - an increase from 139
to 3063 counts” [80]. Whilst there are claims that the number of malware variants is increasing
on the Android platform, “most of the newly discovered or existing malwares have been created
to reap profit, most commonly by sending premium-rate SMS messages” [79].

As an alternative to Google Play, consumers can install apps directly from any third-party
source. In reality this can take any form of file transfer imaginable, whereby the result is that the
Android package file (.apk) reaches the device and is then run. This can include downloading apps
from an alternative app store (e.g. Amazon Appstore for Android), downloading from a web site,
receiving through e-mail or direct copy via USB cable. In order for subsequent install to work,
the user must first check a security setting which authorises ‘Unknown sources - Allow installation
of non-Market apps’ as in Figures 2.6b and 2.6c. Without this setting enabled, the installation

19



(a) web site permission authorisation

(b) app download (c) app installation complete

Figure 2.5: Google Play web site triggered app installation

will not proceed and a warning will be shown to the user (Figure 2.6a). Whilst these mechanisms
provide a means of installing apps from sources other than Google Play, they do still require the
user to perform the permission authorisation prior to installation. Once installed, these apps will
not benefit from the same update management afforded apps installed through Google Play with
the user responsible for app management themselves (although the app itself may assist if coded
to do so).

During the investigations documented in Chapter 3 and 4, the test apps were installed on
devices and emulators using these third-party sources techniques.

There is one other way of installing apps from a third-party source which also makes use of

20



(a) unknown sources warning (b) unknown sources option (c) confirmation prompt

Figure 2.6: Unknown Sources - Allow installation of non-Market apps

a direct transfer via USB. This mechanism requires a further security setting to be enabled —
‘USB debugging - Debug mode when USB is connected’ — and allows for the silent installation
of apps using the ‘Android Debug Bridge’ utility. When installed via this method, the user is
not prompted to authorise permissions, with the app installing without any user interaction on
the device. This is not intended to be a core route for installations by consumers but is instead
intended for developers and testers. Whilst that may be the case, the option is available to
consumers technically able to employ it or coerced to do so by computer based malware. With
the ability for malicious apps to get onto Google Play, at least temporarily, it is currently unlikely
that this convoluted and potentially suspicious technique will be employed by malware developers.

iOS Comparison In comparison to Google Play, the Apple App Store can be considered a
more restrictive distribution point. The developer requirements for use of the App Store are
far more rigorous for a start. In order to be able to distribute apps through the Apple App
Store a developer must be part of the Apple Developer Program, costing a minimum of $99 per
year [21]. A developer must also agree to the iOS Developer Program License Agreement, a 44
page document and provide basic developer information. Any app submitted to the App Store will
then go through the App Store Approval Process before being made available to consumers. This
process includes review by the App Review Team who may reject the app if it does not conform
to either the ‘App Store Review Guidelines’ or the ‘iOS Human Interface Guidelines’ [11, 36]. In
fact there is even an App Store Submission Tips page for developers, designed to help them avoid
issues which have previously resulted in apps being blocked from the App Store [12]. If Apple
reject an app, the developer is able to submit an appeal via the App Review Board.

It would seem likely that the cost of this process to potentially malicious developers could act
as a reasonable deterrent and experience has so far shown that whilst the App Store has not been
100% free of malware, it has experienced far fewer instances than Google Play. This rigorous and
taxing process does however impact throughput. Apple maintains a review process status on their
approval process page [10] which most recently displayed the information shown in Figure 2.7.

A further difference between Android and iOS is that side-loading of apps on iOS (i.e. not
downloading them from the main app store) is far more restricted and convoluted a process than
on Android. Some may say that there is no side-loading on iOS, which is not quite true though.
It is possible to load direct to an iOS device, but to do so requires membership of the Apple
Developer Program (incurring the costs above) and the use of a custom provisioning profile which

21



Figure 2.7: App Store Review Status

must be signed by Apple and works on a device-by-device basis. In comparison to Android, where
the only requirement is to check an option on the device, it is clear that this is not intended
for anything other than developer testing of iOS apps. These restrictions over side-loading mean
that officially sanctioned third-party app stores for iOS devices do not exist. As with almost
everything in the mobile security space, there is a slight exception. Jailbroken devices, ones where
an exploit has been used to breakdown the security protections and allow the device to be run as
an administrator (known as rooting on Android), do enable this side-loading and commonly make
use of an unofficial third-party app store called Cydia [22].

Concluding Remarks The security architecture components detailed in this chapter, along
with defensive programming of apps, go a long way to protecting user information on their smart-
phone device. In the next chapter the permissions architecture of Android will be investigated
further, in particular with a view to identifying the user interaction with permission authorisation
requests and the history of permissions across recent platform iterations.

Before moving on there is one last security mechanism worth briefly mentioning as it is a
protection against direct data access. Whilst smartphones currently rely on single-user operating
systems, the fact that many smartphone apps store user credentials means that anyone able to
access the device is likely able to then make use of those stored credentials to access specific services
and information stores. In order to maintain confidentiality of information there is therefore a clear
need for strong access control mechanisms to be employed on smartphone devices. As far as advice
for smartphone security goes, there is a consistent theme from all manner of sources highlighting
the need to employ the devices password/PIN/alternative locking mechanism [24, 47, 39, 55].
Just using a locking mechanism doesn’t immediately mean consumers are ‘safe’. The strength of
the mechanism and the associated authentication factor (secret password for example) are two
obvious factors which affect the level of security provided and on more than one occasion the
locking mechanism has been found to be a source of vulnerability in a smartphone OS [34, 35].
Figure 2.8 shows the results of a question included in a study of 520 people by Sophos. A third of
respondents have “no passwords on either phone” [103].

Figure 2.8: Do you have to enter a password to access your smartphones?

A recent study by Symantec highlighted the extent to which lost devices are accessed. The
Smartphone Honey Stick Project identified that of 50 smartphones ‘lost’ with fake information and

22



monitoring apps, 96% were accessed by the finder [104]; 89% of devices had personal related apps
and information accessed whilst 83% had corporate related apps and information accessed; 70%
had both types of information accessed and even after all this activity, 50% of the finders contacted
the owner and provided contact information in order to return the lost device. Whilst some of
this activity could be construed as trying to identify the owner, the specific monitoring capability
highlighted that some activity was far more penetrating — attempts to access an online banking
app were made in 43% of cases and a ‘saved passwords’ file was accessed on 57% of devices.

23



Chapter 3

Android Permissions Architecture

As has already been identified, and as further documented in Section 5.1, there has been a range of
research performed into the permissions architecture of Android. A common complaint is that the
Android documentation is limited and that developers and consumers suffer from this deficiency,
exacerbated by the rate of change of the permissions. As a follow-on to the existing research,
I have chosen to investigate the permissions from two further considerations. Firstly, I look to
understand the categorisation of the current 130 permissions [42] both in terms of logical groupings
and also in terms of protection level. Secondly, I look to understand how the permissions and their
categorisations have changed across versions of the Android platform from 2.2 (Froyo) to 4.1 (Jelly
Bean). Based on Google’s own figures from July 2012, this covers almost 95% of Android devices
(Figure 3.1).

Figure 3.1: Android platform versions (as at 02/07/2012)

24



3.1 Permission Categorisation Investigation

3.1.1 Preparation

In order to perform this investigation I created Permission Test, an Android app which requests
every one of the currently documented 130 manifest permissions (as illustrated in Figure 3.2).
During the installation of the app the user is prompted to authorise these permissions as discussed
in Section 2.2. It is these pre-installation permission authorisation prompts, and the subsequent
granted permissions once the app is installed, that hold the most easily accessible information
regarding permission categorisation and protection level. Once installed, the test app itself does
not make use of the permissions requested and instead solely displays a ‘Hello World’ message on
the screen. This simplification was necessary in order to avoid the need to code the test app to
make use of every one of those 130 permissions. Something which would obviously be extremely
time consuming and result in an app of considerable size and complexity and thus with significant
potential for errors.

The Permission Test app actually requested the ‘INTERNET’ permission twice within its man-
ifest. This is because the permission was used as a control, to ensure the correct permission
request syntax was being employed and thus the correct information displayed. The choice of
the ‘INTERNET’ permission came from the fact that it is both a well-known and often-used
‘dangerous’ permission and thereby a clear indicator for successful permission requests. Du-
plicate requests for a permission are ignored by the Android platform and so this control request
did not affect any observations made during the analysis.

3.1.2 Testing

I first installed Permission Test on a Galaxy Nexus device (running Ice Cream Sandwich, specif-
ically Android version 4.0.4). Once the app was installed, the app’s app info screen was viewed
and the screenshots from Figure 3.3 taken so as to document the granted permissions’ labels,
protection levels and groupings.

As can be seen from Figure 3.3 and as previously illustrated with Figure 2.2, the permissions
are listed in two sections — the ‘dangerous’ permissions first, followed by the ‘normal’ permis-
sions second (hidden by default). Within each section, the permissions are organised into logical
groupings based on the type of feature they relate to.

Using the Android documentation, information from internal Android system files and the
testing of singular permissions where necessary, the permission labels from Figure 3.3 were linked
back to specific manifest permissions amongst the 130 requested. Of particular use was the Android
system file ‘/data/system/packages.xml’ which contains a listing of permissions defined within
the device as well as information related to currently installed apps. Using a combination of this
information, the protection levels and groupings were identified for each permission. These results
are shown in the left hand table of Figure 3.4 with each source permission cross-referenced against
a logical group through the use of a letter ‘D’ or ‘N’ depending on whether the permission’s
protection level was found to be ‘dangerous’ or ‘normal’ respectively. This left hand table
contains 79 permissions which align with the 78 labels from Figure 3.3. The two lists are not
exactly the same length due to the fact that both the ‘KILL_BACKGROUND_PROCESS’ permission
and the ‘RESTART_PACKAGES’ permission utilise a single label: ‘kill background processes’.

Whilst 130 permissions were requested, those listed in the right hand table of Figure 3.4 were
not seen through the labels shown in the app’s app info screen. This suggested that these permis-
sions were not granted to Permission Test during installation. This fact was further confirmed
by checking the 130 requested permissions against those permissions documented as granted to
the app within its section of the ‘/data/system/packages.xml’ file on the Nexus device. The
79 permissions listed in the ‘/data/system/packages.xml’ file were identical to those in the
left table of Figure 3.4, confirming that of the 130 permissions requested, 79 permissions had
been granted. It is worth noting that access to the ‘/data/system/packages.xml’ file requires
elevated privileges and so during this portion of testing the Galaxy Nexus device was ‘rooted’

25



Figure 3.2: Permission Test ‘AndroidManifest.xml’ (lines 1 to 58)

to enable data extraction. In order to ensure zero impact was experienced in the investigation’s
results, the ‘rooting’ of the device was performed manually with the minimum steps required to
gain elevated privileges. The device operating system image was left untouched so as to ensure
accurate and repeatable results.

In order to determine information about the 51 permissions not granted to Permission Test,
the device’s logging system was analysed to identify any Dalvik VM or Package Manager entries
associated with the app or its permission requests. The Package Manager is the Android service
responsible for installation and app management. This analysis identified a set of log entries, some
of which can be seen in Figure 3.5, tagged ‘PackageManager’ and indicating one of three warning
types.

∙ ‘Unknown permission [...] in package com.escapadesinsecurity.android.
permission.test’

∙ ‘Not granting permission [...] to package com.escapadesinsecurity.android.
permission.test (protectionLevel=2 flags=0x8be46)’

∙ ‘Not granting permission [...] to package com.escapadesinsecurity.android.
permission.test (protectionLevel=3 flags=0x8be46)’

The first warning type was seen four times, the second was seen twenty four times and the third

26



(a) screenshot 1 (b) screenshot 2

(c) screenshot 3 (d) screenshot 4 (e) screenshot 5

Figure 3.3: Permission Test app information (Galaxy Nexus - Ice Cream Sandwich) - dispersed
over multiple screenshots due to vertical scrolling

type was seen twenty three times. These three warning types covered all of the 51 permissions not
granted to the Permission Test app. A comparison with the Android documentation [42, 48] identi-
fied that the four permissions associated with the ‘Unknown permission’ warning were permissions
newly introduced in API16 (Jelly Bean). Protection Level 2 is identified as the ‘signature’ pro-
tection level whilst Protection Level 3 is the ‘signatureOrSystem’ protection level. Whilst this
information was insufficient to assign the remaining 51 permissions into their groupings, it had
allowed the identification of the associated protection levels of 47 permissions. The classification
of these permissions’ protection levels also explained why they had not been granted to the Per-
mission Test app — it was not signed by the necessary key to meet the requirements for protection
levels 2 and 3 permissions.

It is worth mentioning at this point that whilst four permissions were attributed the ‘Unknown

27



Figure 3.4: Ice Cream Sandwich permissions breakdown (Galaxy Nexus - Ice Cream Sandwich)

permission’ warning and not granted to the app, the Android documentation [42, 9] actually
identifies six permissions as new to API16 (Jelly Bean). This will be revisited in Section 3.2 but
at this time it is not clear whether there is an error in the Android documentation.

28



Figure 3.5: Package Manager log entries post installation of Permission Test (Galaxy Nexus - Ice
Cream Sandwich)

3.1.3 Results

From this investigation it has been possible to identify that of the 130 permissions currently
documented, 79 of these are accessible to developer’s apps running on the Ice Cream Sandwich
(API15) version of the platform and 51 are restricted, either through being introduced in Jelly
Bean (API16) or requiring that the app come from a source able to sign an app with the same
key as used by the device producer. Of the 79 permissions available to developers, 59 of these
are marked with a protection level of ‘dangerous’ whilst 20 are marked as ‘normal’. The
permissions are split amongst a set of logical groups as per Table 3.1.

‘dangerous’ ‘normal’ Total
Group permissions permissions permissions

Your personal information 13 2 15
Development tools 4 0 4
Services that cost you money 2 0 2
Your location 3 1 4
Your messages 5 0 5
Network communication 4 2 6
Your accounts 3 1 4
Storage 1 0 1
Hardware controls 3 2 5
Phone calls 2 0 2
System tools 19 11 30
Default 0 1 1

- 59 20 79

Table 3.1: Ice Cream Sandwich permission groupings

In order to determine the protection levels and groupings that apply to the four ‘Unknown
permissions’ on Ice Cream Sandwich, the Permission Test app was installed onto an emulator
running Jelly Bean. This identified that one permission was actually assigned protection level 2 and
hence was not then granted, but was logged. Two of the other three were identified as ‘dangerous’
permissions in the ‘Your personal information’ group, whilst the third was a ‘normal’ permission

29



within the ‘System tools’ group.
The results for these four ‘Unknown permissions’ when installed on Jelly Bean suggested that

permission categorisation may not be as straight forward as one might think across Android
platform versions. This realisation led to the second stage of investigation, documented in the
next section.

3.2 Permission Evolution Investigation

3.2.1 Testing

Having completed the initial Permission Categorisation investigation, the Permission Test app
was installed, in turn, onto each of the following Android platform versions running on emulators.
The emulators were created and managed using the Android Virtual Device (AVD) Manager which
comes as part of the Android SDK.

∙ API8 - Android 2.2 - Froyo

∙ API10 - Android 2.3.3 - Gingerbread

∙ API13 - Android 3.2 - Honeycomb

∙ API14 - Android 4.0 - Ice Cream Sandwich

∙ API15 - Android 4.0.3 - Ice Cream Sandwich

∙ API16 - Android 4.1 - Jelly Bean

Having installed Permission Test on a particular Android platform version, the same informa-
tion was collected as in Subsection 3.1.2. Additionally, the specific permission labels were noted,
so that these could be compared across platform versions along with the protection levels and
groupings. Where permissions were not granted to Permission Test, the system logs were once
again consulted to identify the protection level associated with those permissions. As before, the
grouping information and associated permission label were unavailable in the log entries for these
ungranted permissions.

During the analysis of the system logs associated with the Jelly Bean version of Android, it
became clear that changes had been made to the assignment of protection levels in this plat-
form version. Whilst previously there had been four possible protection levels (as discussed in
Section 2.2), this had now been expanded with the introduction of two flag values which are doc-
umented in the most recent Android documentation [48]. The initial four protection levels were
‘normal’, ‘dangerous’, ‘signature’ and ‘signatureOrSystem’, and were assigned numerical
values within the platform of 0, 1, 2 and 3 respectively. The two new flags have been assigned
hex values of ‘0x10’ for ‘system’ and ‘0x20’ for ‘development’. These flag values expand the
number of possible protection levels considerably, although only two new protection levels were
seen within the analysis. These levels were represented by the decimal values 18 and 50. The
decimal value 18 (hex value ‘0x12’), indicates protection level 2 with the ‘0x10’ flag set. This
is interpreted as ‘signature’ or ‘system’. It is not clear how or if this protection level (18) is
different from the existing ‘signatureOrSystem’ protection level (3), although the results shown
in Table 3.2 suggest that it is a reasonably direct replacement. The decimal value 50 (hex value
‘0x32’), indicates protection level 2 with both the ‘0x10’ and ‘0x20’ flags set. This is inter-
preted as ‘signature’ or ‘system’ or ‘development’ and represents a totally new protection
level combination.

3.2.2 Summary Results

Table 3.2 shows a summary of how the current 130 permissions are distributed amongst the
protection levels across the Android platform versions, with ‘Unknown permissions’ listing those
permissions which were not available at that time. It also identifies at which version those previ-
ously ‘Unknown permissions’ were introduced and how many permission labels were revised with
each new platform version. Considerable changes have been made with the introduction of Jelly

30



Bean (API16), with 47 permission labels being changed, four new permissions added and, as al-
ready highlighted, a change to the protection level assignments following the introduction of two
new protection level flags. The most significant permissions change prior to that was with the
initial introduction of Ice Cream Sandwich (API14) when seven new permissions were added.

Permission Count
Number of ... API8 API10 API13 API14 API15 API16

‘normal’ (0) permissions 20 20 20 20 20 21
‘dangerous’ (1) permissions 54 55 55 59 59 55
‘signature’ (2) permissions 24 22 23 24 24 25
‘signatureOrSystem’ (3) permissions 16 20 21 23 23 0
‘0x12’ (18) permissions 0 0 0 0 0 21
‘0x32’ (50) permissions 0 0 0 0 0 8
‘Unknown permissions’ 16 13 11 4 4 0
New permissions - 3 2 7 0 4
Revised permission labels - 2 0 2 0 47

Table 3.2: Android permissions breakdown across platform versions

It is worth noting that in Table 3.2 the protection level values between API14 and API15 show
no change with no new permissions added. There were seven new permissions observed between
API13 and API14 however. Whilst this is experimentally the case, when using the SDK provided
emulators, this does not align with the Android documentation — which identifies five permission
additions in API14 and then two in API15 [7, 8]. As was previously discussed in Subsection
3.1.2 the documentation indicates six permission additions in API16 although I have only been
able to experimentally identify four [9]. In both these cases, where permissions are documented
as being introduced in a particular platform release, I have been granted those permissions on a
previous release. This may be because they were introduced in the platform before officially being
announced. At least in the case of the two permissions from API16, however, these were not just
granted to my Permission Test app on the proceeding Android platform version, but were granted
on every platform version I have tested.

3.2.3 Detailed Results

The detailed results of the Permission Evolution analysis are presented in the tables of Figures 3.6,
3.7, 3.8, 3.9, 3.10 and 3.11. Due to the complexity of the investigation and the results recorded,
the key defined in Table 3.3 is required to interpret the results.

31



Column Group Entry Description

Permission
red corner flag Row with result of particular interest

Labels
? Undetermined permission label

- - > Permission label unchanged since last value
U ‘Unknown permission’

Protection Levels
U ‘Unknown permission’
0 ‘normal’ (0) permission
1 ‘dangerous’ (1) permission
2 ‘signature’ (2) permission
3 ‘signatureOrSystem’ (3) permission
18 ‘0x12’ (18) permission
50 ‘0x32’ (50) permission

Group
UNKNOWN Undetermined group

Y Permission present in this group

Table 3.3: Key for Figures 3.6 through 3.11

32



Figure 3.6: Permission Evolution results - Protection Levels - part 1

33



Figure 3.7: Permission Evolution results - Protection Levels - part 2

34



Figure 3.8: Permission Evolution results - Protection Levels - part 3

35



Figure 3.9: Permission Evolution results - Groups - part 1

36



Figure 3.10: Permission Evolution results - Groups - part 2

37



Figure 3.11: Permission Evolution results - Groups - part 3

38



As identified in the key, certain rows within the results are marked with a small red corner
flag in the Permission column. These rows have results of particular interest. The permissions in
question are listed here for ease of reference.

∙ ‘CHANGE_COMPONENT_ENABLED_STATE’

∙ ‘DISABLE_KEYGUARD’

∙ ‘DUMP’

∙ ‘KILL_BACKGROUND_PROCESSES’

∙ ‘MODIFY_PHONE_STATE’

∙ ‘READ_EXTERNAL_STORAGE’

∙ ‘READ_FRAME_BUFFER’

∙ ‘READ_LOGS’

∙ ‘READ_USER_DICTIONARY’

∙ ‘RESTART_PACKAGES’

∙ ‘UPDATE_DEVICE_STATS’

∙ ‘WRITE_APN_SETTINGS’

∙ ‘WRITE_USER_DICTIONARY’

Of these thirteen interesting permissions, eight undergo significant protection level changes
across the platform versions tested and are detailed individually in Table 3.4. For these purposes,
the definition of a significant protection level change is any change of protection level not including
the introduction of a new permission (i.e. a change from ‘Unknown’) or a change from protection
level 3 to 18 (‘signatureOrSystem’ to ‘signature’ or ‘system’). In each case, the protection
level changes which do occur have the result of increasing the severity of the permissions’ marking.
There is one change from ‘normal’ (0) to ‘dangerous’ (1), three changes from ‘normal’ (1) to
‘signature’ (3), one change from ‘normal’ (0) to ‘0x32’ (50), three changes from ‘dangerous’

(2) to ‘signature’ (3) and one change from ‘signature’ (3) to ‘0x32’ (50). Of these changes,
five happen between API8 and API10, two between API13 and API14 and two between API15
and API16.

Protection Level
Permission API8 API10 API13 API14 API15 API16

‘CHANGE_COMPONENT_

ENABLED_STATE’ 2 3 3 3 3 18
‘DISABLE_KEYGUARD’ 0 1 1 1 1 1
‘DUMP’ 1 3 3 3 3 50
‘MODIFY_PHONE_STATE’ 1 3 3 3 3 18
‘READ_FRAME_BUFFER’ 2 2 2 3 3 18
‘READ_LOGS’ 1 1 1 1 1 50
‘UPDATE_DEVICE_STATS’ 2 3 3 3 3 18
‘WRITE_APN_SETTINGS’ 1 1 1 3 3 18

Table 3.4: Protection Level changes across platform versions

Within the analysis results, the ‘READ_LOGS’ permission is interesting for two reasons. As
well as undergoing a protection level change as detailed in Table 3.4, it also is the only permission
to undergo a group change. In API8 the ‘READ_LOGS’ permission is in the ‘System tools’ group,
whilst in API10 and onwards it has been moved into the ‘Your personal information’ group.
Interestingly, this change is made separate to any change in the protection level.

As has been identified in Subsection 3.1.2, the two permissions ‘KILL_BACKGROUND_PROCESS’
and ‘RESTART_PACKAGES’ utilise a single label: ‘kill background processes’. Whilst this may be a
planned and acceptable scenario, the permission names suggest different functionality which the
user would be unable to distinguish between from the single label. In fact both of these permissions

39



are assigned the ‘normal’ protection level and so by default would be hidden, in the collapsed
view, during the pre-installation permission authorisation.

The permissions ‘READ_USER_DICTIONARY’ and ‘WRITE_USER_DICTIONARY’ are the two per-
missions mentioned in the summary results (Subsection 3.2.2) which are documented as being
new to API16 along with the four permissions which were experimentally verified (‘BIND_ACCESS-
IBILITY_SERVICE’, ‘READ_CALL_LOG’, ‘READ_EXTERNAL_STORAGE’ and ‘WRITE_CALL_LOG’). Dur-
ing the Permission Evolution analysis these two dictionary related permissions were granted by
every version of the Android platform. It is unclear why these are documented as new to API16
based on this evidence.

The final interesting permission is ‘READ_EXTERNAL_STORAGE’. This is one of the four recently
introduced permissions and at this time, whilst the permission exists, the documentation explains
that there is currently no mandatory enforcement of the capability associated with this permis-
sion. In fact Jelly Bean 4.1 (API16) currently has a developer option ‘Protect SD card - Apps
must request permission to read SD card’ which is designed to allow the testing of this future
functionality. The emulator included with revision 20 of the Android SDK does not seem to alter
its behaviour in line with this option however, with reading from external storage possible without
the ‘READ_EXTERNAL_STORAGE’ permission, whether the option is checked or not.

Concluding Remarks These various investigations have identified considerable information
regarding the categorisation and evolution of permissions within the Android platform. As a
supplement to the Android documentation, these results allow a far more detailed understanding
of the inner workings of app permissions and have even called into question several pieces of the
documentation which may need further checking.

Through the insights gained from these results, as well as the process of producing them a
question has arisen which warrants further investigation. If duplicate permissions are ignored
by the platform and misspelt permissions are assumed to be third-party permissions — what
happens when a third-party permission is requested before the app which declares that third-party
permission is installed? This question is considered in Chapter 4 along with a more important
follow-up.

40



Chapter 4

Dormant Android Permission

Requests

Having discussed the Android security architectures in Chapter 2 and then investigated the permis-
sions architecture in Chapter 3, it was clear that the permissions management process in Android
was both fundamental to security and complex in nature. To further understand the process of
permission granting, I developed two new Android apps, Permission Test Creator and Permission
Test Requestor, which enabled the investigation of third-party permission requests.

Permission Test Creator was written defining a third-party permission using the <permission>
tag within its ‘AndroidManifest.xml’ file [44]. The third-party permission was defined with the
name ‘com.escapadesinsecurity.android.permission.value.TEST’ and assigned the protec-
tion level ‘dangerous’. The label of the permission was set to ‘This is the TEST permission’s
label’ whilst the description was set to ‘This is the TEST permission’s description’. As well as defin-
ing this permission, Permission Test Creator also requested this permission and the ‘INTERNET’
permission. The ‘INTERNET’ permission was used here as a control permission, as had been the
case with the Permission Test app in Chapter 3.

Permission Test Requestor does not define any new permissions, but as its name suggests its
‘AndroidManifest.xml’ file includes a request for the permission defined by Permission Test
Creator (‘com.escapadesinsecurity.android.permission.value.TEST’) and no others.

4.1 Third-party Permission Requests Investigation

The investigation using Permission Test Creator and Permission Test Requestor was performed
on the Galaxy Nexus device used within Subsection 3.1.2 (running Ice Cream Sandwich, Android
version 4.0.4). This investigation took the form of two experiments using the two test apps
installed in alternate orders. Figures 4.1a and 4.1b provide high level workflows for each of these
experiments and include indications of the results which are shown through the various other
figures accompanying this section.

Experiment 1 Firstly I installed Permission Test Creator on the Nexus device. During the
installation, the pre-installation permission authorisation prompt shown in Figure 4.2a was dis-
played. You will notice that only one permission is prompted for user acceptance, even though
the app requests two permissions — the ‘INTERNET’ permission and the third-party permission
it itself defines. Both permissions have a protection level of ‘dangerous’ and so by protection
level alone both permissions should be listed within the prompt. When the permissions granted
to the app were checked post installation, it was clear to see, as in Figures 4.2b and 4.2c, that
both permissions had been granted to the app even though only the ‘INTERNET’ permission was
displayed during authorisation. As a follow-up to the installation of Permission Test Creator,
the Permission Test Requestor app was installed. When installed after Permission Test Creator,

41



(a) experiment 1

(b) experiment 2

Figure 4.1: Third-party Permission Request Experiments

the permission authorisation prompt shown in Figure 4.3a was displayed for confirmation. This
prompt includes the request for the third-party permission defined by Permission Test Creator.

(a) install (b) app info 1 (c) app info 2

Figure 4.2: Permission Test Creator installation and app information

These results suggest that the permission authorisation prompt could not display a permis-
sion that was not already registered within the system. They further suggest, that the process
of installing an app which defines a third-party permission, completes a permission registration

42



process and thus allows the newly declared permission to be shown for approval during installation
of future apps who request it and subsequently as granted once they are installed.

(a) pre-existing permission (b) no permission

Figure 4.3: Permission Test Requestor installation

Experiment 2 In order to test my hypothesis — that permissions can only be displayed if they
are already registered in the system — both apps where uninstalled and then the Permission Test
Requestor app was re-installed first. During the installation, the permission authorisation prompt
shown to the user was as in Figure 4.3b with no requested permissions displayed for authorisation.
This was different to the its previous installation when it had been installed last. The Permission
Test Creator app was then installed second, with its permission authorisation prompt displaying
exactly as it had done before (Figure 4.2a).

Aside from the proof of my hypothesis, of significant interest was the fact that having installed
Permission Test Creator, the app info screen for Permission Test Requestor then showed the
third-party permission granted, as in Figures 4.4c and 4.4d, compared to Figures 4.4a and 4.4b
before the creator’s installation. This ‘dangerous’ permission seemed to have been granted, even
though the user had never been prompted to authorise it.

4.2 Dormant Permission Requests Investigation

4.2.1 The Hypothesis

The observations from the previous section, when combined with the knowledge of the evolution
of the permissions architecture from Chapter 3, raised a new and potentially far more sinister
hypothesis. What if a malicious individual requested permissions within an app, to be installed on
one version of the Android platform where those permissions do not yet exist, but enable sensitive
activities on a future version of the Android platform? In other words, could a malicious app
be created which includes dormant permissions requests, designed to make use of features of the
Android platform which do not apply to the version of the platform the app is first installed onto,
but which come alive at a later time, unbeknownst to the user, when the device’s platform is
upgraded?

Firstly, for such an app to be possible, the observations made in regard to a third-party permis-
sion, documented in the last section, would have to apply for newly defined manifest permissions

43



(a) app info 1 (no permission) (b) app info 2 (no permission)

(c) app info 1 (existing per-
mission)

(d) app info 2 (existing per-
mission)

Figure 4.4: Permission Test Requestor app information

across platform upgrades. Secondly, for such an app to achieve a malicious end, some new permis-
sions would need to be defined within a new version of the platform and these permissions would
need to enable access to sensitive operations. Finally, for such an app to be possible to write, a
malicious developer would need knowledge of those new permissions and be able to build them
into an app in such a way that the app did not crash or otherwise raise undue attention when
running on the older platform.

Requirement 3: Development Capability The third requirement actually involves the most
common knowledge of the three (and this is the reason I mention it first). Developers already
make use of the Android documentation and this documentation openly publicises the manifest
permission list and differences between API versions [42, 7, 8, 9]. As well as this, the Android

44



documentation and SDK are promptly updated and released before each new platform version
reaches live devices, so that developers can begin tweaking and testing their apps for this new
platform. Within this documentation is information on how to perform API detection in an app
and with a simple call to ‘Build.VERSION.SDK_INT’ a developer can determine which Android
API level an app is running on and tailor its actions accordingly.

Requirement 2: Permission Availability The second of these requirements is known to
have already been met through the Permission Evolution investigation I performed in Chapter 3.
Coincidentally, the latest version of Android, Jelly Bean, introduced a handful of new permissions,
two of which, ‘READ_CALL_LOG’ and ‘WRITE_CALL_LOG’, are marked with a protection level of
‘dangerous’ and would likely be considered by many as controlling access to sensitive operations.
Jelly Bean also introduced the ‘READ_EXTERNAL_STORAGE’ permission which sounds perfect for
malicious activity as well and likely could be once the enforcement mechanism, which was discussed
at the end of Subsection 3.2.3, comes out of test and into full use.

Requirement 1: Platform Behaviour In order to determine if the first requirement is met
by the Android platform, such an app would need to be installed on a device and then a platform
upgrade performed. Fortuitously, the Galaxy Nexus device used for my previous investigations
had recently started prompting me to install a platform upgrade from Ice Cream Sandwich —
Android 4.0.4 (API15) to Jelly Bean — Android 4.1 (API16) as shown in Figures 4.5a and 4.5b.

(a) notification (b) system update

Figure 4.5: Jelly Bean update on Ice Cream Sandwich

4.2.2 Permission Test Jelly Bean

In order to test this dormant permission request hypothesis I developed Permission Test Jelly
Bean. This app requests three permissions within its ‘AndroidManifest.xml’ file — ‘READ_CALL_LOG’,
‘WRITE_CALL_LOG’ and ‘READ_EXTERNAL_STORAGE’ (each of which is new to Jelly Bean). Unlike
my previous test apps which had no functionality other than displaying a ‘Hello World’ message
on the screen, Permission Test Jelly Bean performs a series of operations when run (although
these operations occur in the background with the only UI interaction being the ‘Hello World’
message as with my other test apps).

Firstly the app determines if it is running on API16 (Jelly Bean). If not, the app writes the
message ‘ABC123: I’m not on Jelly Bean, I’m on SDK??, so I must be good - shhh, don’t draw

45



attention to yourself!’ to the system log and performs no further action (where SDK?? is the
actual SDK version the app is running on). If the app identifies it is running on API16, however,
it instead performs the following series of operations:

1. The app writes the message ‘ABC123: I’m on Jelly Bean, so I can be bad - shhh, don’t draw
attention to yourself!’ to the system log.

2. The app uses the ‘READ_CALL_LOG’ permission to access the user’s call log.

3. The app writes the phone numbers found in the call log to the system log.

4. The app uses the ‘WRITE_CALL_LOG’ permission to write a new entry to the user’s call log.

5. The app documents this new entry in the system log.

6. The app verifies whether external storage is present in the device.

7. The app uses the ‘READ_EXTERNAL_STORAGE’ permission to read the folder and files in the
root of the external storage (if present).

8. The app writes the names of any folders or files found into the system log.

Hopefully it should be clear that the functionality of the Permission Test Jelly Bean app meets
the requirements for a malicious app as described in the hypothesis above. The app makes use of
permissions unique to Jelly Bean, performs malicious functions only on the Jelly Bean (API16)
platform and is designed to raise no visual indication of its behaviour to the user (other than that
entailed in demonstrating use of the permissions in question - i.e. writing a false call log entry).

4.2.3 The Investigation

In preparation for testing the veracity of my hypothesis, the Galaxy Nexus device, still running
Ice Cream Sandwich, was used to make and receive several calls so as to populate the call log.
It then had files placed in the root of the external storage partition. These preparations were to
replicate the usual circumstances of user devices and to enable the demonstration of the sensitive
capabilities associated with the Permission Test Jelly Bean app’s requested permissions.

Figure 4.6: Dormant Permission Request Investigation

Figure 4.6 shows a high level workflow for the investigation which is documented in the text
and figures of this section. To begin, the Permission Test Jelly Bean app was installed onto the
Nexus device, a process which prompted for no permissions to be authorised and resulted in no
permissions being granted (as shown in Figures 4.7a, 4.7b and 4.7c).

To demonstrate that the Permission Test Jelly Bean app was working correctly, it was run
whilst the device was connected to the Android Debug Monitor (part of the Android SDK). The
Android Debug Monitor allows the system log of a device to be easily monitored and as was
expected from the functionality described in Subsection 4.2.2 above, the ‘Hello World’ message
was displayed as per Figure 4.8a and the system log showed that a single entry had been written
to it as shown in Figure 4.8b.

Now that the malicious test app was installed, the Jelly Bean update was triggered and the
device was allowed to complete the update process normally. This update process ends with the
device booting into the newly installed Jelly Bean version of the Android platform. Once the
device restarted, the Permission Test Jelly Bean app was run with the device reconnected to the
Android Debug Monitor for easy viewing of the system log. The app displayed the same screen

46



(a) installation (b) app info 1 (c) app info 2

Figure 4.7: Permission Test Jelly Bean on Ice Cream Sandwich

(a) app running

(b) system log entry

Figure 4.8: Permission Test Jelly Bean running on Ice Cream Sandwich

as before (compare Figure 4.9a and Figure 4.8a) but this time, on Jelly Bean, the app was able
to perform its malicious activities which it logged as shown in Figure 4.9b.

You can see from the system log shown in Figure 4.9b that the app identified and read four
entries from the call log and wrote an additional random entry back to it. The app also found 11
directories within the root of the external storage, each marked with a (d), and four files marked

47



(a) app running

(b) system log entries

Figure 4.9: Permission Test Jelly Bean running on Jelly Bean

with (f).
At no time, from the point at which the Permission Test Jelly Bean app installation was

started on Ice Cream Sandwich, to the point when the app collected this data on Jelly Bean, was
any prompt made to the user to authorise the permissions which were used. The permissions had
not existed within the Ice Cream Sandwich platform during app installation and so had not been
prompted to the user during the pre-installation permission authorisation process (as shown in
Figure 4.7a). During the platform update process these permissions had been introduced into the
system and thus granted to the already installed app without user interaction or notification. The
app information clearly shows the permissions as granted on Jelly Bean, as per Figures 4.10a and
4.10b.

This investigation has shown that each of the three requirements for my dormant permission

48



(a) app info 1 (b) app info 2

Figure 4.10: Permission Test Jelly Bean app information on Jelly Bean

request hypothesis (platform behaviour, permission availability and development capability) was
achievable and that a test app could easily be developed to demonstrate the exploit of such dormant
permission requests across an Android platform update boundary.

I have attempted, with considerable determination, to identify any existing knowledge of this
issue within the Android developer or security researcher communities. I have been unable to find
reference to it within any of the many Android security papers I have located and read, a list not
limited to just those in this report’s bibliography. I have also found no mention of it on popular
Android forums through Google searches. A search of the Android Open Source Project’s bugs
list identified 363 issues mentioning ‘permission’, none of which seemed to discuss this issue [37].
After much searching I have come across one single related reference, in a comment buried within
the Android platform’s source code itself. The file ‘PackageManagerService.java’ within the
‘frameworks/base/services/java/com/android/server/pm/’ section of the code includes a
comment on line 1189 which states:

“// If the platform SDK has changed since the last time we booted,
// we need to re-grant app permission to catch any new ones that
// appear. This is really a hack, and means that apps can in some
// cases get permissions that the user didn’t initially explicitly
// allow... it would be nice to have some better way to handle
// this situation.” [26]

Assuming this code comment is referencing the issue I have highlighted, which I believe it does,
it would seem that at some point a developer foresaw some potential issue with the platform’s
permission processing — whether they envisaged quite the exploit I have now demonstrated I do
not know.

After researching the history of the ‘.../pm/PackageManagerService.java’ file (parent
folder and filename specified for clarity) and specifically the comment quoted above, the following
points were identified as significant. The file was originally created on the 22nd of March 2011 when
another file, with the same name but located one folder up in the hierarchy, was moved into the
‘frameworks/base/services/java/com/android/server/pm/’ folder. At the time of this move,
the comment already existed in the source code. The ‘.../server/PackageManagerService.java’
file (which was later moved to become ‘.../pm/PackageManagerService.java’) was modified to
introduce the comment on the 6th of April 2010, during a commit documented with the commit

49



message:

“* Fix issue #2569139: Cannot login to last.fm after upgrade from Donut to FRF01B

This is a quick and dirty solution to re-assign permissions after booting from a platform
update. It is not great, because it means that an app can have permissions that the
user didn’t get to see when they originally installed it. Unfortunately it’s not clear
what else to do here, nor is there time to do anything significant.” [26]

Whilst I have been unable to identify the issue mentioned — the issue number (#2569139) doesn’t
match any bugs listed within the Android User Issue List [38] — this commit message, and the
code change itself, identify there was a need to introduce permission re-evaluation, post platform
update, to resolve it. The date of this commit would suggest that this change may have been
implemented during a final development push towards the release of Froyo, Revision 1 (Android
2.2 - May 2010) [46]. This might explain why the issue number does not match any from the
public issues list, in that it may have been identified in internal testing, and also why there was a
need for a “quick and dirty solution” [26]. Of course in both these points I am purely speculating
and only those involved would be able to confirm the exact situation.

4.2.4 Repercussions

The investigation performed in this chapter has successfully tested a hypothesis developed out of
the previous investigations discussed within this report. The hypothesis — that dormant permis-
sion requests can be exploited, across an Android update boundary, to gain permission to sensitive
operations without the user authorising them — was proved through the development and use of
a test app exploiting three permissions newly introduced to Jelly Bean.

From the observations made throughout these investigations, the cause of this issue appears to
be the combination of a number of factors. Firstly, the pre-installation permission authorisation
prompt only displays permissions which are requested by the app AND currently defined within
the system. This is noticeable both with the requesting of third-party permissions, as well as
permissions undefined in the Android platform version the app is being installed onto. Secondly,
the permissions granted to an app are initially evaluated during installation but are also re-
evaluated during post-update boot processing of the Package Manager service.

When considering the case of platform updates and newly introduced manifest permissions,
these factors result in an easily exploitable weakness in the Android permissions architecture. This
issue must be considered a weakness due to the fact that ‘dangerous’ permissions, which usually
require authorisation by the user, can be granted without the user seeing them being requested at
the time they authorise the app’s installation. These permissions require user authorisation due to
their sensitivity, as highlighted in the Android documentation which describes the ‘dangerous’

protection level as:

“A higher-risk permission that would give a requesting application access to private
user data or control over the device that can negatively impact the user. Because this
type of permission introduces potential risk, the system may not automatically grant it
to the requesting application. For example, any dangerous permissions requested by an
application may be displayed to the user and require confirmation before proceeding,
or some other approach may be taken to avoid the user automatically allowing the use
of such facilities.” [48]

The Permission Evolution investigation performed in Chapter 3 highlights the fact that there
are numerous platform upgrade opportunities and also that new manifest permissions are intro-
duced with some of those new platform versions. Both situations add to the opportunities for the
weakness to be exploited. The potential impact of any such exploit, depends completely on the
capabilities protected by any newly introduced manifest permission. At one extreme, if no new
permissions are ever introduced, then this weakness is unable to be exploited. This does not seem
likely considering the platform history already discussed. If any new permissions only restrict ac-
cess to capabilities which are not considered sensitive, then whilst the weakness could be exploited

50



the resulting impact will likely be considered low. If, as in the case with several of the permissions
tested here, any new permissions control access to sensitive capabilities, then depending on those
capabilities and the information held on the user’s device, the impact may be high.

The ultimate repercussion of this weakness, is therefore that malicious apps can be easily
crafted to make use of an unobserved permission escalation at the time of platform update. Whilst
my test app, Permission Test Jelly Bean, had no function separate to the exploit, a malicious app
could be developed as a logic bomb with non-malicious functionality masking its true nature.
For example, a malicious app could be constructed as a weather app, and could legitimately
request the ‘INTERNET’ and ‘ACCESS_COARSE_LOCATION’ permissions in order to retrieve weather
information for the user’s location (two permissions commonly requested by weather apps and
widgets [60]). These two permissions would allow the app access to network connectivity and
approximate location information and could be used by the app, whilst running benignly, to
provide weather information. During the installation it is unlikely that many users would reject
such permission requests. Should the user update their device platform, which for many would
simply entail clicking an install button such as that shown in Figure 4.5b, then the malicious app’s
dormant permission requests would become active. The app could then use those permissions to
access sensitive information, assuming applicable new permissions, and could then misuse the two
legitimate permissions to send that information along with the user’s location over the Internet
to the app’s developer. It would only be through reviewing the app’s app info screen after the
update, and thus viewing the currently granted permissions, that the user would have any chance
of becoming aware of the new capabilities available to the app. Whilst this review would enable
the user to determine the discrepancy and uninstall the app, the likelihood that users regularly
perform those checks at this time is, I believe, extremely low. I also believe that many users would
fail to identify the new permissions as such and would most likely assume they had been present
all the time, therefore being less likely to take any corrective action. Whilst research has been
performed into user understanding and awareness of permissions [89, 97], at this time I am not
aware of any research being performed into user’s recollection of what permissions an app has
(without reviewing) nor what an app should have (from a blank slate). These are appropriate
areas for future research considering the weakness identified here.

4.2.5 Potential Mitigation

There are a number of ways in which the weakness associated with dormant permission requests
could be mitigated. One of the original contributing factors is the fact that permissions are re-
evaluated by the Package Manager post update installation, potentially resulting in the granting
of additional permissions. One mitigation would be to remove this re-evaluation, although that
seems likely to be problematic considering the mechanism seems to have been introduced to fix
an issue related to platform updates (discussed at the end of Section 4.2.3).

Assuming that permission re-evaluation is necessary and bearing in mind that there is already
a clear definition of the protection levels — which mandates user involvement in authorising
permissions rated as ‘dangerous’ [48] — it would seem appropriate to request authorisation
from users for newly granted ‘dangerous’ permissions, the first time an app is run following the
re-evaluation.

There are bound to be numerous factors that should be considered before adopting such a
strategy. The Android platform, whilst being an open source project, is still a product and no
doubt has a defined direction and plan with regards to features, performance and usability. The
addition of a security related message with which the user must interact can obviously be seen to
reduce the usability of the product, especially if we believe that many users fail to take notice of
such prompts anyway [41] and may not understand them at all [89]. Whilst that may be true,
the automatic and silent granting of such permissions — especially with the potential impact
discussed in the last section — puts the user at risk without them having any positive awareness
of the change.

Such a post-installation permission authorisation prompt could be claimed should only need to
show the permissions which have newly been requested. I believe, however, that a better strategy

51



would be to highlight any newly requested permissions alongside any already granted ones. After
all it is the entire set of resultant permissions which will determine the capabilities the app can make
use of. As with the pre-installation permission authorisation prompt, any permissions rated as
‘normal’ could be hidden by default. This does not conflict with the definition of that protection
level.

An alternative to the above strategy could be to provide the user with a notification indicating
a change in permissions for the applicable app and a direct method of accessing the relevant
app’s app info screen (here I use the term notification in the sense of the so-named Android
UI component [57]). This could be considered a more subtle method of providing user awareness,
although I cannot help but feel that it is less likely to gain mental traction with the user and as such
would have limited benefit. It would also involve the automatic granting of the permissions, with
the notification acting only as a warning to the user, who would have to then take action should
they so desire. On the other hand, this method would have little impact on usability, providing no
real interruption to the user experience. I personally feel this alternative is the minimum necessary
improvement although I much rather that user control be re-established through the use of a post-
installation permission authorisation prompt following post-update permission re-evaluation.

52



Chapter 5

Conclusion

The specific goal of this report has been to document my investigations, the detailed knowledge
that has resulted and the associated findings of hypotheses based on that knowledge. I have been
fortunate to identify a weakness in the Android permissions architecture and even more fortunate
to be able to successfully design and test my hypothesis as to how it may be exploited. The
details of this exploit formed the later part of this report (Chapter 4) and much of the energy I
have expended after my initial background research.

The smartphone device market has seen rapid growth over recent years, in no small part thanks
to the introduction and popularity of centralised app stores and easily downloadable apps. The
Android operating system is a prominent player in this market with a continuing growth both in
numbers of devices and numbers of downloaded apps. The wide spread of versions of the Android
platform lead to a diverse ecosystem of devices which constantly evolves. Figure 5.1 shows the
relative distribution of Android platform versions as of the 1st of August 2012 and when compared
to Figure 3.1 highlights the rate of change of this ecosystem. In the one month between these two
data sets, Jelly Bean has been seen on 0.8% of devices whilst the number of Ice Cream Sandwich
devices has risen from 10.9% (covering API14 and API15) to 15.9%. This growth has been made
at the expense of Gingerbread (losing 3.4%) and Froyo (losing 1.8%) principally, with Eclair and
Honeycomb taking far smaller loses of 0.5% and 0.1% respectively.

Whilst it is clear to see that devices running older platform versions are still frequently used,
across this wide ecosystem platform updates do also frequently occur. A weakness in the Android
permissions architecture which can exploited across the platform update boundary is therefore
a significant concern, especially when the creation of such an exploit can be achieved by using
nothing more than the same methods used to write any other Android app. It is just such a
weakness, its investigation and demonstration, that is the most significant contribution of this
report.

This report has also detailed the categorisation of the Android permissions architecture and
highlighted several points of disagreement when compared to the official documentation. Firstly,
the experimental evidence has shown the presence of the permissions ‘READ_USER_DICTIONARY’
and ‘WRITE_USER_DICTIONARY’ through versions of the Android platform upon which they sup-
posedly do not exist. Secondly, the disparity between the documentation, which indicates five
permission additions in API14 and a further two in API15, compared to my experimental results
whereby all seven permission additions are seen in API14. Both these discrepancies were initially
discussed in Section 3.2.2.

It is further hoped that the information identified regarding the evolution of the Android
permissions in general, and their current breakdown specifically, will be of use to developers when
making permission-related decisions. The tables in Figures 3.4, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 all
contain valuable information which is currently missing from the official Android documentation.

53



Figure 5.1: Android platform versions (as at 01/08/2012)

5.1 Related Work

As has been highlighted several times in this report, the Android platform and the permissions
architecture specifically, has seen significant previous research. The Android platform and its
security mechanisms have been considered as a whole in [100] and [101], with [90] and [93] focusing
more on the hardware-based security side. Application security is well covered across research
such as [78], [85], [81], [88] and [77] which place considerable focus on inter-app communication,
information leakage and misuse. The concept of inter-app communication is considered further
in [71], [75] and [74] which look at concepts core to the confused deputy problem. App stores and
their role in the apps security and malicious app distribution has been covered in [110] and [108].

The topic of permission architectures specifically has been covered from a variety of angles. I
list some of the more relevant examples here. Of these works, several have included surveys of the
Android permissions through either static or dynamic analysis techniques. Whilst not covering
exactly the same content as my Permission Categorisation and Evolution investigations, these
works are closely related and complimentary. My investigation of Dormant Permission Requests
is completely unique however, having not been covered in any of the related work current known
to me.

‘Short Paper: A Look at SmartPhone Permission Models’ Au et al looked at the per-
mission architectures of various smartphone platforms and Android in particular. They identified
goals for security researchers and highlighted the overprivilege issue and stated the number of
permissions added in early (up to 2.3) versions of Android [66].

‘A Methodology for Empirical Analysis of Permission-Based Security Models and its
Application to Android’ Barrera et al analysed the number of permissions requested across
the 22 categories in the Android Market (now Google Play) as well as performing Component
Plane Analysis of the permissions recorded [67].

54



‘Android Permissions Demystified’ Porter Felt et al modified the permission verification
mechanism of Android 2.2 in order to identify which API calls result in permission checks. They
then built ‘Stowaway’, a tool for static analysis of apps, and used it to determine permission errors
(particularly overprivilege) within the apps tested [94].

‘Curbing Android Permission Creep’ Vidas et al also analysed apps to identify permission
errors, highlighting duplicate permissions and overprivilege in particular [107].

‘Is this App Safe? A Large Scale Study of Application Permissions And Risk Signals’
Chia et al looked at apps developed for a range of platforms including Android apps. They focused
on comparing the permissions requested by popular and newly added apps as well as considering
the effectiveness of risk signals available to users [70].

‘A Small but Non-negligible Flaw in the Android Permission Scheme’ Shin et al iden-
tify a means of abusing third-party permission requests through the fact that permission strings
can be easily copied and are the only identifying requirement for uniqueness [102].

‘A Conundrum of Permissions: Installing Applications on an Android Smartphone’
Kelly et al performed a user study to determine if users understand the permissions related security
messages they are prompted with and to see what factors users use to select apps [89].

‘Android Permissions: User Attention, Comprehension, and Behavior’ Porter Felt et
al also performed a user study regarding permission authorisation performance and comprehen-
sion [97].

‘How to Ask For Permission’ Porter Felt et al compared several mechanisms through which
permission systems interact with users and proposed guidelines for platform designers with regards
to the selection of the most appropriate mechanism for a specific permission [95].

‘Choice Architecture and Smartphone Privacy: There’s A Price for That’ Egelman
et al performed a user study to identify user willingness to pay for privacy as represented through
fewer permissions being requested during app installation [76].

‘I’ve Got 99 Problems, But Vibration Ain’t One: A Survery of Smartphone Users’
Concerns’ Porter Felt et al performed a user study to identify what permission related security
risks upset users and to what extent [96].

5.2 Ongoing and Future Work

The investigations within this report have each raised new questions and more ideas with regards
to future areas of work. The investigations themselves may benefit from some refinement and
repetition across retail devices, something I have already started to do. There are a number of
specific investigations which follow on from the work in this report. Some have been mentioned
in passing during the previous discussions.

5.2.1 Third-Party Permission Requests Revisited

Whilst the Permission Test Creator and Permission Test Requestor test apps used in Section
4.1 defined and requested permissions as previously discussed, they were coded as variants of the
original Permission Test app. As in its case, they did not make use of the permissions they re-
quested and were granted. At the time this simplification was of no concern, but an investigation

55



I later carried out suggested that my previous observations may have been misleading. The inves-
tigation in question was designed to monitor changes in the ‘/data/system/packages.xml’ file,
mentioned previously in Section 3.1.2, during the process of the third-party permission investiga-
tion’s app installations. To do this investigation, the Galaxy Nexus device was once again ‘rooted’
enabling retrieval of the desired file.

The notable observation during this investigation was that when Permission Test Creator was
installed after Permission Test Requestor, whilst the app info screen reflected that shown in Figures
4.4c and 4.4d, the ‘/data/system/packages.xml’ file did not equally reflect the granting of the
third-party permission to Permission Test Requestor. This caused me to question the information
shown by these two dissenting sources, with the only means of resolution being to create versions
of Permission Test Creator and Permission Test Requestor which actually attempt to employ the
permissions concerned.

I therefore created Permission Test Creator 3 and Permission Test Requestor 3 (the v2 apps
had already been created to further my understanding of Android’s IPC and Intents separate
to this report). I performed the same experiment with Permission Test Requestor 3 installed
prior to Permission Test Creator 3. With these two test apps I was able to confirm that whilst
Permission Test Requestor 3’s app info screen displayed the third-party permission, the actual app
was unable to perform the operation which was restricted by that permission — in line with the
content of the ‘/data/system/packages.xml’ file. This outcome shows that there is no general
re-evaluation of permissions following the declaration of a new permission. It also highlights the
presence of an app installation order requirement amongst apps which declare and utilise third-
party permissions, counter to that perceived in the third-party permission investigation. Finally,
this result also pulled into question the information displayed on the app info screen. Whilst this
screen showed a third-party permission for the Permission Test Requestor 3 app, in reality it was
not granted within the platform.

5.2.2 Other Work

Documentation Discrepancies In order to confirm the discrepancies identified in the doc-
umentation regarding permissions, the Permission Test app should be used to review the per-
missions of numerous retail devices across all versions of the Android platform. I have already
begun this process with devices running Android 2.2 (API8), Android 2.3.5 (API10), Android 3.2
(API13), Android 4.0.3 (API15) and Android 4.0.4 (API15). So far the results seem to confirm
those in this report but a complete analysis is required to confirm the discrepancies fully.

/data/system/packages.xml As has already been highlighted, this system file documents the
permissions currently defined within the system and those granted to apps. An initial review of
this file suggests there may be more than the currently documented 130 system permissions. I
have already begun comparing the two lists and any permissions not documented in the manifest
permissions documentation list will require testing and categorisation.

System Definitions Separate to the ‘/data/system/packages.xml’ file it is not currently
clear to me where the cross-referencing of permissions, permission labels, protection levels and
groupings is performed. I assume this is somewhere in the source code, but as yet I have not
completed a comprehensive review. When this cross-referencing is identified, the Permission Evo-
lution investigation results can be extended to include permission labels and groupings for those
permissions not defined as protection level ‘normal’ or ‘dangerous’.

User Studies In order to understand user’s interactions with the app info screen as it directly
relates to the dormant permission requests weakness, user studies are required to determine if
users perform regular or irregular permission reviews post installation and to determine if users
show any awareness to changes in the permissions listed on that screen.

56



Each of these activities clearly follows on from investigations performed in this report, with many
of the same techniques able to be directly applied, save for the case of user studies. It is therefore
expected that whilst new knowledge may be gained from these future works, little new knowledge
should be required to complete them. I therefore hope to report on these matters in the not too
distant future, the results of which should go a long way to filling the few small gaps left from the
investigations performed so far.

57



Bibliography

[1] 10 Billion Android Market downloads and counting. http://googleblog.blogspot.co.

uk/2011/12/10-billion-android-market-downloads-and.html. [online] Accessed On:
2012-04-02.

[2] A chat with the man behind mobiles. http://news.bbc.co.uk/1/hi/uk/2963619.stm.
[online] Accessed On: 2012-03-25.

[3] About HTC. http://www.htc.com/uk/about/#mission. [online] Accessed On: 2012-03-29.

[4] About Research in Motion. http://us.blackberry.com/company.jsp. [online] Accessed
On: 2012-03-29.

[5] Android and Security - Official Google Mobile Blog. http://googlemobile.blogspot.com/
2012/02/android-and-security.html. [online] Accessed On: 2012-07-16.

[6] Android@Mobile World Congress: It’s all about the ecosystem. http://googlemobile.

blogspot.co.uk/2012/02/androidmobile-world-congress-its-all.html. [online] Ac-
cessed On: 2012-04-02.

[7] API Differences between 13 and 14. http://developer.android.com/sdk/api_diff/14/

changes.html. [online] Accessed On: 2012-06-28.

[8] API Differences between 14 and 15. http://developer.android.com/sdk/api_diff/15/

changes.html. [online] Accessed On: 2012-06-28.

[9] API Differences between 15 and 16. http://developer.android.com/sdk/api_diff/16/

changes.html. [online] Accessed On: 2012-06-28.

[10] App Store Approval Process. https://developer.apple.com/appstore/resources/

approval/index.html. [online] Accessed On: 2012-07-28.

[11] App Store Review Guidelines. https://developer.apple.com/appstore/resources/

approval/guidelines.html. [online] Accessed On: 2012-07-28.

[12] App Store Submission Tips. https://developer.apple.com/appstore/resources/

submission/tips.html. [online] Accessed On: 2012-07-28.

[13] Apple Introduces the New iPhone 3G. http://www.apple.com/pr/library/2008/06/

09Apple-Introduces-the-New-iPhone-3G.html. [online] Accessed On: 2012-03-29.

[14] Apple Investor Relations - FAQs. http://investor.apple.com/faq.cfm?FaqSetID=6. [on-
line] Accessed On: 2012-03-29.

[15] Apple iPad Technical Specifications. http://www.apple.com/uk/ipad/specs/. [online]
Accessed On: 2012-04-01.

[16] Apple Press Info - iPhone. http://www.apple.com/pr/products/iphone/iphone.html.
[online] Accessed On: 2012-03-29.

58

http://googleblog.blogspot.co.uk/2011/12/10-billion-android-market-downloads-and.html
http://googleblog.blogspot.co.uk/2011/12/10-billion-android-market-downloads-and.html
http://news.bbc.co.uk/1/hi/uk/2963619.stm
http://www.htc.com/uk/about/#mission
http://us.blackberry.com/company.jsp
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.co.uk/2012/02/androidmobile-world-congress-its-all.html
http://googlemobile.blogspot.co.uk/2012/02/androidmobile-world-congress-its-all.html
http://developer.android.com/sdk/api_diff/14/changes.html
http://developer.android.com/sdk/api_diff/14/changes.html
http://developer.android.com/sdk/api_diff/15/changes.html
http://developer.android.com/sdk/api_diff/15/changes.html
http://developer.android.com/sdk/api_diff/16/changes.html
http://developer.android.com/sdk/api_diff/16/changes.html
https://developer.apple.com/appstore/resources/approval/index.html
https://developer.apple.com/appstore/resources/approval/index.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/appstore/resources/submission/tips.html
https://developer.apple.com/appstore/resources/submission/tips.html
http://www.apple.com/pr/library/2008/06/09Apple-Introduces-the-New-iPhone-3G.html
http://www.apple.com/pr/library/2008/06/09Apple-Introduces-the-New-iPhone-3G.html
http://investor.apple.com/faq.cfm?FaqSetID=6
http://www.apple.com/uk/ipad/specs/
http://www.apple.com/pr/products/iphone/iphone.html


[17] Apple Requires User Permission Before Apps Can Access Personal Data in
iOS 6. http://www.macrumors.com/2012/06/14/apple-requires-user-permission-

before-apps-can-access-personal-data-in-ios-6/. [online] Accessed On: 2012-07-14.

[18] Apple’s App Store Downloads Top 25 Billion. http://www.apple.com/pr/library/2012/
03/05Apples-App-Store-Downloads-Top-25-Billion.html. [online] Accessed On: 2012-
04-02.

[19] Bell Labs Historical Timeline. http://www.alcatel-lucent.

com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_

QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-

gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/

L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!

?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.

jsp#7_A_5GK. [online] Accessed On: 2012-03-25.

[20] Brief History of GSM & the GSMA. http://www.gsma.com/history/. [online] Accessed
On: 2012-03-29.

[21] Choosing an iOS Developer Program. https://developer.apple.com/programs/start/

ios/. [online] Accessed On: 2012-07-28.

[22] Cydia. http://cydia.saurik.com/. [online] Accessed On: 2012-07-28.

[23] Designing for Security | Android Developers. http://developer.android.com/guide/

practices/security.html. [online] Accessed On: 2012-07-03.

[24] Eight Ways to Keep your Smartphone Safe. http://www.bullguard.com/bullguard-

security-center/mobile-security/mobile-protection-resources/8-ways-to-keep-

your-smartphone-safe.aspx. [online] Accessed On: 2012-06-23.

[25] "feature phone" - Oxford Dictionaries. http://oxforddictionaries.com/definition/

feature%2Bphone. [online] Accessed On: 2012-04-01.

[26] frameworks/base/services/java/com/android/server/pm/PackageManagerService.java.
http://source.android.com/. Android Open Source Project - Source Code.

[27] Get Started with Publishing | Android Developers. http://developer.android.com/

distribute/googleplay/publish/register.html. [online] Accessed On: 2012-07-16.

[28] Google Wallet Security: PIN Exposure Vulnerability. http://zvelo.com/blog/entry/

google-wallet-security-pin-exposure-vulnerability. [online] Accessed On: 2012-06-
23.

[29] Guglielmo Marconi Biography. http://www.nobelprize.org/nobel_prizes/physics/

laureates/1909/marconi-bio.html. [online] Accessed On: 2012-03-12.

[30] History - Ericsson. http://www.ericsson.com/uk/thecompany/company_facts/history.
[online] Accessed On: 2012-03-29.

[31] How Are Smartphones Being Used? [Infographic]. http://www.tatango.com/blog/how-

are-smartphones-being-used/. [online] Accessed On: 2012-06-04.

[32] How People Use Smartphones [INFOGRAPHIC]. http://60secondmarketer.com/blog/

2011/08/16/how-people-use-smartphones-infographic/. [online] Accessed On: 2012-
06-04.

[33] IBM 608 Calculator. http://www-03.ibm.com/ibm/history/exhibits/vintage/

vintage_4506VV2214.html. [online] Accessed On: 2012-03-25.

59

http://www.macrumors.com/2012/06/14/apple-requires-user-permission-before-apps-can-access-personal-data-in-ios-6/
http://www.macrumors.com/2012/06/14/apple-requires-user-permission-before-apps-can-access-personal-data-in-ios-6/
http://www.apple.com/pr/library/2012/03/05Apples-App-Store-Downloads-Top-25-Billion.html
http://www.apple.com/pr/library/2012/03/05Apples-App-Store-Downloads-Top-25-Billion.html
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLt4z3DADJmMU7xhu5mupHIgsZxDvCBXw98nNT9YOAEpHmQLWm7t76IfqRbvre-gEgk2Bi4UWpeSmpRfoFuaER5X5pHrmOiooAM-c3Cw!!/delta/base64xml/L0lNN3VhQ1NXWUEhIS9JTmhBQ0lpRWlBaU13cUFBd0FxZ0FNQUEvNExFNVJPZ3JnSUEhLzdfQV81R0s!?decade=1940s&innovation=History%2FTimeline%2FTimeline_Innovation_000078.jsp#7_A_5GK
http://www.gsma.com/history/
https://developer.apple.com/programs/start/ios/
https://developer.apple.com/programs/start/ios/
http://cydia.saurik.com/
http://developer.android.com/guide/practices/security.html
http://developer.android.com/guide/practices/security.html
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-protection-resources/8-ways-to-keep-your-smartphone-safe.aspx
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-protection-resources/8-ways-to-keep-your-smartphone-safe.aspx
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-protection-resources/8-ways-to-keep-your-smartphone-safe.aspx
http://oxforddictionaries.com/definition/feature%2Bphone
http://oxforddictionaries.com/definition/feature%2Bphone
http://source.android.com/
http://developer.android.com/distribute/googleplay/publish/register.html
http://developer.android.com/distribute/googleplay/publish/register.html
http://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability
http://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability
http://www.nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-bio.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-bio.html
http://www.ericsson.com/uk/thecompany/company_facts/history
http://www.tatango.com/blog/how-are-smartphones-being-used/
http://www.tatango.com/blog/how-are-smartphones-being-used/
http://60secondmarketer.com/blog/2011/08/16/how-people-use-smartphones-infographic/
http://60secondmarketer.com/blog/2011/08/16/how-people-use-smartphones-infographic/
http://www-03.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV2214.html
http://www-03.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV2214.html


[34] iOS 5 Security Flaw Allows Access To Contacts List, Recent Calls & Text Messages
Without Passcode. http://www.cultofmac.com/147700/ios-5-security-flaw-allows-
access-to-contacts-list-recent-calls-text-messages-without-passcode/. [online]
Accessed On: 2012-06-23.

[35] iOS Bug Unlocks iPhone sans Password. http://www.theregister.co.uk/2010/10/26/

iphone_password_bypass/. [online] Accessed On: 2012-06-23.

[36] iOS Human Interface Guidelines. https://developer.apple.com/library/

ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/

Introduction.html. [online] Accessed On: 2012-07-28.

[37] Issues - android - Android - An Open Handset Alliance Project - Google Project Hosting.
https://code.google.com/p/android/issues/list?can=2&q=permission&colspec=

ID%20Type%20Status%20Owner%20Summary%20Stars&groupby=&sort=&num=500&start=0.
[online] Accessed On: 2012-08-03.

[38] Issues - android - Android - An Open Handset Alliance Project - Google Project Hosting.
http://code.google.com/p/android/issues/list. [online] Accessed On: 2012-08-05.

[39] ITRC Fact Sheet 144 - Smartphone Safety. http://www.idtheftcenter.org/artman2/

publish/v_fact_sheets/ITRC_Fact_Sheet_144.shtml. [online] Accessed On: 2012-06-23.

[40] Key Global Telecom Indicators for the World Telecommunication Service Sector. http:

//www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom.html. [online] Accessed
On: 2012-03-29.

[41] Late-Night Poll: Do You Read App Permissions Before Installing? http://www.

androidcentral.com/late-night-poll-do-you-read-app-permissions-installing.
[online] Accessed On: 2012-07-14.

[42] Manifest.permission | Android Developers. http://developer.android.com/reference/

android/Manifest.permission.html. [online] Accessed On: 2012-07-10.

[43] Mobile Cellular Subscriptions per 100 Inhabitants 2011. http://www.itu.int/ITU-D/ict/
statistics/material/excel/2011/Mobile_Cellular_reg-11.xls. [online] Accessed On:
2012-03-29.

[44] <permission> | Android Developers. http://developer.android.com/guide/topics/

manifest/permission-element.html. [online] Accessed On: 2012-07-11.

[45] Permissions | Android Developers. http://developer.android.com/guide/topics/

security/permissions.html. [online] Accessed On: 2012-07-03.

[46] Platforms | Android Developers. http://developer.android.com/tools/revisions/

platforms.html. [online] Accessed On: 2012-08-05.

[47] Protect Mobile Phones. http://www.getsafeonline.org/nqcontent.cfm?a_id=1850. [on-
line] Accessed On: 2012-06-23.

[48] R.attr | Android Developers. http://developer.android.com/reference/android/R.

attr.html#protectionLevel. [online] Accessed On: 2012-07-14.

[49] Researchers Find Methods for Bypassing Google’s Bouncer Android Security.
http://threatpost.com/en_us/blogs/researchers-find-methods-bypassing-

googles-bouncer-android-security-060412. [online] Accessed On: 2012-07-16.

[50] Samsung’s History. http://www.samsung.com/uk/aboutsamsung/corporateprofile/

history03.html. [online] Accessed On: 2012-03-29.

60

http://www.cultofmac.com/147700/ios-5-security-flaw-allows-access-to-contacts-list-recent-calls-text-messages-without-passcode/
http://www.cultofmac.com/147700/ios-5-security-flaw-allows-access-to-contacts-list-recent-calls-text-messages-without-passcode/
http://www.theregister.co.uk/2010/10/26/iphone_password_bypass/
http://www.theregister.co.uk/2010/10/26/iphone_password_bypass/
https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
https://code.google.com/p/android/issues/list?can=2&q=permission&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars&groupby=&sort=&num=500&start=0
https://code.google.com/p/android/issues/list?can=2&q=permission&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars&groupby=&sort=&num=500&start=0
http://code.google.com/p/android/issues/list
http://www.idtheftcenter.org/artman2/publish/v_fact_sheets/ITRC_Fact_Sheet_144.shtml
http://www.idtheftcenter.org/artman2/publish/v_fact_sheets/ITRC_Fact_Sheet_144.shtml
http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom.html
http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom.html
http://www.androidcentral.com/late-night-poll-do-you-read-app-permissions-installing
http://www.androidcentral.com/late-night-poll-do-you-read-app-permissions-installing
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://www.itu.int/ITU-D/ict/statistics/material/excel/2011/Mobile_Cellular_reg-11.xls
http://www.itu.int/ITU-D/ict/statistics/material/excel/2011/Mobile_Cellular_reg-11.xls
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/tools/revisions/platforms.html
http://developer.android.com/tools/revisions/platforms.html
http://www.getsafeonline.org/nqcontent.cfm?a_id=1850
http://developer.android.com/reference/android/R.attr.html#protectionLevel
http://developer.android.com/reference/android/R.attr.html#protectionLevel
http://threatpost.com/en_us/blogs/researchers-find-methods-bypassing-googles-bouncer-android-security-060412
http://threatpost.com/en_us/blogs/researchers-find-methods-bypassing-googles-bouncer-android-security-060412
http://www.samsung.com/uk/aboutsamsung/corporateprofile/history03.html
http://www.samsung.com/uk/aboutsamsung/corporateprofile/history03.html


[51] ‘smartphone’ - Collins. http://www.collinsdictionary.com/dictionary/english/

smartphone. [online] Accessed On: 2012-04-01.

[52] ’smartphone’ - Dictionary.com. http://dictionary.reference.com/browse/smartphone.
[online] Accessed On: 2012-04-01.

[53] ‘smartphone’ - Merriam Webster. http://www.merriam-webster.com/dictionary/

smartphone. [online] Accessed On: 2012-04-01.

[54] ‘smartphone’ - Oxford Dictionaries. http://oxforddictionaries.com/definition/

smartphone. [online] Accessed On: 2012-04-01.

[55] Smartphone Security: How to Keep Your Handset Safe. http://www.pcworld.com/

businesscenter/article/216420/smartphone_security_how_to_keep_your_handset_

safe.html. [online] Accessed On: 2012-06-23.

[56] Smartphone Users Around the World - Statistics and Facts [INFOGRAPHIC]. http://www.
go-gulf.com/blog/smartphone. [online] Accessed On: 2012-06-04.

[57] Status Notifications | Android Developers. http://developer.android.com/guide/

topics/ui/notifiers/notifications.html. [online] Accessed On: 2012-08-05.

[58] The Nokia Story. http://www.nokia.com/global/about-nokia/company/about-us/

story/the-nokia-story/. [online] Accessed On: 2012-03-29.

[59] This Month in Physics History, Nov 17 to Dec 23, 1947: Invention of the First Tran-
sistor. http://www.aps.org/publications/apsnews/200011/history.cfm. [online] Ac-
cessed On: 2012-03-25.

[60] weather - Google Play. https://play.google.com/store/search?q=weather&c=apps.
[online] Accessed On: 2012-08-05.

[61] YouTube Statistics. http://www.youtube.com/t/press_statistics. [online] Accessed On:
2012-04-01.

[62] YouTube Timeline. http://www.youtube.com/t/press_timeline. [online] Accessed On:
2012-04-01.

[63] Apple. iOS App Programming Guide. Technical report, March 2012.

[64] Apple. iOS Security. Technical report, May 2012.

[65] Apple. Security Overview. Technical report, February 2012.

[66] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill, and David Lie. Short Paper:
A Look at SmartPhone Permission Models. In Proceedings of the First ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM’11. ACM, 2011.

[67] David Barrera, P.C. van Oorschot, H.G. Kayacik, and Anil Somayaji. A Methodology for
Empirical Analysis of Permission-Based Security Models and its Application to Android. In
Proceedings of the Seventeenth ACM Conference on Computer and Communications Secu-
rity, CCS’10. ACM, 2010.

[68] Zinaida Benenson, Nadina Hintz, Olaf Kroll-Peters, and Matthias Krupp. Poster: Attitudes
to IT-Security When Using a Smartphone. In Eighth Symposium on Usable Privacy and
Security (SOUPS), SOUPS’12, 2012.

[69] Alistair R. Beresford, Andrew Rice, Ripduman Sohan, and Nicholas Skehin. MockDroid:
Trading Privacy for Application Functionality on Smartphones. In Proceedings of the Twelfth
International Workshop on Mobile Computing Systems and Applications, HotMobile’11.
ACM, 2011.

61

http://www.collinsdictionary.com/dictionary/english/smartphone
http://www.collinsdictionary.com/dictionary/english/smartphone
http://dictionary.reference.com/browse/smartphone
http://www.merriam-webster.com/dictionary/smartphone
http://www.merriam-webster.com/dictionary/smartphone
http://oxforddictionaries.com/definition/smartphone
http://oxforddictionaries.com/definition/smartphone
http://www.pcworld.com/businesscenter/article/216420/smartphone_security_how_to_keep_your_handset_safe.html
http://www.pcworld.com/businesscenter/article/216420/smartphone_security_how_to_keep_your_handset_safe.html
http://www.pcworld.com/businesscenter/article/216420/smartphone_security_how_to_keep_your_handset_safe.html
http://www.go-gulf.com/blog/smartphone
http://www.go-gulf.com/blog/smartphone
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://www.nokia.com/global/about-nokia/company/about-us/story/the-nokia-story/
http://www.nokia.com/global/about-nokia/company/about-us/story/the-nokia-story/
http://www.aps.org/publications/apsnews/200011/history.cfm
https://play.google.com/store/search?q=weather&c=apps
http://www.youtube.com/t/press_statistics
http://www.youtube.com/t/press_timeline


[70] Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. Is this App Safe? A Large Scale Study on
Application Permissions and Risk Signals. In Proceedings of the Twenty-First International
World Wide Web Conference, WWW’12. ACM, 2012.

[71] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing Inter-
Application Communication in Android. In Proceedings of the 9th International Conference
on Mobile Systems, Application, and Services, MobiSys’11. ACM, 2011.

[72] Cisco. The Future of Work: Information Access Expectations, Demands, and Behaviour of
the World’s Next-Generation Workforce - Chapter 2. Technical report, November 2011.

[73] comScore. 2012 Mobile Future in Focus. Technical report, February 2012.

[74] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadehi, and Marcel Winandy. Privilege
Escalation Attacks on Android, 2010.

[75] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. In Proceedings of the 20th
Usenix Security Symposium, Sec’11. USENIX Association, 2011.

[76] Serge Egelman, Adrienne Porter Felt, and David Wagner. Choice Architecture and Smart-
phone Privacy: There’s A Price for That. In Proceedings of the 11th Annual Workshop on
the Economics of Information Security, WEIS’12, 2012.

[77] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation, OSDI’10. USENIX Association, 2010.

[78] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of
Android Application Security. In Proceedings of the 20th USENIX conference on Security,
SEC’11. USENIX Association, 2011.

[79] F-Secure. Mobile Threat Report 2011. Technical report, Q4 2011.

[80] F-Secure. Mobile Threat Report 2012. Technical report, Q1 2012.

[81] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks: Automat-
ically Detecting Potential Privacy Leaks in Android Applications on a Large Scale, 2012.

[82] James Gillies and Robert Calliau. How the Web Was Born: The Story of the World Wide
Web. Oxford University Press, 2000.

[83] Google. Our Mobile Planet: United Kingdom. Technical report, May 2012.

[84] Google. Our Mobile Planet: United States. Technical report, May 2012.

[85] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic Detection of Capability
Leaks in Stock Android Smartphones. In Proceedings of the Nineteenth Annual Network &
Distributed System Security Symposium, NDSS’12. ISOC, 2012.

[86] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas Stober. Pervasive Comput-
ing. Springer, second edition, 2003.

[87] Andrew Hoog. Android Forensics: Investigation. Analysis and Mobile Security for Google
Android. Syngress, 2011.

[88] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.
"These Aren’t the Droids You’re Looking For": Retrofitting Android to Protect Data from
Imperious Applications. In Proceedings of the Eighteenth ACM Conference on Computer
and Communications Security, CCS’11. ACM, 2011.

62



[89] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung, Norman Sadeh,
and David Wetherall. A Conundrum of Permissions: Installing Applications on an Android
Smartphone. In Proceedings of the Workshop on Usable Security, USEC’12, 2012.

[90] Kari Kostiainen, Elena Reshetova, Jan-Erik Ekberg, and N. Asokan. Old, New, Borrowed,
Blue - A Perspective on the Evolution of Mobile Platform Security Architectures. In Pro-
ceedings of the First ACM Conference on Data and Application Security and Privacy, CP-
DASPY’11. ACM, 2011.

[91] Mike Gibson (Director, Enterprise: UK & Ireland at RIM). Speaking at Securing Mobile
Devices (EEMA), July 2012.

[92] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android Per-
mission Model and Enforcement with User-defined Runtime Constraints. In Proceedings
of the Fifth ACM Symposium on Information Computer and Communnications Security,
ASIACCS’10. ACM, 2010.

[93] Jon Oberheide and Farnam Jahanian. When Mobile is Harder Than Fixed (and Vice Versa):
Demystifying Security Challenges in Mobile Environments. In Proceedings of the Eleventh In-
ternational Workshop on Mobile Computing Systems and Applications, HotMobile’10. ACM,
2010.

[94] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
Permissions Demystified. In Proceedings of the Eighteenth ACM Conference on Computer
and Communications Security, CCS’11. ACM, 2011.

[95] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, and David Wag-
ner. How to Ask for Permission, 2012.

[96] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve Got 99 Problems, But Vibra-
tion Ain’t One: A Survery of Smartphone Users’ Concerns, 2012.

[97] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David
Wagner. Android Permissions: User Attention, Comprehension, and Behavior. In Eighth
Symposium on Usable Privacy and Security (SOUPS), SOUPS’12, 2012.

[98] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Paranoid
Android: Versatile Protection For Smartphones. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC’10. ACM, 2010.

[99] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in Computer
Systems. In Proceedings of the Fourth ACM Symposium on Operating System Principles,
SOSP’74. ACM, 1974.

[100] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev. Google Android:
A State-of-the-Art Review of Security Mechanisms. In arXiv:0912.5101v1, arXiv. Cornell
University Library, 2009.

[101] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and Chanan Glezer.
Google Android: A Comprehensive Security Assessment. In IEEE Security & Privacy -
March/April 2010, IEEE Security & Privacy. IEEE, 2010.

[102] Wook Shin, Sanghoon Kwak, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki
Tanaka. A Small but Non-negligible Flaw in the Android Permission Scheme. In Pro-
ceedings of the 2010 IEEE International Symposium on Policies for Distributed Systems and
Networks, POLICY’10. IEEE, 2010.

[103] Sophos. Security Threat Report 2012. Technical report, March 2012.

63



[104] Symantec. The Symantec Smartphone Honey Stick Project. Technical report, March 2012.

[105] Walter Kellogg Towers. Masters of Space: Morse, Thompson, Bell, Marconi, Carty. Public
Domain Books, 2004. (Originally published by Harper and Brothers in 1917).

[106] viaForensics. White Paper: appWatchdog Findings - Sensitive User Data Stored on Android
and iPhone Devices. Technical report, July 2011.

[107] Timothy Vidas, Nicolas Christin, and Lorrie Faith Cranor. Curbing Android Permission
Creep. In Proceedings of the Web 2.0 Security and Privacy 2011, W2SP’11, 2011.

[108] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. DroidMOSS: Detecting Repackaged
Smartphone Applications in Third-Party Android Marketplaces. In Proceedings of the Third
ACM Conference on Data and Application Security and Privacy, CODASPY’12. ACM, 2012.

[109] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and Evolution.
In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP’12. IEEE, 2012.

[110] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. In Proceedings of
the 19th Annual Network and Distributed System Security Symposium, NDSS’12. ACM,
2012.

64


	Introduction
	A Very Brief History of Telecommunications
	Mobile Internet and Ubiquitous Connectivity
	Mobile Applications
	Device Usage
	The Operating System Market
	Security Requirements
	Motivation & Objective

	Android Security Architectures
	Sandboxing
	Permissions
	App Stores

	Android Permissions Architecture
	Permission Categorisation Investigation
	Preparation
	Testing
	Results

	Permission Evolution Investigation
	Testing
	Summary Results
	Detailed Results


	Dormant Android Permission Requests
	Third-party Permission Requests Investigation
	Dormant Permission Requests Investigation
	The Hypothesis
	Permission Test Jelly Bean
	The Investigation
	Repercussions
	Potential Mitigation


	Conclusion
	Related Work
	Ongoing and Future Work
	Third-Party Permission Requests Revisited
	Other Work



