2 research outputs found

    A user-centered approach for detecting emotions with low-cost sensors

    Get PDF
    AbstractDetecting emotions is very useful in many fields, from health-care to human-computer interaction. In this paper, we propose an iterative user-centered methodology for supporting the development of an emotion detection system based on low-cost sensors. Artificial Intelligence techniques have been adopted for emotion classification. Different kind of Machine Learning classifiers have been experimentally trained on the users' biometrics data, such as hearth rate, movement and audio. The system has been developed in two iterations and, at the end of each of them, the performance of classifiers (MLP, CNN, LSTM, Bidirectional-LSTM and Decision Tree) has been compared. After the experiment, the SAM questionnaire is proposed to evaluate the user's affective state when using the system. In the first experiment we gathered data from 47 participants, in the second one an improved version of the system has been trained and validated by 107 people. The emotional analysis conducted at the end of each iteration suggests that reducing the device invasiveness may affect the user perceptions and also improve the classification performance

    Identifying Correlations among Biomedical Data through Information Retrieval Techniques

    No full text
    In recent years, the integration of researches in Computer Science and medical fields has made available to the scientific community an enormous amount of data, stored in databases. In this paper, we analyze the data available in the Parkinson's Progression Markers Initiative (PPMI), a comprehensive observational, multi-center study designed to identify progression biomarkers important for better treatments for Parkinson's disease. The data of PPMI participants are collected through a comprehensive battery of tests and assessments including Magnetic Resonance Imaging and DATscan imaging, collection of blood, cerebral spinal fluid, and urine samples, as well as cognitive and motor evaluations. To this aim, we propose a technique to identify a correlation between the biomedical data in the PPMI dataset for verifying the consistency of medical reports formulated during the visits and allow to correctly categorize the various patients. To correlate the information of each patient's medical report, Information Retrieval techniques have been adopted, including the Latent Semantic Analysis technique suitable for constructing a concept space on patient information. Then, patients are grouped and classified into affected or not by using clustering algorithms according to the similarity of medical reports projected in the concept space. Results revealed that the proposed technique reached 95% of effectiveness in the classification of patients
    corecore