103,034 research outputs found

    On three domination numbers in block graphs

    Full text link
    The problems of determining minimum identifying, locating-dominating or open locating-dominating codes are special search problems that are challenging both from a theoretical and a computational point of view. Hence, a typical line of attack for these problems is to determine lower and upper bounds for minimum codes in special graphs. In this work we study the problem of determining the cardinality of minimum codes in block graphs (that are diamond-free chordal graphs). We present for all three codes lower and upper bounds as well as block graphs where these bounds are attained

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    Random subgraphs make identification affordable

    Full text link
    An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph GG with nn vertices, maximum degree Δ=ω(1)\Delta=\omega(1) and minimum degree δclogΔ\delta\geq c\log{\Delta}, for some constant c>0c>0, contains a large spanning subgraph which admits an identifying code with size O(nlogΔδ)O\left(\frac{n\log{\Delta}}{\delta}\right). In particular, if δ=Θ(n)\delta=\Theta(n), then GG has a dense spanning subgraph with identifying code O(logn)O\left(\log n\right), namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code

    Improved Bounds for rr-Identifying Codes of the Hex Grid

    Full text link
    For any positive integer rr, an rr-identifying code on a graph GG is a set CV(G)C\subset V(G) such that for every vertex in V(G)V(G), the intersection of the radius-rr closed neighborhood with CC is nonempty and pairwise distinct. For a finite graph, the density of a code is C/V(G)|C|/|V(G)|, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We find a code of density less than 5/(6r)5/(6r), which is sparser than the prior best construction which has density approximately 8/(9r)8/(9r).Comment: 12p

    Solving Two Conjectures regarding Codes for Location in Circulant Graphs

    Full text link
    Identifying and locating-dominating codes have been widely studied in circulant graphs of type Cn(1,2,,r)C_n(1,2, \ldots, r), which can also be viewed as power graphs of cycles. Recently, Ghebleh and Niepel (2013) considered identification and location-domination in the circulant graphs Cn(1,3)C_n(1,3). They showed that the smallest cardinality of a locating-dominating code in Cn(1,3)C_n(1,3) is at least n/3\lceil n/3 \rceil and at most n/3+1\lceil n/3 \rceil + 1 for all n9n \geq 9. Moreover, they proved that the lower bound is strict when n0,1,4(mod6)n \equiv 0, 1, 4 \pmod{6} and conjectured that the lower bound can be increased by one for other nn. In this paper, we prove their conjecture. Similarly, they showed that the smallest cardinality of an identifying code in Cn(1,3)C_n(1,3) is at least 4n/11\lceil 4n/11 \rceil and at most 4n/11+1\lceil 4n/11 \rceil + 1 for all n11n \geq 11. Furthermore, they proved that the lower bound is attained for most of the lengths nn and conjectured that in the rest of the cases the lower bound can improved by one. This conjecture is also proved in the paper. The proofs of the conjectures are based on a novel approach which, instead of making use of the local properties of the graphs as is usual to identification and location-domination, also manages to take advantage of the global properties of the codes and the underlying graphs
    corecore