2,324 research outputs found

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Sensitivity Analysis for Mirror-Stratifiable Convex Functions

    Get PDF
    This paper provides a set of sensitivity analysis and activity identification results for a class of convex functions with a strong geometric structure, that we coined "mirror-stratifiable". These functions are such that there is a bijection between a primal and a dual stratification of the space into partitioning sets, called strata. This pairing is crucial to track the strata that are identifiable by solutions of parametrized optimization problems or by iterates of optimization algorithms. This class of functions encompasses all regularizers routinely used in signal and image processing, machine learning, and statistics. We show that this "mirror-stratifiable" structure enjoys a nice sensitivity theory, allowing us to study stability of solutions of optimization problems to small perturbations, as well as activity identification of first-order proximal splitting-type algorithms. Existing results in the literature typically assume that, under a non-degeneracy condition, the active set associated to a minimizer is stable to small perturbations and is identified in finite time by optimization schemes. In contrast, our results do not require any non-degeneracy assumption: in consequence, the optimal active set is not necessarily stable anymore, but we are able to track precisely the set of identifiable strata.We show that these results have crucial implications when solving challenging ill-posed inverse problems via regularization, a typical scenario where the non-degeneracy condition is not fulfilled. Our theoretical results, illustrated by numerical simulations, allow to characterize the instability behaviour of the regularized solutions, by locating the set of all low-dimensional strata that can be potentially identified by these solutions

    Model Consistency of Partly Smooth Regularizers

    Full text link
    This paper studies least-square regression penalized with partly smooth convex regularizers. This class of functions is very large and versatile allowing to promote solutions conforming to some notion of low-complexity. Indeed, they force solutions of variational problems to belong to a low-dimensional manifold (the so-called model) which is stable under small perturbations of the function. This property is crucial to make the underlying low-complexity model robust to small noise. We show that a generalized "irrepresentable condition" implies stable model selection under small noise perturbations in the observations and the design matrix, when the regularization parameter is tuned proportionally to the noise level. This condition is shown to be almost a necessary condition. We then show that this condition implies model consistency of the regularized estimator. That is, with a probability tending to one as the number of measurements increases, the regularized estimator belongs to the correct low-dimensional model manifold. This work unifies and generalizes several previous ones, where model consistency is known to hold for sparse, group sparse, total variation and low-rank regularizations

    Activity Identification and Local Linear Convergence of Forward--Backward-type methods

    Full text link
    In this paper, we consider a class of Forward--Backward (FB) splitting methods that includes several variants (e.g. inertial schemes, FISTA) for minimizing the sum of two proper convex and lower semi-continuous functions, one of which has a Lipschitz continuous gradient, and the other is partly smooth relatively to a smooth active manifold M\mathcal{M}. We propose a unified framework, under which we show that, this class of FB-type algorithms (i) correctly identifies the active manifolds in a finite number of iterations (finite activity identification), and (ii) then enters a local linear convergence regime, which we characterize precisely in terms of the structure of the underlying active manifolds. For simpler problems involving polyhedral functions, we show finite termination. We also establish and explain why FISTA (with convergent sequences) locally oscillates and can be slower than FB. These results may have numerous applications including in signal/image processing, sparse recovery and machine learning. Indeed, the obtained results explain the typical behaviour that has been observed numerically for many problems in these fields such as the Lasso, the group Lasso, the fused Lasso and the nuclear norm regularization to name only a few.Comment: Full length version of the previous short on
    • …
    corecore