4,740 research outputs found

    Photovoltaic charging multi-station with modular architecture for Light Electric Vehicles

    Get PDF
    This paper deals with a modular architecture for recharging the batteries of light electric vehicles (LEVs) using a photovoltaic (PV) generator. The architecture is divided into two hierarchical levels. At the top level (master), a microcontroller tracks the maximum power point of the PV generator. This microcontroller executes a PID control algorithm whose output is the setpoint of the microcontrollers of the lower level. At the lower level (slaves) there is a microcontroller for each vehicle charging station. Each microcontroller controls the recharge current of the vehicle battery connected to the station by executing another PID control algorithm. The modular architecture allows the number of charging stations to be extended to 112. Other characteristics of the system are the automatic detection of the nominal voltage of the battery (it allows to recharge batteries of 24V, 36V or 48V, equally) and the inclusion of protection functions as battery overload or detection of not allowed batteriesUniversidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN

    Get PDF
    The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls and regulations, although highly customized, must adopt Commercial Off The Shelf (COTS) hardare and software. The ĂąïŸœslow controlĂą systems for the experiments at CERN make extensive use of PLCs (Programmable Logic Controllers) and SCADA (Supervisory Control and Data Acquisition) to provide safety levels (namely interlocks), regulations, remote control of high and low voltages distributions, as well as archiving and trending facilities. The system described in this thesis must follow the same philosophy and, at the same time, comply with international engineering standards. While the interlocks applications belong straightforwardly to the category of DES (Discrete Event System), and are therefore treated with a Finite State Machine approach, other controls are more strictly related to the regulation problem. Chapter 2 will focus on various aspects of modern process control and on the tools used to design the control system for the thermal screen: the principles upon which the controller is designed and tuned, and the model validated, including the Multiple Input-Multiple Output (MIMO) problematics are explained. The thermal screen itself, the constraints and the basis of its functioning are described in Chapter 3, where the thermodynamical design is discussed as well. For the LHC experiments, the aim of a control system is also to provide a well defined SIL (Safety Interlock Level) to keep the system in a safe condition; yet, in this case, it is necessary to regulate the temperature of the system within certain values and respect the constraints arising from the specific needs of the above mentioned subsystems. The most natural choice for a PLC-based controller is a PID (Proportional Integral Derivative) controller. This kind of controller is widely used in many industrial process, from batch production in the pharmaceutics or automotive field to chemical plants, distillation columns and, in general, wherever a reliable and robust control is needed. In order to design and tune PID controllers, many techniques are in use; the approach followed in this thesis is that of black-box modeling: the system is modeled in the time domain, a transfer function is inferred and a controller is designed. Then, a system identification procedure allows for a more thorough study and validation of the model, and for the controller tuning. Project of the thermal screen control including system modeling, controller design and MIMO implementation issues are entirely covered in Chapter 4. A systems engineering methodology has been followed all along to adequately manage and document every phase of the project, complying with time and budget constraints. A risk analysis has been performed, using Layer of Protection Analysis (LOPA) and Hazard and Operability Studies (HAZOP), to understand the level of protection assured by the thermal screen and its control components. Tests planned and then performed to validate the model and for quality assurance purposes are described in Chapter 5. A climatic chamber has been designed and built at CERN, where the real operating conditions of the thermal screen are simulated. Detailed test procedures have been defined, following IEEE standards, in order to completely check every single thermal screen panel. This installation allows for a comparison of different controller tuning approaches, including IAE minimization, Skogestad tuning rules, Internal Model Control (IMC), and a technique based upon the MatLab Optimization toolbox. This installation is also used for system identification purposes and for the acceptance tests of every thermal screen panel (allowing for both electrical and hydraulic checks). Also, tests have been performed on the West Hall CERN experimental area , where a full control system has been set up, for interlock high- and low- voltage lines. The interlock system operating procedures and behaviour have been validated during real operating conditions of the detector esposed to a particle beam. The satisfactory results of tests take the project to full completion, allowing the plan to reach the ĂąïŸœexitĂą stage, when the thermal screen is ready to be installed in the Tracker and ready to be operational

    Configuration, Programming, Implementation, and Evaluation of Distributed Control System for a Process Simulator

    Get PDF
    Abstract A common industrial distributed control system (DCS), DeltaV, is configured and programmed to control and monitor the Nuclear Process Control Test Facility (NPCTF). A cabinet which holds the hardware of the DelatV DCS system, including programmable logic controller (PLC), power supplies, input/output (I/O) cards, terminals, and relays are configured and wired to field devices of NPCTF. A workstation and HMI screen are configured and setup. To implement the main functions of NPCTF in the DelatV system, the programming architecture is designed in the DelatV system. The main control and monitoring functions of NPCTF are programmed using industrial languages of Function Block Diagram (FBD) and Sequential Function Chart (SFC) by IEC61113-3. Safety interlocks are added in the program to protect the NPCTF devices from damage. A HMI is developed to operate and monitor the NPCTF. Through the HMI, the operator can monitor the parameters of process of NPCTF, operate the NPCTF, change parameters of the controller, and force the devices. The process model of SG (Steam Generator) Tank level control is developed using the MATLAB System Identification tool. The model is taken as an example to demonstrate the process of analysis and design the controller of process control. PID is used as the controller algorithm. The main control and monitoring functions of NPCTF in the DeltaV system are commissioned, tested and evaluated. The evaluation results conclude that the DelatV DCS system can control the NPCTF to achieve the main functions of the NPCTF

    Activity Report: Automatic Control 1999

    Get PDF
    • 

    corecore