66 research outputs found

    Identification performance of evidential value estimation for ridge-based biometrics

    Get PDF
    Law enforcement agencies around the world use ridge-based biometrics, especially fingerprints, to fight crime. Fingermarks that are left at a crime scene and identified as potentially having evidential value (EV) in a court of law are recorded for further forensic analysis. Here, we test our evidential value algorithm (EVA) which uses image features trained on forensic expert decisions for 1428 fingermarks to produce an EV score for an image. First, we study the relationship between whether a fingermark is assessed as having EV, either by a human expert or by EVA, and its correct and confident identification by an automatic identification system. In particular, how often does an automatic system achieve identification when the mark is assessed as not having evidential value? We show that when the marks are captured by a mobile phone, correct and confident automatic matching occurs for 257 of the 1428. Of these, 236 were marked as having sufficient EV by experts and 242 by EVA thresholded on equal error rate. Second, we test four relatively challenging ridge-based biometric databases and show that EVA can be successfully applied to give an EV score to all images. Using EV score as an image quality value, we show that in all databases, thresholding on EV improves performance in closed set identification. Our results suggest an EVA application that filters fingermarks meeting a minimum EV score could aid forensic experts at the point of collection, or by flagging difficult latents objectively, or by pre-filtering specimens before submission to an AFIS

    BioTwist - overcoming severe distortions in ridge-based biometrics for successful identication

    Get PDF
    Biometrics rely on a physical trait's permanence and stability over time, as well as its individuality, robustness and ease to be captured. Challenges arise when working with newborns or infants because of the tininess and fragility of an infant's features, their uncooperative nature and their rapid growth. The last of these is particularly relevant when one tries to verify an infant's identity based on captures of a biometric taken at an earlier age. Finding a physical trait that is feasible for infants is often referred to as the infant biometric problem. This thesis explores the quality aspect of adult fingermarks and the correlation between image quality and the mark’s usefulness for an ongoing forensic investigation, and researches various aspects of the “ballprint” as an infant biometric. The ballprint, the friction ridge skin area of the foot pad under the big toe, exhibits similar properties to fingerprint but the ball possesses larger physical structures and a greater number of features. We collected a longitudinal ballprint database from 54 infants within 3 days of birth, at two months old, at 6 months and at 2 years. It has been observed that the skin of a newborn's foot dries and cracks so the ridge lines are often not visible to the naked eye and an adult fingerprint scanner cannot capture them. This thesis presents the physiological discovery that the ballprint grows isotropically during infancy and can be well approximated by a linear function of the infant's age. Fingerprint technology developed for adult fingerprints can match ballprints if they are adjusted by a physical feature (the inter-ridge spacing) to be of a similar size to adult fingerprints. The growth in ballprint inter-ridge spacing mirrors infant growth in terms of length/height. When growth is compensated for by isotropic rescaling, impressive verification scores are achieved even for captures taken 22 months apart. The scores improve even further when low-quality prints are rejected; the removal of the bottom third improves the Equal Error Rate from 1-2% to 0%. In conclusion, this thesis demonstrates that the ballprint is a feasible solution to the infant biometric problem

    What fingermarks reveal about activities

    Get PDF
    Fingermarks play important role in forensic science. Based on the ridge detail information present in a fingermark, individualization or exclusion of a donor is possible by comparing a fingermark obtained from a crime scene to a reference fingerprint. In this process, the intrinsic features of a fingermark are used to determine the source of the fingermark. However, in some cases, the source of a fingermark is not argued but the activity that led to the deposition of the fingermark. The question changes from ‘Who left the fingermark?’ to ‘How did the fingermark end up on the surface?’ which requires a different assessment of the findings. The aim of this dissertation is to determine how fingermarks could provide information about activities in a reliable way, in order to be used in the forensic evidence process. To answer this main research question, several studies were conducted which are described in Chapters 2 to 5 of this dissertation. Chapter 2 describes the development of a general framework to evaluate fingermarks given activity level propositions. Relevant variables that function as sources of information when evaluating fingermarks given activity level proposition were identified. Based on these variables, three Bayesian networks were presented for different evaluations of the fingermarks given activity level propositions in a case example. The presented networks function as a general framework for the evaluation of fingermarks given activity level propositions, which can be adapted to specific case circumstances. Chapter 3 shows how the proposed framework in Chapter 2 can be used in casework by showing a case example. In order to use a Bayesian network, probabilities need to be assigned to the Bayesian network. In this study, a case specific experiment with the use of knives was conducted and the resulting data was used to assign probabilities to two Bayesian networks, both focusing on a different use of the experimental data. This study has shown how different uses of the data resulting from a case specific experiment on fingermarks can be used to assign probabilities to Bayesian networks for the evaluation of fingermarks given activity level propositions. In Chapter 4, we focus on the location of fingermarks on an item. In this study, we developed a classification model to evaluate the location of fingermarks given activity level propositions based on an experiment with pillowcases. The results showed that fingermark patterns left on a pillowcase by smothering with a pillow can be well distinguished from fingermark patterns left by changing a pillowcase of a pillow. The result of this study is a model that can be used to study the location of fingermarks on two-dimensional items in general, for which is expected that different activities will lead to different trace locations. Chapter 5 investigates the application of the location model presented in Chapter 4 to a dataset of letters, to study whether the model could also be used to distinguish between fingermark patterns left when writing a letter and fingermark patterns left when reading a letter. Based on the results of this study we conclude that the model proposed in Chapter 4 is indeed applicable to other objects for which it is expected that different activities lead to different fingermark locations, given the condition that the training set is representative for the object to be tested with regards to the size of the object and the activity that was carried out with the object. This dissertation supports the view that fingermarks contain valuable information about the activity that caused the deposition of the fingermarks and provides the forensic community with reliable methods that can be used when evaluating fingermarks given activity level propositions

    Interpol review of fingermarks and other body impressions 2016–2019

    Get PDF
    This review paper covers the forensic-relevant literature in fingerprint and bodily impression sciences from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/ 14458/file/Interpol%20 Review%20 Papers%202019. pdf

    Forensic Science: Current State and Perspective by a Group of Early Career Researchers

    Full text link
    © 2016, Springer Science+Business Media Dordrecht. Forensic science and its influence on policing and the criminal justice system have increased since the beginning of the twentieth century. While the philosophies of the forensic science pioneers remain the pillar of modern practice, rapid advances in technology and the underpinning sciences have seen an explosion in the number of disciplines and tools. Consequently, the way in which we exploit and interpret the remnant of criminal activity are adapting to this changing environment. In order to best exploit the trace, an interdisciplinary approach to both research and investigation is required. In this paper, nine postdoctoral research fellows from a multidisciplinary team discuss their vision for the future of forensic science at the crime scene, in the laboratory and beyond. This paper does not pretend to be exhaustive of all fields of forensic science, but describes a portion of the postdoctoral fellows’ interests and skills

    Forging a Stable Relationship?: Bridging the Law and Forensic Science Divide in the Academy

    Get PDF
    The marriage of law and science has most often been represented as discordant. While the law/science divide meme is hardly novel, concerns over the potentially deleterious coupling within the criminal justice system may have reached fever pitch. There is a growing chorus of disapproval addressed to ‘forensic science’, accompanied by the denigration of legal professionals for being unable or unwilling to forge a symbiotic relationship with forensic scientists. The 2009 National Academy of Sciences Report on forensic science heralds the latest call for greater collaboration between ‘law’ and ‘science’, particularly in Higher Education Institutions (HEIs) yet little reaction has been apparent amid law and science faculties. To investigate the potential for interdisciplinary cooperation, the authors received funding for a project: ‘Lowering the Drawbridges: Forensic and Legal Education in the 21st Century’, hoping to stimulate both law and forensic science educators to seek mutually beneficial solutions to common educational problems and build vital connections in the academy. A workshop held in the UK, attended by academics and practitioners from scientific, policing, and legal backgrounds marked the commencement of the project. This paper outlines some of the workshop conclusions to elucidate areas of dissent and consensus, and where further dialogue is required, but aims to strike a note of optimism that the ‘cultural divide’ should not be taken to be so wide as to be beyond the legal and forensic science academy to bridge. The authors seek to demonstrate that legal and forensic science educators can work cooperatively to respond to critics and forge new paths in learning and teaching, creating an opportunity to take stock and enrich our discipline as well as answer critics. As Latham (2010:34) exhorts, we are not interested in turning lawyers into scientists and vice versa, but building a foundation upon which they can build during their professional lives: “Instead of melding the two cultures, we need to establish conditions of cooperation, mutual respect, and mutual reliance between them.” Law and forensic science educators should, and can assist with the building of a mutual understanding between forensic scientists and legal professionals, a significant step on the road to answering calls for the professions to minimise some of the risks associated with the use of forensic science in the criminal process. REFERENCES Latham, S.R. 2010, ‘Law between the cultures: C.P.Snow’s The Two Cultures and the problem of scientific illiteracy in law’ 32 Technology in Society, 31-34. KEYWORDS forensic science education legal education law/science divid

    Biometrics in forensic science: challenges, lessons and new technologies

    Get PDF
    Biometrics has historically found its natural mate in Forensics. The first applications found in the literature and over cited so many times, are related to biometric measurements for the identification of multiple offenders from some of their biometric and anthropometric characteristics (tenprint cards) and individualization of offender from traces found on crime-scenes (e.g. fingermarks, earmarks, bitemarks, DNA). From sir Francis Galton, to the introduction of AFIS systems in the scientific laboratories of police departments, Biometrics and Forensics have been "dating" with alternate results and outcomes. As a matter of facts there are many technologies developed under the "Biometrics umbrella" which may be optimised to better impact several Forensic scenarios and criminal investigations. At the same time, there is an almost endless list of open problems and processes in Forensics which may benefit from the introduction of tailored Biometric technologies. Joining the two disciplines, on a proper scientific ground, may only result in the success for both fields, as well as a tangible benefit for the society. A number of Forensic processes may involve Biometric-related technologies, among them: Evidence evaluation, Forensic investigation, Forensic Intelligence, Surveillance, Forensic ID management and Verification.\ud The COST Action IC1106 funded by the European Commission, is trying to better understand how Biometric and Forensics synergies can be exploited within a pan-European scientific alliance which extends its scope to partners from USA, China and Australia.\ud Several results have been already accomplished pursuing research in this direction. Notably the studies in 2D and 3D face recognition have been gradually applied to the forensic investigation process. In this paper a few solutions will be presented to match 3D face shapes along with some experimental results
    corecore