152 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationWith increasing wildfire activity throughout the western United States comes an increased need for wildland firefighters to protect civilians, structures, and public resources. In order to mitigate threats to their safety, firefighters employ the use of safety zones (SZ: areas where firefighters are free from harm) and escape routes (ER: pathways for accessing SZ). Currently, SZ and ER are designated by firefighters based on ground-level information, the interpretation of which can be error-prone. This research aims to provide robust methods to assist in the ER and SZ evaluation processes, using remote sensing and geospatial modeling. In particular, I investigate the degree to which lidar can be used to characterize the landscape conditions that directly affect SZ and ER quality. I present a new metric and lidar-based algorithm for evaluating SZ based on zone geometry, surrounding vegetation height, and number of firefighters present. The resulting map contains a depiction of potential SZ throughout Tahoe National Forest, each of which has a value that indicates its wind- and slope-dependent suitability. I then inquire into the effects of three landscape conditions on travel rates for the purpose of developing a geospatial ER optimization model. I compare experimentally-derived travel rates to lidar-derived estimates of slope, vegetation density, and ground surface roughness, finding that vegetation density had the strongest negative effect. Relative travel impedances are then mapped throughout Levan Wildlife Management Area and combined with a route-finding algorithm, enabling the identification of maximally-efficient escape routes between any two known locations. Lastly, I explore a number of variables that can affect the accurate characterization of understory vegetation density, finding lidar pulse density, overstory vegetation density, and canopy height all had significant effects. In addition, I compare two widely-used metrics for understory density estimation, overall relative point density and normalized relative point density, finding that the latter possessed far superior predictive power. This research provides novel insight into the potential use of lidar in wildland firefighter safety planning. There are a number of constraints to widespread implementation, some of which are temporary, such as the current lack of nationwide lidar data, and some of which require continued study, such as refining our ability to characterize understory vegetation conditions. However, this research is an important step forward in a direction that has potential to greatly improve the safety of those who put themselves at risk to ensure the safety of life and property

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Space assets and technology for bushfire management

    Get PDF
    The financial, emotional, and ecological impacts of bushfires can be devastating. This report was prepared by the participants of the Southern Hemisphere Space Studies Program 2021 in response to the topic: “How space assets and technologies can be applied to better predict and mitigate bushfires and their impacts.” To effectively reach the diverse set of stakeholders impacted by bushfires, Communication was identified as a key enabler central to any examination of the topic. The three pillars “predict”, “mitigate” and “communicate” were identified to frame the task at hand. Combining the diverse skills and experience of the class participants with the interdisciplinary knowledge gained from the seminars, distinguished lectures, and workshops during the SHSSP21 program, conducted a literature review With specific reference to the 2019-20 Australian fire season, we looked at the current state of the art, key challenges, and how bushfires can be better predicted and mitigated in the future. Comparing this to the future desired state, we identified gaps for each of the three domains, and worked across teams to reach consensus on a list of recommendations. Several of these recommendations were derived independently by two or more of the three groups, highlighting the importance of a holistic and collaborative approach. The report details a number of recommendations arising from this Where applicable, we also aligned our discussion with the experience and lessons from other countries and agencies to consider,learn from and respond to the international context, as others develop systems using space technology to tackle similar wildfire issues

    Wildfire Hazard and Risk Assessment

    Get PDF
    Wildfire risk can be perceived as the combination of wildfire hazards (often described by likelihood and intensity) with the susceptibility of people, property, or other valued resources to that hazard. Reflecting the seriousness of wildfire risk to communities around the world, substantial resources are devoted to assessing wildfire hazards and risks. Wildfire hazard and risk assessments are conducted at a wide range of scales, from localized to nationwide, and are often intended to communicate and support decision making about risks, including the prioritization of scarce resources. Improvements in the underlying science of wildfire hazard and risk assessment and in the development, communication, and application of these assessments support effective decisions made on all aspects of societal adaptations to wildfire, including decisions about the prevention, mitigation, and suppression of wildfire risks. To support such efforts, this Special Issue of the journal Fire compiles articles on the understanding, modeling, and addressing of wildfire risks to homes, water resources, firefighters, and landscapes

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of “volunteer mappers”. Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protection

    A Qualitative Study of the Motivations and Affiliation Dynamics Involved with a Firefighting Career

    Get PDF
    We explored the experiences of full-time firefighters in the present phenomenological qualitative study, having conducted semi-structured interviews with 26 male full-time firefighters. Their personal constructs of motivation and affiliation were explored and, within the constructs of motivation, three themes emerged. First, firefighters were motivated by a love of the excitement firefighting provides. Second, firefighters reported that the work schedule, which allows them more time at home, was a motivation. Third (and most emphasized by the firefighters) was an altruistic motivation to help others. Under the construct of affiliation, the firefighters reported a strong sense of brotherhood with their shift-partners, and they extended this brotherhood to all firefighters and even other emergency workers. We relate these findings to the existing body of research regarding the relationship between motivation, affiliation and satisfaction of firefighters

    EVTOL concept design

    Get PDF
    This master thesis consists of a research and development project¿s documentation about Electrical Vertical Take off and Landing (EVTOL) technology. The main target is providing an investigation about this technology, reviewing its history since its origins to the future lines, understanding how it works by revising all the technical aspects such as the mechanical part, hardware components, software systems, structural stress design¿ In addition, a market study is carried out around this technology to come up with a first prototype. Based on a research for the applications and utilities that it can offer regarding the future problems that humanity is facing. Furthermore, this thesis documents the analog and digital methodologies that are being used throughout the entire creative process combining design and engineering workflows in order to achieve the proposed objectives. The project¿s value resides on the creative design aspect, therefore all the content is based from the pre-production design perspective. As the most technical part involving the product production such as the stress design aspect to select the right components, or quality validation process would be carried out on further stages by the engineers.Objectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::15 - Vida d'Ecosistemes Terrestre

    Mapping values at risk, assessing building loss and evaluating stakeholder expectations of wildfire mitigation in the wildland-urban interface

    Get PDF
    2020 Fall.Includes bibliographical references.The Wildland-Urban Interface (WUI) is an area where residential development extends into undeveloped land. When WUI development occurs in hazard-prone fire-adapted ecosystems, wildfires can have detrimental impacts on human communities by destroying buildings and infrastructure. Wildfires that cause substantial building loss are known as WUI disasters because of their high social and economic costs. WUI disasters tend to occur when wildfires ignite under extreme burning conditions and threaten a large number of homes in hazardous conditions relative to firefighting resources. This combination of factors can lead to significant home loss. WUI disasters annually result in billions of dollars in fire suppression costs and destroy thousands of homes Governments, land managers, and effected stakeholders respond to this threat in numerous ways as they attempt to mitigate the impacts of wildfires and reduce losses in WUI communities. Although wildfire mitigation efforts emphasize the removal of nearby flammable vegetation and the use of nonflammable building materials, one of the critical steps involves developing a map of communities and buildings at risk in the WUI. Despite broad-scale mapping efforts, most WUI maps do not identify building locations at sufficiently fine scales to estimate fire exposure and inform wildfire planning. Defensible space is promoted as the most effective way to reduce home ignition; however, questions remain surrounding its interactions with fire response, and its efficacy under the wide range of potential fire behavior to which homes could be exposed. This dissertation sought to realize three goals: first, it examined the potential of new technologies to map the WUI and the buildings within it at fine scales; second, it evaluated how well existing WUI mapping efforts capture the pattern of building loss observed during WUI disasters; and third, it examined stakeholder perspectives on the efficacy and interactions of defensible space and fire response with regards to protecting homes from WUI disasters. Chapter two evaluates the ability of Object Based Image Analysis to extract WUI building locations from orthoimagery of the wildland-urban interface by testing accuracy and error at multiple scales. I found the approach can extract building locations with high rates of accuracy, and minimal user input. Extracting building locations using this approach can lead to comprehensive datasets of building locations in the WUI, which can be used to create more detailed maps of buildings exposed to wildfires. Such maps have utility for risk mapping, fuel treatment prioritization, and incident management, and can lead to a better understanding regarding the spatial patterns of home loss. Chapter three leverages building location data to quantify the impacts of WUI disasters and evaluate the accuracy of WUI maps. I compare how well existing polygon-based SILVIS WUI maps and point-based WUI maps capture the pattern of building loss and assess building loss in relation to the core components of the WUI definition. Findings can be used to improve existing WUI maps, create point-based WUI maps from building location datasets, identify which homes are most in need of defensible space, and refine risk mapping and identification of wildfire exposure zones. Finally, chapter four assesses stakeholder perspectives regarding the efficacy of defensible space and its interactions with fire response with regards to the stakeholders' ability to protect homes from WUI disasters. This is related to the prior mapping efforts because it speaks to the ways stakeholders co-manage wildfire risk with fire protection authorities, and the actions they take to protect threatened homes mapped using the methods evaluated in chapters one and two. These qualitative methods suggest a wide range in expectations of defensible space efficacy, both in theory and in practice. It is likely that numerous factors reduce the perceived and actual efficacy of defensible space

    Fire Risk Assessment: A Systematic Review of the Methodology and Functional Areas

    Get PDF
    Fire is a physical and social phenomenon that affects both individuals and the environment. Fire risk assessment is a critical part of a fire prevention program. In this process, the fire risk associated with the possibility of occurrence and severity of damage resulting from the fire is estimated and calculated. In this paper, a classification scheme and a systematic literature review are presented in order to classify and interpret the current researches on fire risk assessment methodologies and applications. Based on the scheme, 93 scholarly papers from 13 journals are categorized into application areas and other categories. The application areas include the papers on the topics of environmental impact, production and industry, transportation, buildings, power industry, oil and gas industry, urban fires and other topics. Scholarly papers are also classified by (1) year of publication, (2) journal of publication, (3) year of publication and application areas and (4) authors’ nationality. The survey results show that the largest number of papers was published during the period 2010-2012 with 31 (33.33%), the most of the studies have been carried out on environmental impact (47.31%), the journal of Forest Ecology and Management had the highest percentage of articles with 26.88%. It is hoped that the paper can meet the needs of researchers for easy references of fire risk assessment methodologies and applications. Therefore, this work would be able to provide useful insights into the anatomy of the fire-risk assessment methods, and suggest academic researchers and experts a framework for future attempts and researches
    corecore