137 research outputs found

    Experimental modeling of a web-winding machine: LPV approaches

    Get PDF
    This chapter presents the identification of a web-winding system as a linear parameter varying (LPV) system with the reel radius as the time-varying parameter. This system is nonlinear, time-varying and input–output unstable. Two identification methods are considered: in the first one, an LPV model is estimated in a single step using a novel approach based on sparse identification and set membership optimality evaluation. In the second one, several local linear time-invariant (LTI) models are identified using classical identification algorithms, and the overall LPV model is constructed as a weighted sum of the local models. The two methods are applied to experimental data measured on a real web-winding machine

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    A control theoretical view of cloud elasticity: taxonomy, survey and challenges

    Get PDF
    The lucrative features of cloud computing such as pay-as-you-go pricing model and dynamic resource provisioning (elasticity) attract clients to host their applications over the cloud to save up-front capital expenditure and to reduce the operational cost of the system. However, the efficient management of hired computational resources is a challenging task. Over the last decade, researchers and practitioners made use of various techniques to propose new methods to address cloud elasticity. Amongst many such techniques, control theory emerges as one of the popular methods to implement elasticity. A plethora of research has been undertaken on cloud elasticity including several review papers that summarise various aspects of elasticity. However, the scope of the existing review articles is broad and focused mostly on the high-level view of the overall research works rather than on the specific details of a particular implementation technique. While considering the importance, suitability and abundance of control theoretical approaches, this paper is a step forward towards a stand-alone review of control theoretic aspects of cloud elasticity. This paper provides a detailed taxonomy comprising of relevant attributes defining the following two perspectives, i.e., control-theory as an implementation technique as well as cloud elasticity as a target application domain. We carry out an exhaustive review of the literature by classifying the existing elasticity solutions using the attributes of control theoretic perspective. The summarized results are further presented by clustering them with respect to the type of control solutions, thus helping in comparison of the related control solutions. In last, a discussion summarizing the pros and cons of each type of control solutions are presented. This discussion is followed by the detail description of various open research challenges in the field

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    SEEC: A Framework for Self-aware Management of Multicore Resources

    Get PDF
    This paper presents SEEC, a self-aware programming model, designed to reduce programming effort in modern multicore systems. In the SEEC model, application programmers specify application goals and progress, while systems programmers separately specify actions system software and hardware can take to affect an application (e.g. resource allocation). The SEEC runtime monitors applications and dynamically selects actions to meet application goals optimally (e.g. meeting performance while minimizing power consumption). The SEEC runtime optimizes system behavior for the application rather than requiring the application programmer to optimize for the system. This paper presents a detailed discussion of the SEEC model and runtime as well as several case studies demonstrating their benefits. SEEC is shown to optimize performance per Watt for a video encoder, find optimal resource allocation for an application with complex resource usage, and maintain the goals of multiple applications in the face of environmental fluctuations

    Control Strategies for Self-Adaptive Software Systems

    Get PDF
    The pervasiveness and growing complexity of software systems are challenging software engineering to design systems that can adapt their behavior to withstand unpredictable, uncertain, and continuously changing execution environments. Control theoretical adaptation mechanisms have received growing interest from the software engineering community in the last few years for their mathematical grounding, allowing formal guarantees on the behavior of the controlled systems. However, most of these mechanisms are tailored to specific applications and can hardly be generalized into broadly applicable software design and development processes. This article discusses a reference control design process, from goal identification to the verification and validation of the controlled system. A taxonomy of the main control strategies is introduced, analyzing their applicability to software adaptation for both functional and nonfunctional goals. A brief extract on how to deal with uncertainty complements the discussion. Finally, the article highlights a set of open challenges, both for the software engineering and the control theory research communities

    Activity Report 2022

    Get PDF
    • …
    corecore