4 research outputs found

    Synthetic Data for Feature Selection

    Full text link
    Feature selection is an important and active field of research in machine learning and data science. Our goal in this paper is to propose a collection of synthetic datasets that can be used as a common reference point for feature selection algorithms. Synthetic datasets allow for precise evaluation of selected features and control of the data parameters for comprehensive assessment. The proposed datasets are based on applications from electronics in order to mimic real life scenarios. To illustrate the utility of the proposed data we employ one of the datasets to test several popular feature selection algorithms. The datasets are made publicly available on GitHub and can be used by researchers to evaluate feature selection algorithms

    Gene regulatory network modelling with evolutionary algorithms -an integrative approach

    Get PDF
    Building models for gene regulation has been an important aim of Systems Biology over the past years, driven by the large amount of gene expression data that has become available. Models represent regulatory interactions between genes and transcription factors and can provide better understanding of biological processes, and means of simulating both natural and perturbed systems (e.g. those associated with disease). Gene regulatory network (GRN) quantitative modelling is still limited, however, due to data issues such as noise and restricted length of time series, typically used for GRN reverse engineering. These issues create an under-determination problem, with many models possibly fitting the data. However, large amounts of other types of biological data and knowledge are available, such as cross-platform measurements, knockout experiments, annotations, binding site affinities for transcription factors and so on. It has been postulated that integration of these can improve model quality obtained, by facilitating further filtering of possible models. However, integration is not straightforward, as the different types of data can provide contradictory information, and are intrinsically noisy, hence large scale integration has not been fully explored, to date. Here, we present an integrative parallel framework for GRN modelling, which employs evolutionary computation and different types of data to enhance model inference. Integration is performed at different levels. (i) An analysis of cross-platform integration of time series microarray data, discussing the effects on the resulting models and exploring crossplatform normalisation techniques, is presented. This shows that time-course data integration is possible, and results in models more robust to noise and parameter perturbation, as well as reduced noise over-fitting. (ii) Other types of measurements and knowledge, such as knock-out experiments, annotated transcription factors, binding site affinities and promoter sequences are integrated within the evolutionary framework to obtain more plausible GRN models. This is performed by customising initialisation, mutation and evaluation of candidate model solutions. The different data types are investigated and both qualitative and quantitative improvements are obtained. Results suggest that caution is needed in order to obtain improved models from combined data, and the case study presented here provides an example of how this can be achieved. Furthermore, (iii), RNA-seq data is studied in comparison to microarray experiments, to identify overlapping features and possibilities of integration within the framework. The extension of the framework to this data type is straightforward and qualitative improvements are obtained when combining predicted interactions from single-channel and RNA-seq datasets

    Heuristic ensembles of filters for accurate and reliable feature selection

    Get PDF
    Feature selection has become increasingly important in data mining in recent years. However, the accuracy and stability of feature selection methods vary considerably when used individually, and yet no rule exists to indicate which one should be used for a particular dataset. Thus, an ensemble method that combines the outputs of several individual feature selection methods appears to be a promising approach to address the issue and hence is investigated in this research. This research aims to develop an effective ensemble that can improve the accuracy and stability of the feature selection. We proposed a novel heuristic ensemble of filters (HEF). It combines two types of filters: subset filters and ranking filters with a heuristic consensus algorithm in order to utilise the strength of each type. The ensemble is tested on ten benchmark datasets and its performance is evaluated by two stability measures and three classifiers. The experimental results demonstrate that HEF improves the stability and accuracy of the selected features and in most cases outperforms the other ensemble algorithms, individual filters and the full feature set. The research on the HEF algorithm is extended in several dimensions; including more filter members, three novel schemes of mean rank aggregation with partial lists, and three novel schemes for a weighted heuristic ensemble of filters. However, the experimental results demonstrate that adding weight to filters in HEF does not achieve the expected improvement in accuracy, but increases time and space complexity, and clearly decreases stability. Therefore, the core ensemble algorithm (HEF) is demonstrated to be not just simpler but also more reliable and consistent than the later more complicated and weighted ensembles. In addition, we investigated how to use data in feature selection, using ALL or PART of it. Systematic experiments with thirty five synthetic and benchmark real-world datasets were carried out
    corecore