6 research outputs found

    Exactly-once quantity transfer

    Get PDF
    Strongly consistent systems supporting distributed transactions can be prone to high latency and do not tolerate partitions. The present trend of using weaker forms of consistency, to achieve high availability, poses notable challenges in writing applications due to the lack of linearizability, e.g., to ensure global invariants, or perform mutator operations on a distributed datatype. This paper addresses a specific problem: the exactly-once transfer of a "quantity" from one node to another on an unreliable network (coping with message duplication, loss, or reordering) and without any form of global synchronization. This allows preserving a global property (the sum of quantities remains unchanged) without requiring global linearizability and only through using pairwise interactions between nodes, therefore allowing partitions in the system. We present the novel quantity-transfer algorithm while focusing on a specific use-case: a redistribution protocol to keep the quantities in a set of nodes balanced; in particular, averaging a shared real number across nodes. Since this is a work in progress, we briefly discuss the correctness of the protocol, and we leave potential extensions and empirical evaluations for future work.This work is financed by the FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project UID/EEA/50014/2013; and by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 609551, SyncFree project.info:eu-repo/semantics/publishedVersio

    Efficient state-based CRDTs by delta-mutation

    Get PDF
    CRDTs are distributed data types that make eventual consistency of a distributed object possible and non ad-hoc. Specifically, state-based CRDTs ensure convergence through disseminating the entire state, that may be large, and merging it to other replicas; whereas operation-based CRDTs disseminate operations (i.e., small states) assuming an exactly-once reliable dissemination layer. We introduce Delta State Conflict-Free Replicated Datatypes (δ-CRDT) that can achieve the best of both worlds: small messages with an incremental nature, disseminated over unreliable communication channels. This is achieved by defining δ-mutators to return a delta-state, typically with a much smaller size than the full state, that is joined to both: local and remote states. We introduce the δ-CRDT framework, and we explain it through establishing a correspondence to current state-based CRDTs. In addition, we present an anti-entropy algorithm that ensures causal consistency, and two δ-CRDT specifications of well-known replicated datatypes.This work is co-financed by the North Portugal Regional Operational Programme (ON.2, O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), within project NORTE07-0124-FEDER-000058; and by EU FP7 SyncFree project (609551)

    Delta state replicated data types

    Get PDF
    Conflict-free Replicated Data Types (CRDTs) are distributed data types that make eventual consistency of a distributed object possible and non ad-hoc. Specifically, state-based CRDTs ensure convergence through disseminating the entire state, that may be large, and merging it to other replicas. We introduce Delta State Conflict-Free Replicated Data Types (delta-CRDT) that can achieve the best of both operation-based and state-based CRDTs: small messages with an incremental nature, as in operation-based CRDTs, disseminated over unreliable communication channels, as in traditional state-based CRDTs. This is achieved by defining delta-mutators to return a delta-state, typically with a much smaller size than the full state, that to be joined with both local and remote states. We introduce the delta-CRDT framework, and we explain it through establishing a correspondence to current state-based CRDTs. In addition, we present an anti-entropy algorithm for eventual convergence, and another one that ensures causal consistency. Finally, we introduce several delta-CRDT specifications of both well-known replicated datatypes and novel datatypes, including a generic map composition. (C) 2017 Elsevier Inc. All rights reserved.The work presented was partially supported by EU FP7 SyncFree project (609551), EU H2020 LightKone project (732505), and SMILES line in project TEC4Growth (NORTE-01-0145-FEDER-000020)

    Idempotence Is Not a Medical Condition

    No full text

    Idempotence is not a medical condition

    No full text
    corecore