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a b s t r a c t

Conflict-free Replicated Data Types (CRDTs) are distributed data types that make eventual consistency of
a distributed object possible and non ad-hoc. Specifically, state-based CRDTs ensure convergence through
disseminating the entire state, thatmay be large, andmerging it to other replicas.We introduceDelta State
Conflict-Free Replicated Data Types (δ-CRDT) that can achieve the best of both operation-based and state-
based CRDTs: small messages with an incremental nature, as in operation-based CRDTs, disseminated
over unreliable communication channels, as in traditional state-based CRDTs. This is achieved by defining
δ-mutators to return a delta-state, typically with a much smaller size than the full state, that to be
joined with both local and remote states. We introduce the δ-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs. In addition, we present an anti-
entropy algorithm for eventual convergence, and another one that ensures causal consistency. Finally, we
introduce several δ-CRDT specifications of both well-known replicated datatypes and novel datatypes,
including a generic map composition.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Eventual consistency (EC) is a relaxed consistency model that
is often adopted by large-scale distributed systems [15,18,34]
where availability must be maintained, despite outages and par-
titioning, whereas delayed consistency is acceptable. A typical
approach in EC systems is to allow replicas of a distributed object
to temporarily diverge, provided that they can eventually be rec-
onciled into a common state. To avoid application-specific recon-
ciliation methods, costly and error-prone, Conflict-Free Replicated
Data Types (CRDTs) [32,33]were introduced, allowing the design of
self-contained distributed data types that are always available and
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eventually converge when all operations are reflected at all repli-
cas. Though CRDTs are deployed in practice and supportmillions of
users worldwide [9,21,30], more work is still required to improve
their design and performance.

CRDTs support two complementary designs: operation-based
(or op-based) and state-based. In op-based designs [26,33], the
execution of an operation is done in two phases: prepare and effect.
The former is performed only on the local replica and looks at the
operation and current state to produce a message that aims to
represent the operation, which is then shipped to all replicas. Once
received, the representation of the operation is applied remotely
using effect. On the other hand, in a state-based design [5,33] an
operation is only executed on the local replica state. A replica
periodically propagates its local changes to other replicas through
shipping its entire state. A received state is incorporated with the
local state via a merge function that deterministically reconciles
both states. To maintain convergence, merge is defined as a join:
a least upper bound over a join-semilattice [5,33].

Op-based CRDTs have some advantages as they can allow for
simpler implementations, concise replica state, and smaller mes-
sages; however, they are subject to some limitations: First, they
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assume a message dissemination layer that guarantees reliable
exactly-once causal broadcast; these guarantees are hard to main-
tain since large logsmust be retained to prevent duplication even if
TCP is used [20]. Second,membershipmanagement is a hard task in
op-based systems especially once the number of nodes gets larger
or due to churn problems, since all nodes must be coordinated by
the middleware. Third, the op-based approach requires operations
to be executed individually (even when batched) on all nodes.

The alternative is to use state-based systems, which are free
from these limitations. However, a major drawback in current
state-based CRDTs is the communication overhead of shipping the
entire state, which can get very large in size. For instance, the
state size of a counter CRDT (a vector of integer counters, one
per replica) increases with the number of replicas; whereas in a
grow-only Set, the state size depends on the set size, that grows as
more operations are invoked. This communication overhead limits
the use of state-based CRDTs to data-types with small state size
(e.g., counters are reasonable while large sets are not). Recently,
there has been a demand for CRDTs with large state sizes (e.g., in
RIAK DT Maps [10] that can compose multiple CRDTs and that we
formalize in Section 7.4.9).

In this paper, we rethink the way state-based CRDTs should be
designed, having in mind the problematic shipping of the entire
state. Our aim is to ship a representation of the effect of recent
update operations on the state, rather than the whole state, while
preserving the idempotent nature of join. This ensures conver-
gence over unreliable communication (on the contrary to op-
based CRDTs that demand exactly-once delivery and are prone
to message duplication). To achieve this, we develop in detail
the concept of Delta State-based CRDTs (δ-CRDT) that we initially
introduced in [2]. In this new (delta) framework, the state is still
a join-semilattice that now results from the join of multiple fine-
grained states, i.e., deltas, generated by what we call δ-mutators.
δ-mutators are new versions of the datatype mutators that return
the effect of these mutators on the state. In this way, deltas can
be temporarily retained in a buffer to be shipped individually (or
joined in groups) instead of shipping the entire object. The changes
to the local state are then incorporated at other replicas by joining
the shipped deltas with their own states.

The use of ‘‘deltas’’ (i.e., incremental states) may look intuitive
in state dissemination; however, this is not the case for state-based
CRDTs. The reason is that once a node receives an entire state,
merging it locally is simple since there is no need to care about
causality, as both states are self-contained (including meta-data).
The challenge in δ-CRDT is that individual deltas are now ‘‘state
fragments’’ and usually must be causally merged to maintain the
desired semantics. This raises the following questions: is merging
deltas semantically equivalent tomerging entire states in CRDTs? If
not, what are the sufficient conditions tomake this true in general?
And underwhat constraints causal consistency ismaintained? This
paper answers these questions and presents corresponding proofs
and examples.

We address the challenge of designing a new δ-CRDT that
conserves the correctness properties and semantics of an existing
CRDT by establishing a relation between the novel δ-mutatorswith
the original CRDT mutators. We prove that eventual consistency is
guaranteed in δ-CRDT as long as all deltas produced by δ-mutators
are delivered and joined at other replicas, and we present a cor-
responding simple anti-entropy algorithm. We then show how to
ensure causal consistency using deltas through introducing the
concept of delta-interval and the causal delta-merging condition.
Based on these, we then present an anti-entropy algorithm for
δ-CRDT, where sending and then joining delta-intervals into an-
other replica state produces the same effect as if the entire state
had been shipped and joined.

We illustrate our approach through a simple counter CRDT and
a corresponding δ-CRDT specification. Later, we present a portfo-
lio of several δ-CRDTs that adapt known CRDT designs and also
introduce a generic kernel for the definition of CRDTs that keep a
causal history of known events and a CRDT map that can compose
them. All these δ-CRDT datatypes, and a few more, are available
online in a reference C++ library [3]. Our experience shows that a
δ-CRDT version can be devised for all CRDTs, but this requires some
design effort that varies with the complexity of different CRDTs.
This refactoring effort can be avoided for new datatypes by writing
all mutations as delta-mutations, and only deriving the standard
mutators if needed; these can be trivially obtained from the delta-
mutators.

This paper is an extended version of [2], adding the following
material: Proofs of conditions to attain equivalence to state based
CRDTs; Anti-entropy algorithm for basic convergence; Portfolio
of delta state CRDTs including simple compositions and anony-
mous replicated types (grow only sets, two phase sets, lexico-
graphic pairs (Soundcloud [9]) last-writer-wins sets), named types
(positive–negative counters, (Cassandra [16]) lexicographic coun-
ters); Kernel for causal CRDTs, with a universal join function; Opti-
mized causal CRDTs (remove-wins sets, (Riak) flags [6]); Recursive
map data type for causal CRDTs.

2. Systemmodel

Consider a distributed system with nodes containing local
memory, with no shared memory between them. Any node can
send messages to any other node. The network is asynchronous;
there is no global clock, no bound on the time a message takes to
arrive, and no bounds on relative processing speeds. The network
is unreliable: messages can be lost, duplicated or reordered (but
are not corrupted). Some messages will, however, eventually get
through: if a node sends infinitely many messages to another
node, infinitely many of these will be delivered. In particular, this
means that there can be arbitrarily long partitions, but these will
eventually heal. Nodes have access to durable storage; they can
crash but will eventually recover with the content of the durable
storage just before the crash occurred. Durable state is written
atomically at each state transition. Each node has access to its
globally unique identifier in a set I.

2.1. Notation

We use mostly standard notation for sets and maps, including
set comprehension of the forms {f (x)|x ∈ S} or {x ∈ S|Pred(x)}. A
map is a set of (k, v) pairs,where each k is associatedwith a single v.
Given amapm,m(k) returns the value associated with key k, while
m{k ↦→ v} denotes m updated by mapping k to v. The domain and
range of a map m is denoted by dom m and ran m, respectively,
i.e., dom m = {k|(k, v) ∈ m} and ran m = {v|(k, v) ∈ m}. We
use fstp and sndp to denote the first and second component of a
pair p, respectively. We use B, N, and Z, for the booleans, natural
numbers, and integers, respectively; also I for some unspecified
set of node identifiers. Most sets we use are partially ordered and
have a least element ⊥ (the bottom element). We use A ↪→ B for a
partial function from A to B; given such a mapm, then dom m ⊆ A
and ranm ⊆ B, and for convenience we usem(k) when k ̸∈ domm
and B has a bottom, to denote ⊥B; e.g., for some m : I ↪→ N, then
m(k) denotes 0 for any unmapped key k.

3. A background of state-based CRDTs

Conflict-Free Replicated Data Types [32,33] (CRDTs) are dis-
tributed datatypes that allow different replicas of a distributed
CRDT instance to diverge and ensures that, eventually, all repli-
cas converge to the same state. State-based CRDTs achieve this
through propagating updates of the local state by disseminating
the entire state across replicas. The received states are then
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Fig. 1. State-based counter CRDT; replica i.

merged to remote states, leading to convergence (i.e., consistent
states on all replicas).

A state-based CRDT consists of a triple (S,M,Q ), where S is a
join-semilattice [17], Q is a set of query functions (which return
some resultwithoutmodifying the state), andM is a set ofmutators
that performupdates; amutatorm ∈ M takes a stateX ∈ S as input
and returns a new state X ′

= m(X). A join-semilattice is a setwith a
partial order ⊑ and a binary join operation ⊔ that returns the least
upper bound (LUB) of two elements in S; a join is designed to be
commutative, associative, and idempotent. Mutators are defined
in such a way to be inflations, i.e., for any mutator m and state X ,
the following holds:

X ⊑ m(X).

In thisway, for each replica there is amonotonic sequence of states,
defined under the lattice partial order, where each subsequent
state subsumes the previous state when joined elsewhere.

Both query and mutator operations are always available since
they are performed using the local state without requiring inter-
replica communication; however, as mutators are concurrently
applied at distinct replicas, replica states will likely diverge. Even-
tual convergence is then obtained using an anti-entropy protocol
that periodically ships the entire local state to other replicas. Each
replica merges the received state with its local state using the
join operation in S. Given the mathematical properties of join, if
mutations stop being issued and anti-entropy proceeds, all replicas
eventually converge to the same state, i.e. the least upper-bound
of all states involved. State-based CRDTs are interesting as they
demand little guarantees from the dissemination layer, working
under message loss, duplication, reordering, and temporary net-
work partitioning, without impacting availability and eventual
convergence.

Fig. 1 represents a state-based increment-only counter. The
GCounter CRDT state is a map from replica identifiers to positive
integers. Initially, the bottom state ⊥ is an empty map (unmapped
keys implicitly mapping to zero). A single mutator, i.e., inci, is de-
fined that increments the value corresponding to the local replica
i (returning the updated map). The query operation value returns
the counter value by adding the integers in the map entries. The
join of two states is the point-wise maximum of the maps. Mu-
tators, like inci, are in general parameterized by the replica id i, so
that their exact behavior can depend on it, while queries, like value,
are typically replica agnostic and only depend on the CRDT state,
regardless of in which replica they are invoked.

The main weakness of state-based CRDTs is the cost of dissem-
ination of updates, as the full state is sent. In this simple example
of counters, even though increments only update the value corre-
sponding to the local replica i, thewholemapwill always be sent in
messages, even when the other map entries remained unchanged
(e.g., if no messages have been received and merged).

It would be interesting to only ship the recent modification
incurred on the state, and possibly any received modifications
that effectively changed it. This is, however, not possible with the
current model of state-based CRDTs as mutators always return a

full state. Approacheswhich simply ship operations (e.g., an ‘‘incre-
ment n’’ message), like in operation-based CRDTs, require reliable
communication (e.g., because increment is not idempotent). In
contrast, the modification that we introduce in the next section
allows producing and encoding recentmutations in an incremental
way, while keeping the advantages of the state-based approach,
namely the idempotent, associative, and commutative properties
of join.

4. Delta-state CRDTs

We introduce Delta-State Conflict-Free Replicated Data Types, or
δ-CRDT for short, as a new kind of state-based CRDTs, in which
delta-mutators are defined to return a delta-state: a value in the
same join-semilatticewhich represents the updates induced by the
mutator on the current state.

Definition 4.1 (Delta-mutator). A delta-mutator mδ is a function,
corresponding to an update operation, which takes a state X in
a join-semilattice S as parameter and returns a delta-mutation
mδ(X), also in S.

Definition 4.2 (Delta-group). A delta-group is inductively defined
as either a delta-mutation or a join of several delta-groups.

Definition 4.3 (δ-CRDT). A δ-CRDT consists of a triple (S,Mδ,Q ),
where S is a join-semilattice,Mδ is a set of delta-mutators, and Q a
set of query functions, where the state transition at each replica
is given by either joining the current state X ∈ S with a delta-
mutation:

X ′
= X ⊔ mδ(X),

or joining the current state with some received delta-group D:

X ′
= X ⊔ D.

In a δ-CRDT, the effect of applying a mutation, represented by
a delta-mutation δ = mδ(X), is decoupled from the resulting state
X ′

= X ⊔ δ, which allows shipping this δ rather than the entire
resulting state X ′. All state transitions in a δ-CRDT, even upon
applying mutations locally, are the result of some join with the
current state. Unlike standard CRDT mutators, delta-mutators do
not need to be inflations in order to inflate a state; this is however
ensured by joining their output, i.e., deltas, into the current state:
X ⊑ X ⊔ mδ(X).

In principle, a delta could be shipped immediately to remote
replicas once applied locally. For efficiency reasons,multiple deltas
returned by applying several delta-mutators can be joined locally
into a delta-group and retained in a buffer. The delta-group can
then be shipped to remote replicas to be joined with their local
states. Received delta-groups can optionally be joined into their
buffered delta-group, allowing transitive propagation of deltas. A
full state can be seen as a special (extreme) case of a delta-group.

If the causal order of operations is not important and the in-
tended aim is merely eventual convergence of states, then delta-
groups can be shipped using an unreliable dissemination layer
that may drop, reorder, or duplicate messages. Delta-groups can
always be re-transmitted and re-joined, possibly out of order, or
can simply be subsumed by a less frequent sending of the full state,
e.g., for performance reasons or when doing state transfers to new
members.

4.1. Delta-state decomposition of standard CRDTS

A δ-CRDT(S,Mδ,Q ) is a delta-state decomposition of a state-
based CRDT (S,M,Q ), if for every mutator m ∈ M , we have a
corresponding mutatormδ

∈ Mδ such that, for every state X ∈ S:

m(X) = X ⊔ mδ(X).
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Fig. 2. A δ-CRDT counter; replica i.

This equation states that applying a delta-mutator and joining
into the current state should produce the same state transition as
applying the corresponding mutator of the standard CRDT.

Given an existing state-based CRDT (which is always a trivial
decomposition of itself, i.e., m(X) = X ⊔ m(X), as mutators are
inflations), itwill be useful to find a non-trivial decomposition such
that delta-states returned by delta-mutators inMδ are smaller than
the resulting state:

size(mδ(X)) ≪ size(m(X)).

In general, there are several possible delta-state decompo-
sitions, with multiple possible delta-mutators that correspond
to each standard mutator. In order to minimize the generated
delta-states (which will typically minimize their size) each delta-
mutator chosen mδ should be minimal in following sense: for any
other alternative choice of delta-mutator mδ′

, for any X , mδ′

(X) ̸⊏

mδ(X). Intuitively, minimal delta-mutators do not leak into the
deltas they produce any redundant information that is already
present in X . Moreover (although in theory not always necessarily
the case) for typical datatypes thatwehave comeacross in practice,
for each mutator m there exists a corresponding minimum delta-
mutator mδ⊥ , i.e., with mδ⊥ ⊑ mδ′

(under the standard pointwise
function comparison), for any alternative delta-mutator. Aswewill
see in the concrete examples, typically minimum delta-mutators
are found naturally, with no need for some special ‘‘search’’.

4.2. Example: δ-CRDT counter

Fig. 2 depicts a δ-CRDT specification of a counter datatype that
is a delta-state decomposition of the state-based counter in Fig. 1.
The state, join and value query operation remain as before. Only
themutator incδ is newly defined, which increments themap entry
corresponding to the local replica and only returns that entry,
instead of the full map as inc in the state-based CRDT counter does.
Thismaintains the original semantics of the counterwhile allowing
the smaller deltas returned by the delta-mutator to be sent, instead
of the full map. As before, the received payload (whether one or
more deltas) might not include entries for all keys in I, which
are assumed to have zero values. The decomposition is easy to
understand in this example since the equation inci(X) = X⊔incδ

i (X)
holds as m{i ↦→ m(i) + 1} = m ⊔ {i ↦→ m(i) + 1}. In other
words, the single value for key i in the delta, corresponding to the
local replica identifier, will overwrite the corresponding one in m
since the former maps to a higher value (i.e., using max). Here it
can be noticed that: (1) a delta is just a state, that can be joined
possibly several times without requiring exactly-once delivery,
and without being a representation of the ‘‘increment’’ operation
(as in operation-based CRDTs), which is itself non-idempotent; (2)
joining deltas into a delta-group and disseminating delta-groups at
a lower rate than the operation rate reduces data communication
overhead, since multiple increments from a given source can be
collapsed into a single state counter.

1 inputs:
2 ni ∈ P(I), set of neighbors
3 ti ∈ B, transitive mode
4 choosei ∈ S × S → S,

state/delta
5 durable state:
6 Xi ∈ S, CRDT state, X0

i = ⊥

7 volatile state:
8 Di ∈ S, delta-group,

D0
i = ⊥

9 on operationi(m
δ)

10 d = mδ(Xi)
11 X ′

i = Xi ⊔ d
12 D′

i = Di ⊔ d

13 on receivej,i(d)
14 X ′

i = Xi ⊔ d
15 if ti then
16 D′

i = Di ⊔ d
17 else
18 D′

i = Di

19 periodically
20 m = choosei(Xi,Di)
21 for j ∈ ni do
22 sendi,j(m)
23 D′

i = ⊥

Algorithm 1: Basic anti-entropy algorithm for δ-CRDT.

5. State convergence

In the δ-CRDT execution model, and regardless of the anti-
entropy algorithm used, a replica state always evolves by joining
the current state with some delta: either the result of a delta-
mutation, or some arbitrary delta-group (which itself can be ex-
pressed as a join of delta-mutations). Without loss of generality,
we assume S has a bottom ⊥ which is also the initial state. (Oth-
erwise, a bottom can always be added, together with a special
init delta-mutator, which returns the initial state.) Therefore, all
states can be expressed as joins of delta-mutations, which makes
state convergence in δ-CRDT easy to achieve: it is enough that all
delta-mutations generated in the system reach every replica, as
expressed by the following proposition.

Proposition 5.1 (δ-CRDT Convergence). Consider a set of replicas
of a δ-CRDTobject, replica i evolving along a sequence of states
X0
i = ⊥, X1

i , . . . , each replica performing delta-mutations of the
form mδ

i,k(X
k
i ) at some subset of its sequence of states, and evolving

by joining the current state either with self-generated deltas or with
delta-groups received from others. If each delta-mutation mδ

i,k(X
k
i )

produced at each replica is joined (directly or as part of a delta-group)
at least once with every other replica, all replica states become equal.

Proof. Trivial, given the associativity, commutativity, and idempo-
tence of the join operation in any join-semilattice. □

This opens up the possibility of having anti-entropy algorithms
that are only devoted to enforce convergence, without necessarily
providing causal consistency (enforced in standard CRDTs); thus,
making a trade-off between performance and consistency guaran-
tees. For instance, in a counter (e.g., for the number of likes on a
social network), it may not be critical to have causal consistency,
but merely not to lose increments and achieve convergence. The
same reasoning can be applied to other situations, specially when
commutative data-types are involved, e.g., grow-only-sets.

5.1. Basic anti-entropy algorithm

A basic anti-entropy algorithm that ensures eventual conver-
gence in δ-CRDT is presented in Algorithm 1. For the node corre-
sponding to replica i, the durable state, which persists after a crash,
is simply the δ-CRDT state Xi. The volatile state D stores a delta-
group that is used to accumulate deltas before eventually sending
it to other replicas. The initial value for both Xi and Di is ⊥.

When an operation is performed, the corresponding delta-
mutator mδ is applied to the current state of Xi, generating a
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delta d. This delta is joined both with Xi to produce a new state,
and with D. In the same spirit of standard state based CRDTs, a
node sends its messages in a periodic fashion, where the message
payload is either the delta-groupDi or the full state Xi; this decision
is made by the function choosei which returns one of them. To
keep the algorithm simple, a node simply broadcasts its messages
without distinguishing between neighbors. After each send, the
delta-group is reset to ⊥.

Once a message is received, the payload d is joined into the
current δ-CRDT state. The basic algorithm operates in one of two
modes: (1) a transitive mode (when ti is true) in which d is also
joined into D, allowing transitive propagation of delta-mutations,
where deltas received at node i from some node j can later be
sent to some other node k; (2) a direct mode where a delta-group
is exclusively the join of local delta-mutations (j must send its
deltas directly to k). The decisions ofwhether to send a delta-group
versus the full state (typically less periodically), andwhether to use
the transitive or direct mode are out of the scope of this paper.
In general, decisions can be made considering many criteria like
delta-group size, state size, message loss distribution assumptions,
and network topology.

6. Causal consistency

Traditional state-based CRDTs converge using joins of the full
state, which implicitly ensures per-object causal consistency [12]:
each state of some replica of an object reflects the causal past of
operations on the object (either applied locally, or applied at other
replicas and transitively joined).

Therefore, it is desirable to have δ-CRDT s offer the same causal-
consistency guarantees that standard state-based CRDTs offer. This
raises the question about how can delta propagation and merging
of δ-CRDT be constrained (and expressed in an anti-entropy algo-
rithm) in such a manner to give the same results as if a standard
state-based CRDT was used. Towards this objective, it is useful
to define a particular kind of delta-group, which we call a delta-
interval:

Definition 6.1 (Delta-interval). Given a replica i progressing
along the states X0

i , X1
i , . . . , by joining delta dki (either local

delta-mutation or received delta-group) into Xk
i to obtain Xk+1

i , a
delta-interval ∆

a,b
i is a delta-group resulting from joining deltas

dai , . . . , d
b−1
i :

∆
a,b
i =

⨆
{dki |a ≤ k < b}.

The use of delta-intervals in anti-entropy algorithms will be
a key ingredient towards achieving causal consistency. We now
define a restricted kind of anti-entropy algorithm for δ-CRDTs.

Definition 6.2 (Delta-interval-based Anti-entropy Algorithm). A
given anti-entropy algorithm for δ-CRDTs is delta-interval-based,
if all deltas sent to other replicas are delta-intervals.

Moreover, to achieve causal consistency the next condition
must be satisfied:

Definition 6.3 (Causal delta-merging Condition). A delta-interval
based anti-entropy algorithm is said to satisfy the causal delta-
merging condition if the algorithm only joins ∆

a,b
j from replica j

into state Xi of replica i that satisfy

Xi ⊒ Xa
j .

This means that a delta-interval is only joined into states that
at least reflect (i.e., subsume) the state into which the first delta
in the interval was previously joined. The causal delta-merging
condition is important, since any delta-interval based anti-entropy

algorithm for a δ-CRDT that satisfies it can be used to obtain
the same outcome of a standard CRDT; this is formally stated in
Proposition 6.4.

Proposition 6.4 (CRDT and δ-CRDT Correspondence). Let (S,M,Q )
be a standard state-based CRDT and (S,Mδ,Q ) a corresponding delta-
state decomposition. Any δ-CRDTstate reachable by an execution Eδ

over (S,Mδ,Q ), by a delta-interval based anti-entropy algorithm Aδ

satisfying the causal delta-merging condition, is equal to a state re-
sulting from an execution E over (S,M,Q ), having the corresponding
data-type operations, by an anti-entropy algorithm A for state-based
CRDTs.

Proof. By simulation, establishing a correspondence between
an execution Eδ , and execution E of a standard CRDT of which
(S,Mδ,Q ) is a decomposition, as follows: (1) the state (Xi,Di, . . .)
of each node in Eδ containing CRDT state Xi, information about
delta-intervals Di and possibly other information, corresponds to
only Xi component (in the same join-semilattice); (2) for each
action which is a delta-mutation mδ in Eδ , E executes the corre-
sponding mutation m, satisfying m(X) = X ⊔ mδ(X); (3) whenever
Eδ contains a send action of a delta-interval ∆

a,b
i , execution E

contains a send action containing the full state Xb
i ; (4) whenever

Eδ performs a join into some Xi of a delta-interval∆
a,b
j , execution E

delivers and joins the corresponding message containing the full
CRDT state Xb

j . By induction on the length of the trace, assume
that for each replica i, each node state Xi in E is equal to the
corresponding component in the node state in Eδ , up to the last
action in the global trace. A send action does not change replica
state, preserving the correspondence. Replica states only change
either byperformingdata-typeupdate operations or uponmessage
delivery by merging deltas/states respectively. If the next action is
an update operation, the correspondence is preserved due to the
delta-state decomposition property m(X) = X ⊔ mδ(X). If the next
action is a message delivery at replica i, with a merging of delta-
interval/state from other replica j, because algorithm Aδ satisfies
the causal merging-condition, it only joins into state Xk

i a delta-
interval ∆a,b

j if Xk
i ⊒ Xa

j . In this case, the outcome will be

Xk+1
i = Xk

i ⊔ ∆
a,b
j

= Xk
i ⊔

⨆
{dlj|a ≤ l < b}

= Xk
i ⊔ Xa

j ⊔

⨆
{dlj|a ≤ l < b}

= Xk
i ⊔ Xa

j ⊔ daj ⊔ da+1
j ⊔ . . . ⊔ db−1

j

= Xk
i ⊔ Xa+1

j ⊔ da+1
j ⊔ . . . ⊔ db−1

j

= . . .

= Xk
i ⊔ Xb−1

j ⊔ db−1
j

= Xk
i ⊔ Xb

j

The resulting state Xk+1
i in Eδ will be, therefore, the same as the

corresponding one in E where the full CRDT state from j has been
joined, preserving the correspondence between Eδ and E. □

Corollary 6.5 (δ-CRDT causal consistency). Any δ-CRDT in which
states are propagated and joined using a delta-interval-based anti-
entropy algorithm satisfying the causal delta-merging condition en-
sures causal consistency.

Proof. From Proposition 6.4 and causal consistency of state-based
CRDTs. □

This means that using any delta-interval-based anti-entropy
algorithm respecting the causal delta-merging condition ensures
the same properties concerning causal consistency as a standard
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1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥

5 ci ∈ N, sequence number,
c0i = 0

6 volatile state:
7 Di ∈ N ↪→ S, deltas,

D0
i = {}

8 Ai ∈ I ↪→ N, ack map,
A0
i = {}

9 on receivej,i(delta, d, n)
10 if d ̸⊑ Xi then
11 X ′

i = Xi ⊔ d
12 D′

i = Di{ci ↦→ d}
13 c ′

i = ci + 1
14 sendi,j(ack, n)
15 on receivej,i(ack, n)
16 A′

i = Ai{j ↦→ max(Ai(j), n)}

17 on operationi(m
δ)

18 d = mδ(Xi)
19 X ′

i = Xi ⊔ d
20 D′

i = Di{ci ↦→ d}
21 c ′

i = ci + 1
22 periodically // ship interval

or state
23 j = random(ni)
24 if Di = {} ∨ min dom

Di > Ai(j) then
25 d = Xi
26 else
27 d =

⨆
{Di(l)|Ai(j) ≤

l < ci}
28 if Ai(j) < ci then
29 sendi,j(delta, d, ci)
30 periodically // garbage

collect deltas
31 l = min{n|(_, n) ∈ Ai}

32 D′

i = {(n, d) ∈ Di|n ≥ l}

Algorithm 2: Anti-entropy algorithm ensuring causal consis-
tency of δ-CRDT.

state-based CRDT. Next we present such an anti-entropy algo-
rithm. Regardless of the choice of such an algorithm, as we stated
in Section 5, if all delta-mutations are joined at every-replica, we
have convergence.

6.1. Anti-Entropy algorithm for causal consistency

Algorithm 2 is a delta-interval based anti-entropy algorithm
which enforces the causal delta-merging condition. It can be used
whenever the causal consistency guarantees of standard state-
based CRDTs are needed. For simplicity, it excludes some opti-
mizations that are important in practice, but easy to derive. The
algorithm distinguishes neighbor nodes, and only sends to each
one appropriate delta-intervals that obey the delta-merging con-
dition and can be joined at the receiving node.

Each node i keeps a contiguous sequence of deltas dli, . . . , d
u
i

in a map D from integers to deltas, with l = min dom D and
u = maxdomD. The sequence numbers of deltas are obtained from
the counter ci that is incremented when a delta (whether a delta-
mutation or delta-interval received) is joined with the current
state. Each node i keeps an acknowledgments map A that stores,
for each neighbor j, the largest index b for all delta-intervals ∆

a,b
i

acknowledged by j (after j receives ∆
a,b
i from i and joins it into Xj).

Node i sends a delta-interval d = ∆
a,b
i with a (delta, d, b)

message; the receiving node j, after joining ∆
a,b
i into its replica

state, replies with an acknowledgment message (ack, b); if an ack
from jwas successfully received by node i, it updates the entry of j
in the acknowledgment map, using themax function. This handles
possible old duplicates and messages arriving out of order.

Like the δ-CRDT state, the counter ci is also kept in a durable
storage. This is essential to cope with potential crash and recovery
incidents. Otherwise, there would be the danger of receiving some
delayed ack, for a delta-interval sent before crashing, causing the
node to skip sending some deltas generated after recovery, thus
violating the delta-merging condition.

The algorithm for node i periodically picks a random neighbor
j. In principle, i sends the join of all deltas starting from the latest
delta acked by j. Exceptionally, i sends the entire state in two cases:
(1) if the sequence of deltas Di is empty, or (2) if j is expecting
from i a delta that was already removed from Di (e.g., after a crash

and recovery, when both deltas and the ack map, being volatile
state, are lost). A delta message is only sent if the counter ci has
advanced past the next delta expected by node j, i.e., if Ai(j) < ci,
to avoid sending the full state in local inactivity periods, when no
local operations are being issued, all neighbor nodes have acked all
deltas, and garbage collection has been applied, making theDi map
empty. To garbage collect old deltas, the algorithm periodically
removes the deltas that have been acked by all neighbors.

Proposition 6.6. Algorithm 2 produces the same reachable states as
a standard algorithm over a CRDT for which the δ-CRDT is a decompo-
sition, ensuring causal consistency.

Proof. FromProposition 6.4 and Corollary 6.5, it is enough to prove
that the algorithm satisfies the causal delta-merging condition.
The algorithm explicitly keeps deltas dki tagged with increasing se-
quence numbers (even after a crash), accordingwith the definition;
node j only sends to i a delta-interval∆a,b

j if i has acked a; this ack is
sent only if i has already joined some delta-interval (possibly a full
state) ∆

k,a
j . Either k = 0 or, by the same reasoning, this ∆

k,a
j could

only have been joined at i if some other interval ∆
l,k
j had already

been joined into i. This reasoning can be recursed until a delta-
interval starting from zero is reached. Therefore, Xi ⊒

⨆
{dkj |0 ≤

k < a} = ∆
0,a
j = Xa

j . □

7. Portfolio of δ-CRDTs

Having established the equivalence to classic state based CRDTs
we now derive a series of specifications based on delta-mutators.
Although we cover a significant number of CRDTs, the goal is not
to provide an exhaustive survey, but instead to illustrate more
extensively the design of specifications with deltas. In our expe-
rience the intellectual effort of designing a delta-based CRDT is not
much higher than designing it with standard mutators. Since stan-
dardmutators can be obtained from delta-mutators, by composing
these with join, having delta-mutators as basic building blocks can
only add flexibility to the designs.

First, we will cover simple CRDTs and CRDT compositions that
do not require distinguished node identifiers for the mutation.
Next, we cover CRDTs that require a unique identifier for each
replica that is allowed to mutate the state, and make use of this
identifier in one or more of the mutations. Then, we address the
important class of what we denote by Causal CRDTs, presenting a
generic design inwhich the state lattice is formed by a dot store and
a causal context.We define three such dot stores and corresponding
lattices, which are then used to define several causal CRDTs. We
conclude the portfolio with aMap design, a causal CRDTwhich can
correctly embed any causal CRDT, including the map itself.

All of the selected CRDTs have delta implementations available
in C++ [3], that complement the specifications. Most of the Causal
CRDTs, including theMap, are also available in Erlang and deployed
in production as part of Riak DT [6].

7.1. Simple lattice compositions

To obtain composite CRDTs, a basic ingredient is being able
to obtain states, which are join-semilattices, as composition of
join-semilattices. Two common useful cases are the product and
lexicographic product. Other examples of lattice composition are
presented in [17,23].

7.1.1. Pair
In Fig. 3 we show the standard pair composition. The bottom is

the pair of respective bottoms and the join is the coordinate-wise
join of the components. This can be generalized to products ofmore
than two components.
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Fig. 3. Pair of join-semilattices.

Fig. 4. Lexicographic pair of join-semilattices.

Fig. 5. δ-CRDT grow-only set, replica i.

7.1.2. Lexicographic pair
A variation of the pair composition is to establish a lexicographic

pair. In this construction, in Fig. 4, the first element takes priority
in establishing the outcome of the join, and a join of the second
component is only performed on a tie. One important special case
is when the first component is a total order; it can be used, e.g., to
define an outcome based on the comparison of a time-stamp, as
will be shown later.

7.2. Anonymous δ-CRDTs

The simplest CRDTs are anonymous. This occurs when the
mutators do not make use of a globally unique replica identifier,
having a uniform specification for all replicas. (Although for unifor-
mity of notation we will keep parameterizing mutators by replica
identifier.)

7.2.1. Gset
A simple example is illustrated by a grow-only set, in Fig. 5. The

single delta mutator insertδi (e, s) does not even need to consider
the current state of the replica, available in s, and simply produces a
deltawith a singleton set containing the element e to be added. This
delta {e} when joined to s produces the desired result: an inflated
set s ∪ {e} that includes element e. The join of grow-only sets is
trivially obtained by unioning the sets.

7.2.2. 2PSet
In case one needs to remove elements, there are multiple ways

of addressing it. The simplestway is to include another (grow-only)
set that gathers the removed elements. This is done in Fig. 6, which
shows a two-phase set, with state being a pair of sets. The name
comes from the fact that elements may go through two phases:
the added phase and the removed phase. The shortcoming of this
simple design is that once removed, elements cannot be re-added.

Fig. 6. δ-CRDT two-phase set, replica i.

Fig. 7. δ-CRDT Add-Wins LWW Set, replica i.

If we look at the query function elements it is clear that the
data-type is presenting to the user the set difference between
the added elements and the removed elements (those stored in
the tombstone set t). Removing an element simply adds it to the
removed set. (A variant of 2PSet with guarded removes [36] only
does so if the element is already present in the added set.) The join
is simply a pairwise join.

7.2.3. Add-Wins last-writer-wins set
This construction, depicted in Fig. 7, manages a set of elements

of type E by tagging themwith timestamps from some total order—
here we use natural numbers. Each time an element is added,
it is tagged with a client supplied timestamp and the boolean
True. Removed elements are similarly tagged, butwith the boolean
False. Elements marked with True are considered to be in the set.
When joining two such sets, those elements in common will have
to compete to define if they are in the set. By using lexicographic
pairs, we obtain the behavior that elements with higher (more
recent) time-stamps will win, defining the presence according to
the boolean tag; if there is a tie in the time-stamp, adds will win,
since we order False < True.

Notice that it is up to the client to ensure that supplied times-
tamps always grow monotonically. Failure to do so is a common
source of errors in timestamp based systems [24]. A dual construc-
tion to the Add-Wins LWW Set is a Remove-Wins LWW Set, where
remove operations take priority on the event of a time-stamp tie.
This construction has been widely deployed in production as part
the SoundCloud system [9].

7.3. Named δ-CRDTs

Another design strategy for conflict-free data-types is to en-
sure that each replica only changes a specific part of the state. In
Section 4, we defined a GCounter that, using a map from globally
unique replica identifiers to natural numbers, keeps track of how
many increment operations each replica did. This was the first
example of a named CRDT, the construction covered in this section.
The distinction from anonymous CRDTs is thatmutationsmake use
of the replica identifier i.
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Fig. 8. δ-CRDT positive–negative counter, replica i.

Fig. 9. δ-CRDT Lexicographic Counter, replica i.

7.3.1. Pncounter
By composing, in a pair, two grow-only counters we obtain

a positive–negative counter that can track both increments and
decrements. Shown in Fig. 8, the increment and decrement op-
erations will update the first and second components of the pair,
respectively. As expected, the value is obtained by subtracting the
decrements from the increments.

7.3.2. Lexicographic counter
While the PNCounter was one of the first CRDTs to be added

to a production database, in Riak 1.4 [7], the competing Cassandra
database had its own counter implementations based on the LWW
strategy. Interestingly it proved to be difficult to avoid semantic
anomalies in the behavior of those early counters, and since Cas-
sandra 2.1, a new counterwas introduced [16].We capture itsmain
properties in the Fig. 9 specification of a LexCounter.

This counter is updated by either incrementing or decrementing
the second component of the lexicographic pair corresponding to
the replica issuing the mutation. Decrements also increment the
first component, to ensure that the pair will be inflated, making it
(and therefore, the just updated second component) win upon a
lexicographic join.

7.4. Causal δ-CRDTs

Wenow introduce a specific class of CRDTs, that wewill refer to
as causal CRDTs. Initial designs [33] introduced data types such as
observed-remove sets and multi-value registers. While these made
possible sets which allow adding and removing elements multiple
times, and to model the design of the eventually consistent shop-
ping cart, in Amazon Dynamo [18], they had sub-optimal scalabil-
ity properties [12]. Later designs, such as in observed-remove sets
without tombstones [8], allow an efficient management of meta-
data state and can be applied to a broad class of data-types.

We introduce the concept of dot store to be used together with
a causal context to form the state (a join-semilattice) of a causal
CRDT, presenting three such dot stores and lattices. These are then
used to obtain several related data-types, including flags, registers,
sets, and maps.

Fig. 10. Causal context.

7.4.1. Causal context
A common property to causal CRDTs is that events can be

assigned unique identifiers. A simple mechanism is to create these
identifiers by appending to a globally unique replica identifier a
replica-unique integer. For instance, in replica i ∈ I we can create
the sequence (i, 1), (i, 2), . . . . Each of these pairs can be used to tag
a specific event, or client action, and if we collect these pairs in a
grow-only set, we can remember which events are known to each
replica. The pair is called a dot and the grow-only set of pairs can
be called a causal history, or alternatively a causal context, as we do
here.

As seen in Fig. 10, a causal context is a set of dots. We define
two functions over causal contexts: maxi(c) gives the maximum
sequence number for pairs in c from replica i, or 0 if there is no
such dot; nexti(c) produces the next available sequence number
for replica i given set of events in c.

7.4.2. Causal context compression
In practice, a causal context can be efficiently compressedwith-

out any loss of information.When using an anti-entropy algorithm
that provides causal consistency, e.g., Algorithm 2, then for each
replica state Xi that includes a causal context ci, and for any replica
identifier j ∈ I, we have a contiguous sequence:

1 ≤ n ≤ maxj(ci) ⇒ (j, n) ∈ ci.

Thus, under causal consistency the causal context can always be
encoded as a compact version vector [31] I ↪→ N that keeps the
maximum sequence number for each replica.

Even under non-causal anti-entropy, such as in Algorithm 1,
compression is still possible by keeping a version vector that en-
codes the initial contiguous sequence of dots from each replica,
together with a set for the non-contiguous dots. As anti-entropy
proceeds, each dot is eventually encoded in the vector, and thus
the set remains typically small. Compression is less likely for the
causal context of delta-groups in transit or buffered to be sent, but
those contexts are only transient and smaller than those in the
actual replica states. Moreover, the same techniques that encode
contiguous sequences of dots can also be used for transient context
compression [28].

7.4.3. Dot stores
Together with a causal context, the state of a causal CRDT will

use some kind of dot store, which acts as a container for data-type
specific information. A dot store can be queried about the set of
event identifiers (dots) corresponding to the relevant operations in
the container, by function dots, which takes a dot store and returns
a set of dots. In Fig. 11 we define three kinds of dot stores: a DotSet
is simply a set of dots; the generic DotFun⟨V ⟩ is a map from dots to
some lattice V ; the generic DotMap⟨K , V ⟩ is a map from some set
K into some dot store V .

7.4.4. Causal δ-CRDTs
In Fig. 12 we define the join-semilattice which serves as state

for Causal δ-CRDTs, where an element is a pair of dot store and
causal context. We define the join operation for each of the three
kinds of dot stores. These lattices are a generalization of techniques
introduced in [1,8]. To understand the meaning of a state (and the
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Fig. 11. Dot stores.

way join must behave), a dot present in a causal context but not in
the corresponding dot store, means that the dot was present in the
dot store, some time in the past, but has been removedmeanwhile.
Therefore, the causal context can track operations with remove
semantics, while avoiding the need for individual tombstones.

When joining two replicas, a dot present in only one dot store,
but included in the causal context of the other, will be discarded.
This is clear for the simpler case of a DotSet, where the join
preserves all dots in common, together with those not present in
the other causal context. The DotFun⟨V ⟩ case is analogous, but the
container is now a map from dots to some value, allowing the
value for a given dot to evolve with time, independently at each
replica. It assumes the value set is a join-semilattice, and applies
the corresponding join of values for each dot in common.

In the more complex case of DotMap⟨K , V ⟩, a map from some
K to some dot store V , the join, for each key present in either
replica, performs a join in the lattice Causal⟨V ⟩, by pairing the per-
key value with the replica-wide causal context, and storing the

Fig. 13. δ-CRDT enable-wins flag, replica i.

resulting value (first component of the result) for that key, but only
when it is not ⊥V . This allows the disassociation of a composite
embedded value from a key, with no need for a per-key tombstone,
by remembering in the causal context all dots from the composite
value. Matching our notation, in a DotMap⟨K , V ⟩, any unmapped
key corresponds effectively to the bottom ⊥V .

7.4.5. Enable-Wins flag
The flags are simple, yet useful, data-types that were first intro-

duced in Riak 2.0 [6]. Fig. 13 presents an enable-wins flag. Enabling
the flag simply replaces all dots in the store by a new dot; this
is achieved by obtaining the dot through nexti(c), and making the
delta mutator return a store containing just the new dot, together
with a causal context containing both the new dot and all current
dots in the store; this will make all current dots to be removed
from the store upon a join (as previously defined), while the new
dot is added. Concurrent enabling can lead to the store containing
several dots. Reads will consider the flag enabled if the store is not
an empty set. Disabling is similar to enabling, in that all current
dots are removed from the store, but no new dot is added. It is
possible to construct a dual data-type with disable-wins semantics
and its code is also available [3].

7.4.6. Multi-Value register
A multi-value register supports read and write operations, with

traditional sequential semantics. Under concurrent writes, a join
makes a subsequent read return all concurrently written values,
and a subsequent write will overwrite all those values. This data-
type captures the semantics of the Amazon shopping cart [18],
and the usual operation of Riak (when not using CRDT data-types).

Fig. 12. Lattice for causal δ-CRDTs.
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Fig. 14. δ-CRDT multi-value register, replica i.

Fig. 15. δ-CRDT add-wins set, replica i.

Initial implementations of these registers tagged each value with
a full version vector [33]; here we introduce an optimized im-
plementation that tags each value with a single dot, by using a
DotFun⟨V ⟩ as dot store. In Fig. 14 we can see that the write delta
mutator returns a causal context with all dots in the store, so that
they are removed upon join, togetherwith a singlemapping from a
newdot to the valuewritten; as usual, the newdot is also put in the
context. A clear operation simply removes current dots, leaving the
register in the initial empty state. Reading simply returns all values
mapped in the store.

7.4.7. Add-Wins set
In an add-wins set removals do not affect elements that have

been concurrently added. In this sense, under concurrent updates,
an add will win over a remove of the same element. The imple-
mentation, in Fig. 15, uses a map from elements to sets of dots as
dot store. This data-type can be seen as a map from elements to
enable-wins flags, but with a single common causal context, and
keeping only elements mapped to an enabled flag.

When an element is added, all dots in the corresponding entry
will be replaced by a singleton set containing a new dot. If a DotSet
for some element were to become empty, such as when removing
the element, the join for DotMap⟨E,DotSet⟩ will remove the entry
from the resulting map. Concurrently created dots are preserved
when joining. The clear delta mutator will put all dots from the
dot store in the causal context, to be removed when joining. As
only non-empty entries are kept in the map, the set of elements
corresponds to the map domain.

7.4.8. Remove-Wins set
Under concurrent adds and removes of the same element, a

remove-wins set will make removes win. To obtain this behavior,
the implementation in Fig. 16 uses amap fromelements to a nested
map frombooleans to sets of dots. For both adding and removing of
a given entry, the corresponding nestedmap is cleared (by the delta
mutator inserting all corresponding dots into the causal context),
and a new mapping from either True or False, respectively, to a
singleton new dot is added.

When joining replicas, the nested map will collect the union
of the respective sets in the corresponding entry (for dots not
seen by the other causal context). As before, only non-bottom
entries are kept, for both outer map (non-empty maps) and nested
map (non-empty DotSets). Therefore, an element is considered
to be in the set if it belongs to the outer map domain, and the
corresponding nested map does not contain a False entry; thus,
concurrent removes will win over adds.

7.4.9. A map embedding causal δ-CRDTs.
Maps are important composition tools for the construction of

complex CRDTs. Although grow-only maps are simple to conceive
and have been used in early state based designs [5], the creation
of a map that allows removal of entries and supports recursive
composition is not trivial. Riak 2.0 introduced a map design that
provides a clear observed-remove semantics: a remove can be seen
as an ‘‘undo’’ of all operations leading to the embedded value,
putting it in the bottom state, but remembering those operations,
to undo them in other replicaswhich observe it by a join. Key to the
design is to enable removal of keys to affect (and remember) the
dots in the associated nested CRDT, to allow joining with replicas
that have concurrently evolved from the before-removal point, or
to ensure that re-creating entries previously removed does not
introduce anomalies.

In order to obtain the desired semantics it is not possible to
simplymap keys to causal CRDTs having their own causal contexts.
Doing so would introduce anomalies when recreating keys, since
old versions of the mappings in other replicas could be considered
more recent than newer mappings, since the causal contexts of
the re-created entries would start again at their bottom state. The
solution is to have a common causal context to the whole map,
to be used for all nested components, and never reset that single
context.

For an arbitrary set of keys K and a causal δ-CRDT Causal⟨V ⟩

that we want to embed (including, recursively, the map
we are defining), the desired map can be achieved through
Causal⟨DotMap⟨K , V ⟩⟩, where a single causal context is shared
by all keys and corresponding nested CRDTs, as presented in
Fig. 17. This map can embed any causal CRDT as values. For
instance we can define a map of type ORMap⟨S,AWSet⟨E⟩⟩,
mapping strings S to add-wins sets of elements E; or define a
more complex recursive structure that uses a map within a map
ORMap⟨N,ORMap⟨S,MVReg⟨E⟩⟩⟩.

The map does not support a specific operation to add new
entries: it starts as an empty map, which corresponds to any key
implicitly mapped to bottom; then, any operation from the em-
bedded type can be applied, through a higher-order apply, which
takes a delta mutator oδ

i to be applied, the key k, and the map
(m, c). This mutator fetches the value at key k fromm, pairs it with
the shared causal context c , obtaining a value from the embedded
type, and invokes the operation over the pair; from the resulting
pair, it extracts the value to create a new mapping for that key,
which it pairs with the resulting causal context. Removing a key
will recursively remove the dots in the corresponding embedded
value, while the clear operationwill remove all dots from the store.
This simplicity was achieved by encapsulating most complexity in
the join (and also the dots function) of the embedded type.

8. Related work

8.1. Eventually convergent data types

The design of replicated systems that are always available and
eventually converge can be traced back to historical designs in
[22,35], among others. More recently, replicated data types that
always eventually converge, both by reliably broadcasting oper-
ations (called operation-based) or gossiping and merging states
(called state-based), have been formalized as CRDTs [5,26,32,33].
These are also closely related to BloomL [14] and Cloud Types [11].
State join-semilattices were used for deterministic parallel pro-
gramming in LVars [25], where variables progress in the lattice
order by joining other values, and are only accessible by special
threshold reads.
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Fig. 16. δ-CRDT remove-wins set, replica i.

Fig. 17. δ-CRDT map embedding causal δ-CRDTs, with observed removes, replica i.

8.2. Message size

A key feature of δ-CRDT is message size reduction and coa-
lescing, using small-sized deltas. The general old idea of using
differences between things, called ‘‘deltas’’ in many contexts, can
lead to many designs, depending on how exactly a delta is defined.
The state-based deltas introduced for Computational CRDTs [29]
require an extra delta-specific merge (in addition to the standard
join) which does not ensure idempotence. In [19], an improved
synchronization method for non-optimized OR-set CRDT [32] is
presented, where delta information is propagated; in that paper
deltas are a collection of items (related to update events between
synchronizations), manipulated andmerged through a protocol, as
opposed to normal states in the semilattice. No generic framework
is defined (that could encompass other data types) and the protocol
requires several communication steps to compute the information
to exchange. Operation-based CRDTs [4,32,33] also support small
message sizes, and in particular, pure flavors [4] that restrict mes-
sages to the operation name, and possible arguments. Though pure
operation-based CRDTs allow for compact states and are very fast
at the source (since operations are broadcast without consulting
the local state), the model requires more systems guarantees than
δ-CRDT do, e.g., exactly-once reliable delivery and membership
information, and impose more complex integration of new repli-
cas. The work in [13] shows a different trade-off among state
deltas and pure operations, by tagging operations and creating
a globally stable log of operations while allowing local transient
logs to preserve availability. While having other advantages, the
creation of this global log requires more coordination than our
gossip approach for causally consistent delta dissemination, and
can stall dissemination.

8.3. Encoding causal histories.

State-based CRDTs are always designed to be causally con-
sistent [5,33]. Optimized implementations of sets, maps, and
multi-value registers can build on this assumption to keep the
meta-data small [12]. In δ-CRDT, however, deltas and delta-groups
are normally not causally consistent, and thus the design of join,
the meta-data state, as well as the anti-entropy algorithm used
must ensure this. Without causal consistency, the causal context
in δ-CRDT cannot always be summarized with version vectors, and
consequently, techniques that allow for gaps are often used. A well
known mechanism that allows for encoding of gaps is found in
Concise Version Vectors [27]. Interval Version Vectors [28], later
on, introduced an encoding that optimizes sequences and allows
gaps, while preserving efficiency when gaps are absent.

9. Conclusion

We introduced the new concept of δ-CRDTs and devised delta-
mutators over state-based datatypes which can detach the changes
that an operation induces on the state. This brings a significant
performance gain as it allows only shipping small states, i.e., deltas,
instead of the entire state. The significant property in δ-CRDT is
that it preserves the crucial properties (idempotence, associativity
and commutativity) of standard state-based CRDT. In addition, we
have shown how δ-CRDT can achieve causal consistency; and we
presented an anti-entropy algorithm that allows replacing classical
state-based CRDTs by more efficient ones, while preserving their
properties. As an application of our approach we designed several
novel δ-CRDT specifications, including a general framework for
causal CRDTs and composition in maps.

Our approach is more relaxed than classical state-based CRDTs,
and thus, can replace them without losing their power since
δ-CRDT allows shipping delta-states as well as the entire state.
Another interesting observation is that δ-CRDT can mimic the
behavior of operation-based CRDTs, by shipping individual deltas
on the fly but with weaker guarantees from the dissemination
layer.
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