7 research outputs found

    IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition (Artifact)

    Get PDF
    This artifact is based on IceDust2, a data modeling language with derived values. The provided package is designed to support the claims of the companion paper: in particular, it allows users to compile and run IceDust2 specifications. Instructions for building the IceDust2 compiler from source in Spoofax are also provided

    IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

    No full text
    Derived values are values calculated from base values. They can be expressed with views in relational databases, or with expressions in incremental or reactive programming. However, relational views do not provide multiplicity bounds, and incremental and reactive programming require significant boilerplate code in order to encode bidirectional derived values. Moreover, the composition of various strategies for calculating derived values is either disallowed, or not checked for producing derived values which will be consistent with the derived values they depend upon. In this paper we present IceDust2, an extension of the declarative data modeling language IceDust with derived bidirectional relations with multiplicity bounds and support for statically checked composition of calculation strategies. Derived bidirectional relations, multiplicity bounds, and calculation strategies all influence runtime behavior of changes to data, leading to hundreds of possible behavior definitions. IceDust2 uses a product-line based code generator to avoid explicitly defining all possible combinations, making it easier to reason about correctness. The type system allows only sound composition of strategies and guarantees multiplicity bounds. Finally, our case studies validate the usability of IceDust2 in applications

    IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

    No full text
    Derived values are values calculated from base values. They can be expressed with views in relational databases, or with expressions in incremental or reactive programming. However, relational views do not provide multiplicity bounds, and incremental and reactive programming require significant boilerplate code in order to encode bidirectional derived values. Moreover, the composition of various strategies for calculating derived values is either disallowed, or not checked for producing derived values which will be consistent with the derived values they depend upon. In this paper we present IceDust2, an extension of the declarative data modeling language IceDust with derived bidirectional relations with multiplicity bounds and support for statically checked composition of calculation strategies. Derived bidirectional relations, multiplicity bounds, and calculation strategies all influence runtime behavior of changes to data, leading to hundreds of possible behavior definitions. IceDust2 uses a product-line based code generator to avoid explicitly defining all possible combinations, making it easier to reason about correctness. The type system allows only sound composition of strategies and guarantees multiplicity bounds. Finally, our case studies validate the usability of IceDust2 in applications.Programming Language
    corecore