28 research outputs found

    3D Textured Model Encryption via 3D Lu Chaotic Mapping

    Full text link
    In the coming Virtual/Augmented Reality (VR/AR) era, 3D contents will be popularized just as images and videos today. The security and privacy of these 3D contents should be taken into consideration. 3D contents contain surface models and solid models. The surface models include point clouds, meshes and textured models. Previous work mainly focus on encryption of solid models, point clouds and meshes. This work focuses on the most complicated 3D textured model. We propose a 3D Lu chaotic mapping based encryption method of 3D textured model. We encrypt the vertexes, the polygons and the textures of 3D models separately using the 3D Lu chaotic mapping. Then the encrypted vertices, edges and texture maps are composited together to form the final encrypted 3D textured model. The experimental results reveal that our method can encrypt and decrypt 3D textured models correctly. In addition, our method can resistant several attacks such as brute-force attack and statistic attack.Comment: 13 pages, 7 figures, under review of SCI

    A Study of the Strategic Alliance for EMS Industry: The Application of a Hybrid DEA and GM (1, 1) Approach

    Get PDF
    Choosing a partner is a critical factor for success in international strategic alliances, although criteria for partner selection vary between developed and transitional markets. This study aims to develop effective methods to assist enterprise to measure the firms’ operation efficiency, find out the candidate priority under several different inputs and outputs, and forecast the values of those variables in the future. The methodologies are constructed by the concepts of Data Envelopment Analysis (DEA) and grey model (GM). Realistic data in four consecutive years (2009–2012) a total of 20 companies of the Electronic Manufacturing Service (EMS) industry that went public are completely collected. This paper tries to help target company—DMU1—to find the right alliance partners. By our proposed approach, the results show the priority in the recent years. The research study is hopefully of interest to managers who are in manufacturing industry in general and EMS enterprises in particular

    Video Superresolution via Parameter-Optimized Particle Swarm Optimization

    Get PDF
    Video superresolution (VSR) aims to reconstruct a high-resolution video sequence from a low-resolution sequence. We propose a novel particle swarm optimization algorithm named as parameter-optimized multiple swarms PSO (POMS-PSO). We assessed the optimization performance of POMS-PSO by four standard benchmark functions. To reconstruct high-resolution video, we build an imaging degradation model. In view of optimization, VSR is converted to an optimization computation problem. And we take POMS-PSO as an optimization method to solve the VSR problem, which overcomes the poor effect, low accuracy, and large calculation cost in other VSR algorithms. The proposed VSR method does not require exact movement estimation and does not need the computation of movement vectors. In terms of peak signal-to-noise ratio (PSNR), sharpness, and entropy, the proposed VSR method based POMS-PSO showed better objective performance. Besides objective standard, experimental results also proved the proposed method could reconstruct high-resolution video sequence with better subjective quality

    Video Superresolution via Parameter-Optimized Particle Swarm Optimization

    Get PDF
    Video superresolution (VSR) aims to reconstruct a high-resolution video sequence from a low-resolution sequence. We propose a novel particle swarm optimization algorithm named as parameter-optimized multiple swarms PSO (POMS-PSO). We assessed the optimization performance of POMS-PSO by four standard benchmark functions. To reconstruct high-resolution video, we build an imaging degradation model. In view of optimization, VSR is converted to an optimization computation problem. And we take POMS-PSO as an optimization method to solve the VSR problem, which overcomes the poor effect, low accuracy, and large calculation cost in other VSR algorithms. The proposed VSR method does not require exact movement estimation and does not need the computation of movement vectors. In terms of peak signal-to-noise ratio (PSNR), sharpness, and entropy, the proposed VSR method based POMS-PSO showed better objective performance. Besides objective standard, experimental results also proved the proposed method could reconstruct high-resolution video sequence with better subjective quality

    A Study of the Strategic Alliance for EMS Industry: The Application of a Hybrid DEA and GM (1, 1) Approach

    Get PDF
    Choosing a partner is a critical factor for success in international strategic alliances, although criteria for partner selection vary between developed and transitional markets. This study aims to develop effective methods to assist enterprise to measure the firms' operation efficiency, find out the candidate priority under several different inputs and outputs, and forecast the values of those variables in the future. The methodologies are constructed by the concepts of Data Envelopment Analysis (DEA) and grey model (GM). Realistic data in four consecutive years (2009-2012) a total of 20 companies of the Electronic Manufacturing Service (EMS) industry that went public are completely collected. This paper tries to help target company-DMU1-to find the right alliance partners. By our proposed approach, the results show the priority in the recent years. The research study is hopefully of interest to managers who are in manufacturing industry in general and EMS enterprises in particular

    Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    Get PDF
    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set

    Three dimensional surface reconstruction of lower limb prosthetic model using infrared sensor array

    Get PDF
    This thesis addresses the development of a shape detector device using infrared sensor to reconstruct a three-dimensional image of an object. The threedimension image is produced based on the object surface using image processing technique. Conventionally, infrared sensors are used for detection of an obstacle and distance measurement to avoid collisions. However, it is not common to use infrared sensors to measure the size of an object. Hence, this research aims to investigate the feasibility of infrared sensors in measuring the object dimension for three-dimension image reconstruction. Experiments were executed to study the minimum distance range utilising GP2D120 infrared sensor. From the experiment, the distance between the sensor and object surface should be more than 5 cm. The scanning device consists of the infrared sensor array was placed in a black box with the object in the center. The scanning process required the object to turn 360 ° clockwise in an xy plane and the resolution for z-axis is 2 mm, in order to obtain data for the image reconstruction. Reference polygon shape models with various dimensions were used as scanning objects in the experiments. The device scans object diameter every 2 mm in thickness, 100 mm in height, and the total time required to collect data for each layer is 60 seconds. The reconstructed object accuracy is above 80 % based on the comparison between a solid and printed model dimension. Four different lower limb prosthetic models with different shapes were used as the object in the scanning experiments. The experimental findings show that the prosthetic shapes reconstructed with an average accuracy of 97 %. This system shows good reproducibility where the collected data using the infrared sensor device need further improvement so that it can be applied in medical field for orthotics and prosthetics purpose

    iABACUS: A Wi-Fi-Based Automatic Bus Passenger Counting System

    Get PDF
    Since the early stages of the Internet-of-Things (IoT), one of the application scenarios that have been affected the most by this new paradigm is mobility. Smart Cities have greatly benefited from the awareness of some people’s habits to develop efficient mobility services. In particular, knowing how people use public transportation services and move throughout urban infrastructure is crucial in several areas, among which the most prominent are tourism and transportation. Indeed, especially for Public Transportation Companies (PTCs), long- and short-term planning of the transit network requires having a thorough knowledge of the flows of passengers in and out vehicles. Thanks to the ubiquitous presence of Internet connections, this knowledge can be easily enabled by sensors deployed on board of public transport vehicles. In this paper, a Wi-Fi-based Automatic Bus pAssenger CoUnting System, named iABACUS, is presented. The objective of iABACUS is to observe and analyze urban mobility by tracking passengers throughout their journey on public transportation vehicles, without the need for them to take any action. Test results proves that iABACUS efficiently detects the number of devices with an active Wi-Fi interface, with an accuracy of 100% in the static case and almost 94% in the dynamic case. In the latter case, there is a random error that only appears when two bus stops are very close to each other

    On Training Efficiency and Computational Costs of a Feed Forward Neural Network: A Review

    Get PDF
    A comprehensive review on the problem of choosing a suitable activation function for the hidden layer of a feed forward neural network has been widely investigated. Since the nonlinear component of a neural network is the main contributor to the network mapping capabilities, the different choices that may lead to enhanced performances, in terms of training, generalization, or computational costs, are analyzed, both in general-purpose and in embedded computing environments. Finally, a strategy to convert a network configuration between different activation functions without altering the network mapping capabilities will be presented
    corecore