1,690 research outputs found

    A probabilistic reasoning and learning system based on Bayesian belief networks

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX173015 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Characterization of gradient estimators for stochastic activity networks

    Get PDF
    This thesis aims to characterize the statistical properties of Monte Carlo simulation-based gradient estimation techniques for performance measures in stochastic activity networks (SANs) using the estimators' variance as the comparison criterion. When analyzing SANs, both performance measures and their sensitivities (gradient, Hessian) are important. This thesis focuses on analyzing three direct gradient estimation techniques: infinitesimal perturbation analysis, the score function or likelihood ratio method, and weak derivatives. To investigate how statistical properties of the different gradient estimation techniques depend on characteristics of the SAN, we carry out both theoretical analyses and numerical experiments. The objective of these studies is to provide guidelines for selecting which technique to use for particular classes of SANs based on features such as complexity, size, shape and interconnectivity. The results reveal that a specific weak derivatives-based method with common random numbers outperforms the other direct techniques in nearly every network configuration tested

    Twentieth conference on stochastic processes and their applications

    Get PDF

    Statistical Methods in Integrative Genomics

    Get PDF
    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions

    GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN

    Get PDF
    Optimal experimental design (OED) seeks experiments expected to yield the most useful data for some purpose. In practical circumstances where experiments are time-consuming or resource-intensive, OED can yield enormous savings. We pursue OED for nonlinear systems from a Bayesian perspective, with the goal of choosing experiments that are optimal for parameter inference. Our objective in this context is the expected information gain in model parameters, which in general can only be estimated using Monte Carlo methods. Maximizing this objective thus becomes a stochastic optimization problem. This paper develops gradient-based stochastic optimization methods for the design of experiments on a continuous parameter space. Given a Monte Carlo estimator of expected information gain, we use infinitesimal perturbation analysis to derive gradients of this estimator.We are then able to formulate two gradient-based stochastic optimization approaches: (i) Robbins-Monro stochastic approximation, and (ii) sample average approximation combined with a deterministic quasi-Newton method. A polynomial chaos approximation of the forward model accelerates objective and gradient evaluations in both cases.We discuss the implementation of these optimization methods, then conduct an empirical comparison of their performance. To demonstrate design in a nonlinear setting with partial differential equation forward models, we use the problem of sensor placement for source inversion. Numerical results yield useful guidelines on the choice of algorithm and sample sizes, assess the impact of estimator bias, and quantify tradeoffs of computational cost versus solution quality and robustness.United States. Air Force Office of Scientific Research (Computational Mathematics Program)National Science Foundation (U.S.) (Award ECCS-1128147

    Anomaly detection and dynamic decision making for stochastic systems

    Full text link
    Thesis (Ph.D.)--Boston UniversityThis dissertation focuses on two types of problems, both of which are related to systems with uncertainties. The first problem concerns network system anomaly detection. We present several stochastic and deterministic methods for anomaly detection of networks whose normal behavior is not time-varying. Our methods cover most of the common techniques in the anomaly detection field. We evaluate all methods in a simulated network that consists of nominal data, three flow-level anomalies and one packet-level attack. Through analyzing the results, we summarize the advantages and the disadvantages of each method. As a next step, we propose two robust stochastic anomaly detection methods for networks whose normal behavior is time-varying. We develop a procedure for learning the underlying family of patterns that characterize a time-varying network. This procedure first estimates a large class of patterns from network data and then refines it to select a representative subset. The latter part formulates the refinement problem using ideas from set covering via integer programming. Then we propose two robust methods, one model-free and one model-based, to evaluate whether a sequence of observations is drawn from the learned patterns. Simulation results show that the robust methods have significant advantages over the alternative stationary methods in time-varying networks. The final anomaly detection setting we consider targets the detection of botnets before they launch an attack. Our method analyzes the social graph of the nodes in a network and consists of two stages: (i) network anomaly detection based on large deviations theory and (ii) community detection based on a refined modularity measure. We apply our method on real-world botnet traffic and compare its performance with other methods. The second problem considered by this dissertation concerns sequential decision mak- ings under uncertainty, which can be modeled by a Markov Decision Processes (MDPs). We focus on methods with an actor-critic structure, where the critic part estimates the gradient of the overall objective with respect to tunable policy parameters and the actor part optimizes a policy with respect to these parameters. Most existing actor- critic methods use Temporal Difference (TD) learning to estimate the gradient and steepest gradient ascent to update the policies. Our first contribution is to propose an actor-critic method that uses a Least Squares Temporal Difference (LSTD) method, which is known to converge faster than the TD methods. Our second contribution is to develop a new Newton-like actor-critic method that performs better especially for ill-conditioned problems. We evaluate our methods in problems motivated from robot motion control
    • …
    corecore