210 research outputs found

    General-Purpose Digital Filter Platform

    Get PDF
    This senior project provides a platform for high-speed, general-purpose digital filter implementation. EE 459 currently implements digital filters using reprogrammable digital signal processor boards. These aging digital signal processors serially calculate each difference equation term. Operating at 1 Mega-sample per second, the new general-purpose platform simultaneously processes at least ten digital filtering difference equation coefficients. The platform also features an audio jack input and BNC connectors for viewing input and output signals. The filter digitizes single channel audio signals at 44.1 kHz sampling rate with 16-bit precision or 1 MHz sampling at 8-bit precision. The new reprogrammable platform includes a data acquisition computer interface. This general-purpose digital filter supports a more modern approach to DSP development than the current platform

    Front-ends para LiDAR baseados em ADC e TDC

    Get PDF
    Autonomous vehicles are a promising technology to save over a million lives each year that are lost in road accidents. However, bringing safe autonomous vehicles to market requires massive development, starting with vision sensors. LiDAR is a fundamental vision sensor for autonomous vehicles, as it enables high resolution 3D vision. However, automotive LiDAR is not yet a mature technology, and, also requires massive development in many aspects. This thesis aims to contribute to the maturity of LiDAR, focusing on sampling architectures for LiDAR front-ends. Two architectures were developed. The first is based on a pipelined ADC, available from an AD-FMCDAQ2-EBZ board. The ADC is synchronized with the emitted pulse and able to sample at 1 Gsample/s. The second architecture is based on a TDC that is directly implemented in an FPGA. It relies on a tapped delay line topology comprising 45 delay elements and on a mux-based decoder, resulting in a resolution of 50 ps. Preliminary test results show that both implementations operate correctly, and are both suitable for sampling short pulses typically used by LiDARs. When comparing both architectures, we conclude that an ADC consumes a significant amount of power, and uses many FPGA resources. However, it samples the LiDAR waveform without any loss of information, therefore enabling maximum range and precision. The TDC is just the opposite: it consumes little power, and uses less FPGA resources. However, it only captures one sample per pulse.Os veículos autónomos são uma tecnologia promissora para salvar mais de um milhão de vidas por ano, colhidas por acidentes rodoviários. Contudo, colocar veículos autónomos seguros no mercado requer inúmeros desenvolvimentos, a começar por sensores de visão. O LiDAR é um sensor de visão fundamental para veículos autónomos, pois permite uma visão 3D de alta resolução. Contudo, o LiDAR automotivo não é uma tecnologia madura, e portanto requer também desenvolvimento em vários aspectos. Esta dissertação visa contribuir para a maturidade do LiDAR, com foco em arquiteturas de amostragem para front-ends de LiDAR. Foram desenvolvidas duas arquiteturas. A primeira assenta numa ADC pipelined, por sua vez implementada numa placa de teste AD-FMCDAQ2-EBZ. A ADC opera em sincronismo com o pulso emitido, e permite capturar amostras a 1 Gsample/s. A segunda arquitetura assenta num TDC implementado diretamente numa FPGA. O TDC baseia-se numa topologia tapped delay line com 45 linhas de atraso, e num descodificador à base de multiplexers, permitindo uma resolução temporal de 50 ps. Resultados preliminares mostram que ambas as implementações operam corretamente, e são adequadas para amostrar pulsos curtos tipicamente associados a LiDAR. Em termos comparativos, a arquitectura com base numa ADC tem um consumo de potência considerável e requer uma quantidade significativa de recursos da FPGA. Contudo, esta permite amostrar a forma de onda de LiDAR sem nenhuma perda de informação, permitindo assim alcance e precisão máximos. A arquitectura com base num TDC é exatamente o oposto: tem um baixo consumo de potência e requer poucos recursos da FPGA. Contudo, permite capturar apenas uma amostra por pulso.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Embedded demonstrator for audio manipulation

    Get PDF
    Demonstration of embedded systems is a good way to motivate and recruit students to a future career in electronics. For Department of Electronics and Telecommunication at the Norwegian University of Science and Technology (NTNU), it is thus desirable to have an embedded demonstrator that gives the pupils an insight in what is actually possible when studying electronics at the university, a system that the department may present at different occasions. A good embedded demonstrator provides an interesting presentation of one or more topics related to electronics, and should be presented together with relevant theory in order to provide a level of education to the user.This report covers the implementation of an embedded demonstrator for audio manipulation on Altera's DE2 development and education board. The system is specified to demonstrate signal processing subjects like sampling and filtering through manipulation of analog audio signals. The main modules in the system are the Cyclone II 2C35 FPGA from Altera, running a Nios II soft-CPU, and a Wolfson WM8731 audio-codec. The specification of their operation is made with background in pedagogics theory in order to make the most interesting demonstration. To realize this specification, the system incorporates several design features for both activation and motivation of the user.The audio manipulator provides possibilities for comparison between different sample rates and filter characteristics in real-time operation. This makes the system well suited for practical demonstration of signal processing theory. Due to the presentation of perceivable results, in addition to the implementation of a user interface for interaction, the implemented audio demonstrator is considered to be a well suited platform for demonstration of topics related to electronics

    FPGA-Based Relaxation D/A Converters With Parasitics-Induced Error Suppression and Digital Self-Calibration

    Get PDF
    In this paper, the implementation on a Field Programmable Gate Array (FPGA) of Relaxation Digital to Analog Converters (ReDACs), which take advantage of the impulse response of a first-order RC network to generate and combine binary weighted voltages, is addressed. For this purpose, the dominant ReDAC nonlinearity limitation related to the parasitics of the RC network is analyzed and a simple and robust technique for its effective suppression is proposed. Moreover, a ReDAC foreground digital calibration strategy suitable to FPGA implementation is introduced to tune the clock frequency of the converter, as requested for ReDAC operation. The novel error suppression technique and calibration strategy are finally implemented on a 13-bit, 514,S/s prototype (ReDAC1) and on a 11-bit, 10.5,kS/s prototype (ReDAC2), which are experimentally characterized under static and dynamic conditions. Measured results on ReDAC1 (ReDAC2) reveal 1.68,LSB (1.53,LSB) maximum INL, 1.54,LSB (1.0,LSB) maximum DNL, 76.4,dB (67.9,dB) THD, 79.7,dB (71.4,dB) SFDR and 71.3,dB (63.3,dB) SNDR, corresponding to 11.6 (10.2) effective bits (ENOB)

    Applied high resolution digital control for universal precision systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 223-225).This thesis describes the design and characterization of a high-resolution analog interface for dSPACE digital control systems and a high-resolution, high-speed data acquisition and control system. These designs are intended to enable higher precision digital control than currently available. The dSPACE system was previously designed within the PMC Lab and includes higher resolution A/D and D/A interfaces than natively available. Characterization on the custom A/D channel demonstrates 20.1 effective bits, or a 121 dB dynamic range, and the custom D/A channel demonstrates 15.1 effective bits, or a 91 dB dynamic range. This compares to a 15.7 effective bits on the A/D dSPACE channel and 12.3 effective bits on the D/A dSPACE channel. The increased resolution is attained by higher performance hardware and oversampling and averaging the A/D channel. The sampling rate is limited to 8 kHz. The high-resolution, high-speed data acquisition and control system can sample two A/D channels at 2.5 MHz and display/save an acquired one second burst. The A/D channel is characterized at 109 dB dynamic range with a grounded input and 96 dB dynamic range, or 0.74 nm RMS over a 50 [mu]m range, with a fixtured capacitive probe. Acquisition at 2.5 MHz and closed-loop control at 625 kHz sampling rate is implemented on a National Instruments FPGA. The A/D circuit was designed and built on a custom printed circuit board around the commercially available AD7760 sigma-delta converter from Analog Devices and includes fully differential ±10 V inputs, a dedicated microcontroller to provide an initialization sequence, and digital galvanic isolation. LabVIEW FPGA code demonstrates arbitrary transfer function control implementation.(cont.) The digital platform is applied to a 1-DOF positioner to demonstrate 0.10 nm RMS control over a 10 [mu]m mechanical range when filtered to the 1.5 kHz closed-loop bandwidth, which is limited by the A/D converter architecture propagation delay.by Aaron John Gawlik.S.M

    A Current-Mode Multi-Channel Integrating Analog-to-Digital Converter

    Get PDF
    Multi-channel analog to digital converters (ADCs) are required where signals from multiple sensors can be digitized. A lower power per channel for such systems is important in order that when the number of channels is increased the power does not increase drastically. Many applications require signals from current output sensors, such as photosensors and photodiodes to be digitized. Applications for these sensors include spectroscopy and imaging. The ability to digitize current signals without converting currents to voltages saves power, area, and the design time required to implement I-to-V converters. This work describes a novel and unique current-mode multi-channel integrating ADC which processes current signals from sensors and converts it to digital format. The ADC facilitates the processing of current analog signals without the use of transconductors. An attempt has been made also to incorporate voltage-mode techniques into the current-mode design so that the advantages of both techniques can be utilized to augment the performance of the system. Additionally since input signals are in the form of currents, the dynamic range of the ADC is less dependant on the supply voltage. A prototype 4-channel ADC design was fabricated in a 0.5-micron bulk CMOS process. The measurement results for a 10Ksps sampling rate include a DNL, which is less than 0.5 LSB, and a power consumption of less than 2mW per channel

    Electronic systems-1. Lecture notes

    Get PDF
    The discipline «Electronic Systems» belongs to the cycle of professional and practical training of bachelors in the educational program «Electronic Components and Systems» is read over one semester (7) and is one of the final subjects of the bachelor's degree. In the process of studying the course, students get acquainted with the informational assessments of the ES; a description of the signals used in different purposes of the ES; methods of their processing, storage and transformation; principles of construction and operation of the ES - the selection, transformation, transmission, reception, registration and display of information. The basics of device design based on programmable logic integrated circuits (FPGA) are considered. Lecture notes contain theoretical information for up to 18 lectures and a list of recommended reading
    corecore