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Chapter 1

Introduction

Natural evolution has yielded biological systems in which complex collective be-
havior emerges from the local interaction of simple components. One example
where this phenomenon can be observed is the foraging behavior of ant colonies
[Deneubourg et al., 1983, Beckers et al., 1992]. Ant colonies are capable of finding
shortest paths between their nest and food sources. This complex behavior of the
colony is possible because the ants communicate indirectly by disposing traces of
pheromone as they walk along a chosen path. Following ants most likely prefer
those paths possessing the strongest pheromone information, thereby refreshing
or further increasing the respective amounts of pheromone. Since ants need less
time to traverse short paths, pheromone traces on these paths are increased very
frequently. On the other hand, pheromone information is permanently reduced
by evaporation, which diminishes the influence of formerly chosen unfavorable
paths. This combination focuses the search process on short, profitable paths.

Inspired by this biological paradigm, the Ant Colony Optimization (ACO)
meta-heuristic is introduced in [Dorigo et al., 1991b, Dorigo, 1992]. In ACO, a
set of artificial ants searches for good solutions to the optimization problem under
consideration. Each ant constructs a solution by making a sequence of local deci-
sions guided by pheromone information and some additional heuristic information
(if applicable). After a number of ants have constructed solutions, the best ants
are allowed to update the pheromone information along their paths through the
decision graph. Evaporation is accomplished by globally reducing the pheromone
information by a certain percentage. This process is repeated iteratively until a
stopping criterion is met. ACO shows a good performance on several combinato-
rial optimization problems, including scheduling [Merkle and Middendorf, 2001b,
Merkle et al., 2002], vehicle routing [Gambardella et al., 1999a], constraint sat-
isfaction [Solnon, 2002], and the Quadratic Assignment Problem [Gambardella
et al., 1999b].

Usually, ACO algorithms are implemented in software on sequential machines.

1



2 CHAPTER 1. INTRODUCTION

However, if short computation times become essential, there exist mainly two
options to speed-up the execution. One option is to develop parallel variants
of the algorithm to be executed on multi-processor machines (see [Randall and
Lewis, 2002] for an overview). The other very promising approach, as proposed
in this thesis, is to directly map the ACO algorithm into hardware, thereby
exploiting the parallelism and pipelining capabilities of the target architecture.
Since the artificial ants construct their solutions independently, and as the core of
the algorithm consists of iteratively repeated instructions, ACO is very attractive
for an implementation in hardware.

Reconfigurable architectures are considered as the implementation platform,
in particular Field Programmable Gate Arrays (FPGAs). Typically, FPGAs con-
sist of an array of configurable logic blocks communicating via a network of pro-
grammable interconnect. After the FPGA has been programmed by the user,
the device is ready to receive and process input data. Commonly, FPGAs can
be re-programmed by the user, which allows to reuse the chip to test different
variants of hardware-implemented ACO algorithms. FPGAs facilitate the devel-
opment of digital systems and also allow for easy and quick design changes and
verification. The algorithmic tasks within an ACO algorithm demand frequent
memory accesses of different bandwidths, a large number of arithmetic and logic
operations as well as a mixture of local and global communication. All these
requirements together with low circuit development costs can only be addressed
by a highly flexible and reusable target architectures like FPGAs. Furthermore,
runtime reconfigurable FPGA devices allow to react to dynamic changes of the
optimization problem by appropriately adapting portions of the implemented
ACO circuit. FPGAs are established in a wide range of applications, e.g., audio
processing [Melnikoff et al., 2002], video processing [Lehtoranta et al., 2005], net-
work communication [Wolkotte et al., 2005], and cryptography [Nibouche et al.,
2004]. Other publications illustrate that FPGAs are suitable as implementation
platform for machine learning and meta-heuristic algorithms including Neural
Networks [Thoma et al., 2003], Evolutionary Algorithms [Bland and Megson,
1998b], and Simulated Annealing [Abramson et al., 1998a].

A concept for an implementation of the ACO algorithm on reconfigurable ar-
chitectures is presented in [Merkle and Middendorf, 2001b, 2002a, Janson et al.,
2002, 2003]. The proposed algorithm targets the Reconfigurable Mesh (RMesh),
a standard model for reconfigurable processor arrays, in which the processors are
connected via a dynamically reconfigurable bus system [Miller et al., 1993, Jang
et al., 1994]. This abstract model efficiently supports algorithmic tasks that are
typical of ACO algorithms such as bit-summation and finding the rank of a num-
ber in a set. In this thesis, it is shown that ACO can also be implemented on
commercially available FPGAs leading to significant speedups in runtime com-
pared to the execution in software on general-purpose processors. Parts of this
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thesis are based on previous work by the author [Diessel et al., 2002, Scheuer-
mann et al., 2003, 2004a,b, Scheuermann and Middendorf, 2005, Scheuermann
et al., 2005].

During hardware design one has to consider the constraints imposed by the
available resources on chip. Various operations (e.g. multiplications, exponenti-
ations) and data types (like floating-point numbers) that are typically required
by ACO algorithms would demand a very large amount of chip resources and
comparatively long computation times on fine-grained architectures like FPGAs.
Therefore, it is an interesting topic to explore alternative variants of ACO, which
better fit the architectural hardware constraints. Two alternative hardware-
oriented ACO algorithms, Counter-based ACO (C-ACO) and Population-based
ACO (P-ACO), are examined in this thesis.

As a new ACO variant C-ACO represents pheromone information by integer
values instead of floating-point numbers. Furthermore, C-ACO applies a modified
evaporation procedure: With every ant decision, an individual pheromone value
is decremented by a constant amount (local evaporation), whereas the standard
ACO algorithm would reduce all entries in the pheromone matrix by a certain
percentage (global evaporation). Local evaporation is faster and requires less
logic and routing resources on the FPGA. C-ACO allows to systolically pipe a
sequence of artificial ants through a grid of processing cells, which promises a
very efficient hardware realization. In experimental studies comparing C-ACO
with the standard ACO algorithm, the proposed variant shows a competitive or
even better optimization performance.

The P-ACO algorithm is examined as a further hardware-oriented ACO vari-
ant. Originally developed for the sequential execution in software and targeting
dynamic optimization problems [Guntsch and Middendorf, 2002a], P-ACO also
offers certain properties making it very attractive for a realization on FPGAs.
Pheromone information is replaced with a small set (population) of good solu-
tions discovered during the preceding iterations. Accordingly, the combination
of pheromone updates and evaporation is substituted for the insertion of a new
good solution into the population thereby replacing the oldest solution contained
in the population. Experimental results indicate that P-ACO performs at least
as well as the standard ACO approach [Guntsch and Middendorf, 2002b].

For both algorithms, C-ACO and P-ACO, a range of new algorithmic tech-
niques is developed, which support the parallel, systolic solution construction and
adapt the algorithm to the architectural requirements. These new techniques
are tested in experimental environments considering various combinatorial opti-
mization problems like the Traveling Salesperson Problem (TSP), the Quadratic
Assignment Problem (QAP), and the Single Machine Total Tardiness Problem
(SMTTP). The P-ACO algorithm is implemented on an FPGA, and it is shown
that the hardware realization leads to a significant speedup compared to the soft-
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ware counterpart on a workstation. Even though both algorithms are designed
and examined with an FPGA implementation in mind, they may also be of in-
terest as alternative ACO algorithms in software.

Common to both hardware-oriented variants is that specific operations typi-
cally executed in software on sequential machines are suitably modified for an ac-
celerated execution on FPGAs. The attainable speedup originates from different
data types, adapted algorithmic procedures, and certainly from a high degree of
concurrency. Some reconfigurable architectures, however, offer the opportunity
of further improvements: Runtime reconfigurable devices allow to dynamically
change a portion of the implemented circuit while the rest continues operating.
This capability can be exploited to speed-up the execution and to reduce space
requirements as well as power consumption. With respect to the parallel ACO im-
plementation, several concepts are presented demonstrating the usage of runtime
reconfiguration. In the case of large ACO applications, runtime reconfiguration
allows to implement the circuitry, which would otherwise not entirely fit onto the
available resources. Furthermore, it is described how reconfiguration at runtime
enables the hardware algorithm to efficiently adapt to dynamic changes of the op-
timization problem. Finally, runtime reconfiguration can be applied to accelerate
the convergence and execution speed of the algorithm.

The remainder of this thesis is structured as follows:

• Chapter 2 introduces the principles of optimizing with ant-based algorithms
by describing how the foraging behavior of real ants inspired the definition
of artificial ants. Important biological experiments as well as descriptive
mathematical models are mentioned, which created the fundamentals for
the introduction of ACO as a generic framework for ant algorithms. An
overview of applications and well-known variants of ACO is provided.

• An introduction to reconfigurable computing is given in Chapter 3. The
characteristics of reconfigurable computing are described and distinguished
from other conventional computing techniques. A classification of various
reconfigurable architectures is provided, followed by an overview of reputed
abstract models. FPGAs are described in greater detail as they represent
the target platform chosen for the examinations in this thesis. Several
models, benefits, and problems concerning runtime reconfiguration are dis-
cussed. An overview of various important applications and main trends are
given as well as an outlook on emerging directions.

• Chapter 4 deals with the implementation of ACO algorithms on reconfig-
urable architectures. The objectives, opportunities as well as the challenges
and restrictions are described, which are connected with this task. A brief
overview of related work by other authors is provided. Afterwards, the
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alternative hardware-oriented ACO algorithms, C-ACO and P-ACO, are
described. For both approaches, various algorithmic modifications and new
techniques are proposed and examined in experimental studies. Software
simulations are conducted comparing C-ACO with standard ACO. P-ACO
is actually implemented on an FPGA measuring the attainable speedup and
the amount of resources required. Regarding P-ACO, a further main contri-
bution consist in the Time-Scattered Heuristic as an alternative approach of
supporting ant decisions by means of heuristic information. Thereafter, the
properties of the proposed hardware-oriented variants are compared with
the standard ACO algorithm and the ACO implementation on the RMesh.

• Chapter 5 discusses several concepts of applying runtime reconfiguration
to the ACO implementation on FPGAs. Three different applications of
runtime reconfiguration are identified covering temporal partitioning and
scheduling of the circuit, dynamic changes to the optimization problem as
well as accelerating convergence and execution speed.

• Finally, Chapter 6 concludes this thesis with a review of the results and a
discussion of their significance followed by an outline of unresolved issues
and directions for further study.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Optimizing with Ants

The daily problems a colony of ants has to face include searching for food, assign-
ing labor to individuals, constructing and extending the nest, feeding offspring,
raising alarm, reacting to external events, defending the colony etc. Counterparts
of these problems can be found in many fields of engineering, economics and com-
puter science, e.g., the search for shortest tours, classification of customers, task
allocation to mobile robots and many others. The focus of this chapter is put
on the foraging behavior of ants, which is the inspiring source for the develop-
ment of a new meta-heuristic called ant algorithm presented in [Dorigo et al.,
1991b, Dorigo, 1992]. In ant algorithms, artificial ants search for good solutions
to an instance of a given optimization problem. The following sections describe
how the insights into real ants’ behavior lead to the definition of artificial ants.
First the characteristics of social insects are introduced in general. Afterwards
the main emphasis is put on the foraging behavior of ants which are observed in
biological experiments. These observations are described and analyzed in math-
ematical models creating the fundamentals for the introduction of Ant Colony
Optimization (ACO) as a generic framework for ant algorithms. Applications
and well-known variants of ACO are given as well as a brief overview of analyti-
cal examinations.

2.1 Social Insects

Such insects are said to be social that live in colonies, exhibit cooperative behav-
ior and division of labor among distinct castes. Social insects which are further
characterized by parental care of young, overlapping generations, and reproduc-
tive division of labor are called eusocial insects. These include all species of ants
and termites as well as some species of bees, wasps, aphids and thrips. Com-
mon to all species of eusocial insects is that they can perform difficult tasks (like

7
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ants finding shortest paths, termites constructing complex nests, or honey bees
dividing combs into concentric regions) which far exceed the capabilities of a
single insect. Furthermore, the colonies completely lack the existence of super-
vising individuals. Every single insect seems to pursue its own plan, however, the
whole colony looks very well organized. How this phenomenon can be explained
is outlined in the subsequent sections.

2.1.1 Characteristics

Many of the complex activities by social insects are based on the principles of
self-organization (SO). Studies on SO originate from the realm of physics and
chemistry [Nicolis and Priogogine, 1977, Haken, 1983]. These theories describe the
emergence of macroscopic patterns resulting from interactions on a microscopic
level. The principles of SO and emergence can also be applied to social insects
[Deneubourg et al., 1989]. Mainly based on local information they perform simple
actions, but by the interplay of many individuals, they produce a rather complex
global effect.

In order to perform their tasks, social insects need to communicate [Bonabeau
et al., 1999]. Direct forms of communication include antennation, trophallaxis
(exchange of liquid or food), visual or mandibular contact as well as chemical
contact like the odor of surrounding nestmates. Indirect communication is based
on the concept of stigmergy1 as introduced by [Grassé, 1959, 1984]: Two insects
communicate indirectly if one individual modifies its environment, these modi-
fications are then perceived by the other individuals thereby possibly triggering
further actions.

Stigmergy and SO enable insect colonies to react in a very flexible and robust
way. Flexibility means that social insects are able to respond appropriately to
perturbations of their environment. The insects react as if these environmental
changes were modifications performed by the colony members themselves. Ro-
bustness allows the colony to remain functional even if some individuals fail to
execute their tasks.

These characteristics make the principles of social insect very attractive to
engineers and computer scientist, because modeling insect behavior would allow
to build resilient decentralized systems consisting of simple cooperating agents
in order to solve problems. Indirect interactions between these agents would
also help reducing communication. So far only a few swarm-intelligent systems
have been developed. Depending on the respective application, designing and
programming such systems is very challenging, because often the problem solving
actions of swarms are not predefined but emergent and strongly influenced by the

1stigmergy: Greek stigma = sting and ergon = work
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interactions among individuals or between individuals and their environment.
Building swarm-intelligent systems requires a very concise knowledge of the local
interactions needed to produce the desired emergent behavior.

The term swarm intelligence is introduced in [Beni, 1988, Beni and Wang,
1989, 1991, Hackwood and Beni, 1991, Beni and Hackwood, 1992, Hackwood and
Beni, 1992] within the scope of cellular robotic systems. A generalized definition
of swarm intelligence is given in [Bonabeau et al., 1999] comprising all algorithms
or distributed systems solving problems by methods, which are inspired by the
collective behavior of social insects and other animal societies. Emergence and
swarm intelligence are also central concepts, which are examined and applied in
a new field of research called Organic Computing [Arbeitsgruppe Organic Com-
puting, 2002, Hofmann et al., 2002]. Organic computers are systems which allow
to dynamically adapt to changing environments and which fulfill the self-x re-
quirements: self-organizing, self-reconfigurable, self-optimizing, self-healing, and
self-protecting.

2.1.2 Foraging Behavior of Ants

When searching for food, some species of ants (e.g. Argentine ant Iridomyrmex
humilis or Lasius niger ) exhibit extraordinarily good capabilities in finding short-
est paths, for instance, between the nest site and food sources. Despite their
very limited visual perception (some species are completely blind) and restricted
cognitive capacities, ants accomplish this task even in unknown or changing en-
vironments [Bonabeau et al., 1999, Dorigo and Stützle, 2004].

Finding shortest connections between two points is not the goal of a single
ant, but rather the emergent collective result of cooperation in self-organized ant
colonies. Ants mainly communicate via chemicals called pheromones as opposed
to other higher species (including humans) whose communication is primarily
based on vision and acoustics. There exist many different types of pheromones,
however, with respect to the task of finding short paths, the most important one
is the trail pheromone. In the sense of stigmergy, ants dispose this pheromone
as they walk along a path from the nest to food sources. Ants can smell these
pheromones guiding them to the food sources found by others. If an ant encoun-
ters multiple alternative pheromone trails, it is likely to choose the one with the
highest pheromone concentration, thereby further reinforcing the respective con-
centration of pheromone. This amplification of earlier beneficial decisions is also
known as positive feedback. As liquid substances pheromones underly the effect
of evaporation, which gradually reduces the intensities of pheromone trails in the
course of time. Hence, infrequently chosen paths become less appealing such that
unprofitable former walks can be forgotten (negative feedback) [Bonabeau et al.,
1999, Dorigo and Stützle, 2004].
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2.1.3 Biological Experiments with Ants

To further investigate the trail-laying activities, several experiments with ants
have been conducted in laboratory environments. The experimental setup applied
by [Goss et al., 1989] and [Deneubourg et al., 1990] consists of a bridge connecting
a nest of ants (Iridomyrmex humilis) and a food source. A bridge is made of two
identical modules arranged in a line (double bridge), and each module has two
branches, which can be of different lengths. The length of the longer branch is
denoted by ll, the length of the shorter one by ls, and the ratio of both lengths
is determined by r = ll/ls. Three experiments with different configurations of
bridges are conducted. Every experiment is repeated with n trials and 11 different
colonies of the Argentine ant Iridomyrmex humilis. At the beginning of every trial
the bridge is free of pheromone and the ants leave their nest crossing the branches
to search for food. Traffic is recorded in the interval between 30 and 40 minutes
after placing the bridge.

food
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60°

(a) Bridge module.

200 40 80 10060
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f t
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(b) Histogram for experiment with n = 26 trials.

Figure 2.1: Setup and results obtained for bridge experiment with branches of
equal length (r = 1) [Goss et al., 1989].

In the first experiment, a double bridge with branches of equal length (i.e.
r = 1) is presented to the ants as visualized in Figure 2.1a. Initially, the ants
randomly choose both branches with equal probability thereby disposing phero-
mones on their paths. Due to random fluctuations, at some stage, one of the
branches contains a higher pheromone concentration than the other. This branch
is thereafter selected with a higher probability causing a further amplification of
the respective pheromone intensity. Eventually, almost all ants prefer the same
branch (see Figure 2.1b).

In the following experiment, one branch is twice as long as the other (r = 2).
When the ants first reach bifurcation 1 (see Figure 2.2a), as before, the ants start
to explore both branches with equal probability. However, the ants on the short
branch reach the food source earlier, and therefore return earlier. When reaching
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bifurcation 2 on their way back, they perceive a higher amount of pheromone
on the shorter branch, which is then likely to be preferred. In contrast to the
first experiment, almost in all trials, the ants converge to the shorter branch (see
Figure 2.2b), although in some trials, a few ants still walk the longer one. This
effect can be considered as a form of exploration of alternative paths.
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(b) Histogram for experiment with n = 14 trials.

Figure 2.2: Setup and results obtained for bridge experiment with branches of
different length (r = 2) [Goss et al., 1989].
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(b) Histogram for experiment with n = 18 trials.

Figure 2.3: Setup and results obtained for bridge experiment with branches of
different length (r = 1) and the short branch added after 30 minutes [Goss et al.,
1989].

A final experiment is conducted to test the flexibility of the collective ant
behavior. The bridge is the same as in the previous experiment except that at
the beginning, the short branch is removed for 30 minutes to allow the ants to
dispose an intense pheromone trail. Afterwards the shorter branch is added as
shown in Figure 2.3a. Interestingly, only a few ants choose the shorter branch (see
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Figure 2.3b). Obviously, the pheromone concentration on the longer branch is
too strong to allow the colony to learn the new shorter connection. Furthermore,
compared to the duration of a complete trial, evaporation is too slow to help the
ants to forget earlier (now suboptimal) decisions. This experiment is repeated
with the ant Lasius niger, which is capable of converging to the new shorter
branch with high probability. This different behavior can be explained by the
diverging characteristics of the two ant species, in particular the frequency of
pheromone disposals or the capability to mark paths toward the food differently
from paths leading back to the nest [Beckers et al., 1992].

2.2 Modeling Ant Behavior

Based on experimental studies with real ants, such as in the previous section, sev-
eral attempts have been made to describe ants behavior in mathematical models.
These models try to explain the mechanisms of the natural system, which is a
prerequisite for the further design of decentralized, adaptive, flexible, and robust
artificial systems capable of solving optimization problems. Two classes of models
can be distinguished.

The first class comprises such biologically-oriented models describing the be-
havior of natural ants (refer to [Dorigo and Stützle, 2004] for an overview). Com-
mon to these models is that they do not integrate the effect of pheromone evap-
oration as they solely try to describe ant activities as observed in the bridge
experiments. In these experiments evaporation does not play an important role,
because the mean lifetime of the pheromone is very high compared to the time
the ants needed to converge to the shortest path [Goss et al., 1989, Beckers et al.,
1993].

The other class contains models devoted to the design of artificial ants. These
models are stronger decoupled from the underlying metaphor in as far as the
artificial ants can perform actions far beyond the capabilities of real ants. To
this class of models belongs, e.g., the Simple Ant Colony Optimization (S-ACO)
algorithm proposed by [Dorigo and Di Caro, 1999, Dorigo and Stützle, 2004]. S-
ACO aims to apply the shortest path finding behavior of ants with the objective
to tackle optimization problems. Hence, S-ACO represents the linkage between
the biologically-oriented models and the generic framework of ACO introduced
in Section 2.3. The artificial ants in S-ACO can be considered as software agents
which autonomously move on a decision graph.

As a straightforward extension to the bridge experiments, S-ACO is applied to
the related problem of finding the shortest path between a given source node and
a given destination node in a graph G = (N, E) with n = |N | nodes, and edges
(i, j) ∈ E with equal length cij = 1. Obviously, the Shortest Path Problem can
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be solved in polynomial time by other algorithms, e.g., [Dijkstra, 1959]. However,
as a didactic example, this optimization problem is very well suited to explain
the fundamentals of ACO.

?

destination

i
source

a

Figure 2.4: Example: Graph for the shortest path problem. Current position i
of an ant a and its path (indicated by arrows) are given. Grey nodes represent
the present neighborhood N a

i . Shortest path drawn with bold lines.

In S-ACO, m artificial ants start from a source node searching for short paths
to the destination node, and they are guided by artificial pheromone τij preceding
ants have disposed on the edges. Pheromones on all edges are initialized by the
same constant value (e.g. τij = 1). In detail, each ant performs the following
sequence of actions:

1. Stepping from node to node, the ant moves forward from the source toward
the destination, thereby constructing a solution (path). When located on
node i, ant a senses the pheromones on all edges leading to the nodes
in the neighborhood N a

i , which contains all nodes directly connected to
node i excluding the immediate predecessor on the path being currently
constructed (see Figure 2.4). If the neighborhood is an empty set (dead
end in the graph), then the immediate predecessor is included. The next
node j ∈ N a

i to be visited is determined probabilistically according to the
following distribution:

pa
ij =


τα
ij∑

l∈Na
i

τα
il

: j ∈ N a
i

0 : else.
(2.1)

Weight α (external parameter) describes the degree of nonlinearity. The
ant memorizes all decisions and appends the selected node to the sequence
of all nodes visited so far. Note that this procedure does not prevent the
construction of loops. While moving forward the ant does not manipulate
the pheromones on the traversed edges.



14 CHAPTER 2. OPTIMIZING WITH ANTS

2. After reaching the destination, the ant scans the constructed solution and
removes loops from the path.

3. Ant a evaluates the solution constructed in order to determine the respective
path length La.

4. Starting from the destination node, the ant returns to the source by deter-
ministically following its loop-free path. When traversing an edge (i, j), the
corresponding pheromone value is updated according to

τij := τij + ∆a, (2.2)

where ∆a denotes the amount of update added by ant a. Two variants
of pheromone update are implemented in S-ACO: The update value either
depends on the length La of the path (∆a = 1/La), or it is chosen to
be the same constant value for all ants. In the latter case, the emergent
optimization behavior only relies on the differential path length, i.e. ants on
short paths can deposit pheromone earlier than ants on long paths.

Additionally to all the individual actions of the artificial ants, pheromones
are evaporated after all ants have moved to the next node. Evaporation is
accomplished by reducing all pheromone values by the same percentage, which is
called evaporation rate ρ ∈ [0, 1):

∀(i, j) ∈ E : τij := (1− ρ) · τij. (2.3)

Inspired by natural evaporation, pheromone values are reduced to allow the colony
to forget earlier unfavorable decisions. By appropriately tuning parameter ρ,
the exploration of so far unvisited paths is supported, and the likelihood of an
early convergence to a local optimum is decreased. Furthermore, evaporation is
important to restrict the range of pheromone values.

The results retrieved from the experimental studies with S-ACO can be sum-
marized as follows [Dorigo and Di Caro, 1999, Dorigo and Stützle, 2004]:

• To converge to the shortest path, the algorithm requires a higher number of
ants m (resulting in longer simulation runs), when applying the differential
path length strategy. Including the path length into update values leads
to better results compared to constant update values. This effect becomes
even more apparent with increasing problem complexity.

• Evaporation is essential to help the algorithm finding the shortest path.
With increasing complexity of the problem, a careful tuning of parameter ρ
becomes crucial. Too small evaporation rates may lead to sub-optimal so-
lutions, whereas very high values of ρ can unnecessarily retard convergence.
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• Choosing parameter α = 1 results in the best optimization performance.
Higher values of α amplify initial random fluctuations of pheromone values,
which mislead the ongoing search process.

2.3 Ant Colony Optimization

Based on the behavior of real ant colonies, many variants of ant algorithms have
been proposed to search for good solutions to numerous NP-hard combinatorial
optimization problems. A large fraction of these variants is unified in a common
framework, which is called the Ant Colony Optimization (ACO) meta-heuristic.

2.3.1 Combinatorial Optimization Problems

Solutions to combinatorial optimization problems are described by a composition
of integer variables which are limited to a finite range. Combinatorial optimiza-
tion problems include, for instance, routing problems, assignment problems, and
scheduling problems. A combinatorial optimization problem is defined by a triple
Π = (S, f, Ω) with S denoting the set of candidate solutions, f representing the
objective function, and Ω a set of constraints. The objective function determines
a function value f(s) for every candidate solution s ∈ S. Such solutions s̃ ∈ S̃
with S̃ ⊆ S which satisfy the set of constraints Ω are called feasible solutions.
Function f is either to be minimized or maximized, i.e. the objective is to find
an optimal solution s∗ ∈ S̃ such that ∀s ∈ S̃ : f(s∗) ≤ f(s) in the case of a
minimization problem, or ∀s ∈ S̃ : f(s∗) ≥ f(s) for a maximization problem.

For some combinatorial optimization problems, e.g., the Shortest Path Prob-
lem [Dijkstra, 1959] or the Chinese Postman Problem [Kwan, 1962], exact al-
gorithms are known, that allow to find the optimal solution in a time which is
polynomially dependent on the size of the problem instance. More challenging are
NP-hard problems (see, e.g., [Garey and Johnson, 1983] for a concise introduc-
tion to the intractability of optimization problems), for which it is yet unknown
if there exists an algorithm that is capable of finding the optimum in polynomial
time. Such problems include, e.g., the Traveling Salesperson Problem (TSP)
[Lawler et al., 1985] or the Quadratic Assignment Problem (QAP) [Cela, 1998].
Many years of research in the field of complexity theory suggest that solving NP-
hard problems to optimality always requires exponential runtime, although it has
never been proved. Considering NP-hard combinatorial optimization problems,
exact algorithms guarantee to find the optimum, but in the worst case the search
requires exponential time. Such exact algorithm include, e.g., Complete Enumer-
ation, Branch-and-Bound, Branch-and-Cut [Neumann and Morlock, 2002]. On
the other hand, many algorithms have been developed which afford only polyno-
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mial time. These approximate algorithms, also called heuristics, search for good
solutions to the optimization problem, however, they cannot guarantee to find the
optimum. Heuristics can be further sub-divided into constructive or local search
methods. Constructive methods start from an initially empty solution and build
up a complete solution by successively adding further components, e.g., in TSP,
a solution is generated by repeatedly selecting an as yet unvisited city until the
tour is complete. Local search methods start from a complete solution which is
subject to local changes that iteratively try to improve the solution quality. The
choice of the next local change can be guided by hill-climbing or gradient-descent
strategies.

Many heuristics are problem-dependent, i.e. they exploit problem-specific
knowledge and can therefore often provide good solutions in reasonably short
time, although these heuristics are often very specialized for one sort of prob-
lem and can only hardly if ever be applied to others. In this context so-called
meta-heuristics play an important role, since they provide a generic framework
for the creation of problem-specific heuristics. For some applications, the tech-
niques of meta-heuristics offer the only way for an efficient optimization, when
other heuristics cannot be properly adapted. Some examples of popular meta-
heuristics include Evolutionary Algorithms [Fogel et al., 1966, Holland, 1975,
Rechenberg, 1973, Schwefel, 1981, Goldberg, 1989, Michalewicz, 1999], Simu-
lated Annealing [Cerný, 1985, Kirkpatrick et al., 1983], Iterated Local Search
[Lourenço et al., 2002], Tabu Search [Glover, 1989, 1990, Glover and Laguna,
1997], and Ant Colony Optimization, whereof the latter one is introduced in the
following section.

2.3.2 ACO Meta-Heuristic

In [Dorigo and Di Caro, 1999, Dorigo et al., 1999, 1996, Dorigo and Stützle,
2002], the Ant Colony Optimization (ACO) meta-heuristic is introduced as a
generic framework for many ant algorithms, and can be applied to a wide range
of combinatorial optimization problems. An instantiation of the ACO meta-
heuristic is called an ACO algorithm. An ACO algorithm is considered as a system
of cooperating artificial ants constructing solutions by a sequence of stochastic
local decisions based on pheromone values, which are subject to the processes of
pheromone update and evaporation as feedback strategies. Consequently, every
ACO algorithm is also an ant algorithm. However, not every ant algorithm
complies the requirements of ACO algorithms. For instance [Gambardella et al.,
1999b] present an ant algorithm, which iteratively modifies solutions (instead of
constructing them) in the sense of local search and is therefore not considered as
an ACO algorithm as defined above.

The ACO meta-heuristic, as listed in Algorithm 2.1, can be considered as a
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generalization of the S-ACO algorithm described Section 2.2. In ACO, phero-
mones τij are typically associated with the edges of the respective decision graph,
although in some cases, e.g., subset problems [Leguizamón and Michalewicz,
1999], pheromones τi may also be disposed on the nodes. In the following, it
is assumed that pheromones are always related to edges. When starting the
algorithm, all pheromone values are assigned initial values τij := τ0.

Algorithm 2.1 ACO meta-heuristic.

1: initialize pheromone values
2: repeat
3: schedule ant activities
4: construct solution
5: evaluate solution
6: update pheromone values
7: perform daemon actions
8: end schedule
9: until stopping condition met

Algorithm 2.2 Procedure construct solution.

1: initialize s as empty solution
2: while s not complete do
3: compute index i of next decision
4: randomly select j ∈ Ni according to transition rule
5: add j to solution s
6: end while

After initialization, the artificial ants iteratively search for good solutions to
the optimization problem. In every iteration, the activities of m working ants
have to be scheduled (line 3 in Algorithm 2.1). Scheduling ant activities is re-
lated to two different aspects: to the synchronization of the m ants, and to the
sequence of individual ant activities. The synchronization of the ants can be
completely parallel, or they work sequentially one after the other. The individual
ant activities mainly consist of four procedures: construction and evaluation of
solutions, pheromone update, and daemon actions. Depending on the respec-
tive instantiation of the meta-heuristic, the order in which these activities are
scheduled may differ, or they can be interleaved with each other.

The ant activities performed during solution construction are described in
Algorithm 2.2. An ant starts from a source node on the decision graph with an
initially empty solution s. When located on a node i, ant a randomly decides
to move to an adjacent node j ∈ N a

i (line 4 in Algorithm 2.2). The selection
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probability pa
ij is a function of pheromone value τij and an optional heuristic

value ηij. This heuristic value provides problem-dependent information to guide
the ant to promising areas of the search space. This heuristic information can be
static, i.e. the heuristic values do not change at runtime, which allows them to
be computed offline in the initialization phase of the ACO algorithm. Heuristic
information may also be dynamic if the heuristic values depend on the current
state in the process of solution construction and therefore require an online com-
putation. Usually, ηij represents the cost, or an estimate of the cost, of adding j
to the solution being currently constructed.

Probability pa
ij is commonly expressed by the random proportional transition

rule:

pa
ij =


τα
ij ·η

β
ij∑

l∈Na
i

τα
il
·ηβ

il

: j ∈ N a
i

0 : else,
(2.4)

where α and β represent weights for the pheromone and the heuristic values,
respectively. The most common choice is setting α = 1 (cf. Section 2.2), but
also values α > 1 have been investigated to enforce a quicker convergence [Fenet
and Solnon, 2003], but eventually, resulted in poorer solution qualities. Choosing
parameter β = 0 eliminates the influence of heuristic information and leads to the
selection probability used in S-ACO (cf. Equation 2.1). It has been shown that
in many cases, the integration of heuristic information with β > 1 yields better
results, e.g., β = 2 [Dorigo and Gambardella, 1997b, Stützle and Hoos, 2000]
or β = 5 [Bullnheimer et al., 1999c]. In [Dorigo and Gambardella, 1997b], the
pseudo-random proportional transition rule is presented, which allows to model
the relative importance of exploration versus exploitation. With probability q0

(external problem parameter) an ant selects the next node j ∈ N a
i , which offers

the largest product of weighted pheromone and heuristic values:

j = arg max
l∈Na

i

τα
il · η

β
il. (2.5)

This deterministic choice of the next node j is considered as the exploitation of
previously learned knowledge to concentrate the search process on the neighbor-
hood of the best-so-far solution. With probability (1 − q0) the ant performs a
biased probabilistic decision according to Equation 2.4, which corresponds to an
exploration of the search space.

The constructed solutions are evaluated to determine their solution qualities
(line 5 in Algorithm 2.1). Depending on the optimization problem, this evalu-
ation is done either online or offline. Online evaluation means that the current
(partial) solution quality is calculated during solution construction, i.e. the ant
immediately determines how much a decision contributes to solution quality. Off-
line evaluation processes the solution quality after solution construction has been
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completed.
The solution quality may then be employed to determine the degree of phero-

mone update, which generally, consists of a combination of negative and positive
feedback. Negative feedback is mostly realized in terms of evaporating phero-
mone values as presented in S-ACO (cf. Equation 2.3). This method is closest to
the natural paradigm, although other approaches exist, where such pheromone
values are reduced, which are associated to unfavorable or older solutions, e.g.,
[Maniezzo, 1999, Guntsch and Middendorf, 2002b]. Positive feedback increases
pheromone trails by a value ∆a if they have either been used by many ants or by
ants which have produced good solutions. It is generally required that ∆a is a
non-increasing function of the solution quality in the case of a minimization prob-
lem, or vice versa. Depending on the respective instantiation, update activities
can be interleaved with solution construction, or they are completely decoupled.

Daemon actions (line 7 in Algorithm 2.1) are centralized operations, which are
beyond the capabilities of a single ant. Such actions include, e.g., the application
of local optimizer or the comparison of solution qualities to determine the best
ants, which are allowed to update pheromones. The algorithm is terminated as
soon as a specific stopping condition is met, e.g., a predefined maximum number
of iterations has been executed, or the best yet reached solution quality has not
changed over a certain number of iterations.

Considering the sequential software implementation of the ACO meta-heuris-
tic, every solution construction consists of a sequence of n ant decisions each of
them requiring an asymptotic runtime of O(n). The overall complexity therefore
mainly depends on the total number of z solutions generated and on the complex-
ity of the evaluation function and daemon actions. Assuming that the time for
these operations does not exceed O(n2) per constructed solution, then the total
runtime can be expressed as O(z · n2).

2.4 Applications

The ACO meta-heuristic has been applied to a wide range of optimization prob-
lems, in many cases with great success. This section first gives an overview of the
most common applications and subsequently describes some examples of ACO
algorithms in greater detail.

2.4.1 Overview

The following overview of ACO applications represents an update and supple-
mentation of a collection provided by [Dorigo and Stützle, 2004].
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Routing
Traveling salesperson [Dorigo et al., 1991a,b, 1996, Dorigo, 1992]

[Gambardella and Dorigo, 1995]
[Dorigo and Gambardella, 1997a,b]
[Stützle and Hoos, 1997, 2000, Bullnheimer et al., 1999c]
[Cordón et al., 2000, Bianchi et al., 2002]
[Eyckelhof and Snoek, 2002]

Vehicle routing [Forsyth and Wren, 1997, Bullnheimer et al., 1999a,b]
[Gambardella et al., 1999a, Wade and Salhi, 2001]
[Reimann et al., 2002a,b, Ellabib et al., 2002, 2003]
[Doerner et al., 2002, 2004, Chitty and Hernandez, 2004]

Capacitated arc routing [Doerner et al., 2003]
Sequential ordering [Gambardella and Dorigo, 1997, 2000]

Assignment
Quadratic assignment [Maniezzo et al., 1994, Dorigo and Gambardella, 1997b]

[Stützle, 1997, Taillard and Gambardella, 1997]
[Gambardella et al., 1999b, Maniezzo and Colorni, 1999]
[Maniezzo, 1999, Stützle and Dorigo, 1999]
[Stützle and Hoos, 2000, López-Ibáñez et al., 2004]

Graph coloring [Costa and Hertz, 1997, Vesel and Zerovnik, 2000]
Graph matching [Sammoud et al., 2005]
Generalized assignment [Lourenço and Serra, 1998, 2002]
Frequency assignment [Maniezzo and Carbonaro, 2000]
University course timetabling [Socha et al., 2002, 2003]

Scheduling
Job shop [Colorni et al., 1994, Dorigo et al., 1996, Teich et al., 2001]
Open shop [Pfahringer, 1996]
Flow shop [Stützle, 1998a, Onwubolu, 2000]
Total tardiness [Bauer et al., 2000]
Total weighted tardiness [den Besten et al., 2000b, Merkle and Middendorf, 2000, 2003]

[Gagné et al., 2002]
Project scheduling [Merkle et al., 2000, 2002]
Power plant maintenance [Foong et al., 2005]
Group shop [Blum, 2002, 2003]

Subset
Multiple knapsack [Leguizamón and Michalewicz, 1999, Fidanova, 2002]
Max independent set [Leguizamón and Michalewicz, 2000]
Redundancy allocation [Liang and Smith, 1999]
Set covering [Leguizamón and Michalewicz, 2000, Hadji et al., 2000]

[Lessing et al., 2004]
Weight constrained graph tree
partition [Cordone and Maffioli, 2001]
Arc-weighted l-cardinality tree [Blum and Blesa, 2003, Bui and Sundarraj, 2004]
Maximum clique [Fenet and Solnon, 2003, Bui and Rizzo, 2004]

Machine learning
Classification rules [Parpinelli et al., 2002]
Bayesian networks [de Campos et al., 2002]
Fuzzy systems [Casillas et al., 2000]

Network routing
Connection-oriented network
routing [Schoonderwoerd et al., 1996, 1997, White et al., 1998]

[Di Caro and Dorigo, 1998b, Bonabeau et al., 1998]
[Fujita et al., 2002]

Connectionless network routing [Di Caro and Dorigo, 1997, 1998a,c, Subramanian et al., 1997]
[Heusse et al., 1998, van der Put, 1998]

Optical network routing [Navarro Varela and Sinclair, 1999]
Others

Data warehouse, data mining [Maniezzo et al., 2001a,b, Stubs et al., 2001]
Shortest common supersequence [Michels and Middendorf, 1998, 1999]
Constraint satisfaction [Solnon, 2000, 2002]
Protein folding [Shmygelska et al., 2002, Angel et al., 2005]
Bin packing [Levine and Ducatelle, 2004, Brugger et al., 2004]
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Successful applications of ACO include various scheduling problems like Job
Shop [Colorni et al., 1994], Flow Shop [Stützle, 1998a], Total Weighted Tardi-
ness [den Besten et al., 2000b, Merkle and Middendorf, 2003], and the Resource-
Constrained Project Scheduling Problem [Merkle et al., 2002]. The results on
the Shortest Common Supersequence Problem [Michels and Middendorf, 1999],
the Constraint Satisfaction Problem [Solnon, 2002], the Vehicle Routing Prob-
lem [Gambardella et al., 1999a], and the Quadratic Assignment Problem [Gam-
bardella et al., 1999b] are also very promising. ACO algorithms have exhib-
ited a good performance on dynamic optimization problems, e.g. the Dynamic
TSP [Guntsch et al., 2000, Guntsch and Middendorf, 2000, Guntsch et al., 2001,
Guntsch and Middendorf, 2002a] or the Probabilistic TSP [Branke and Guntsch,
2003], and Network Routing [Schoonderwoerd et al., 1996, Di Caro and Dorigo,
1998a].

2.4.2 Examples

The Traveling Salesperson Problem (TSP), the Quadratic Assignment Problem
(QAP), and the Single Machine Total Tardiness Problem (SMTTP) are chosen
as examples of ACO applications, since they are also applied with respect to the
hardware implementation described in the subsequent chapters. The algorithms
described below are standard approaches, which have shown a good performance
on the respective problem classes. Note that for the described applications there
exists a range of variations of the standard approach. The main differences are
outlined in Section 2.5.

2.4.2.1 Traveling Salesperson Problem

Given a graph G = (N, E) with n = |N | nodes (cities), edges (i, j) ∈ E, and
distances dij between cities i and j for i, j ∈ {0, . . . , n− 1}, the objective of the
Traveling Salesperson Problem (TSP) is to find a distance minimal Hamiltonian
cycle. A Hamiltonian cycle is a closed walk (tour) on the graph G, such that
each city is visited exactly once. One can distinguish between symmetric and
asymmetric TSP. In the symmetric case, the distances between cities i and j are
irrespective of the direction of traversing the arcs connecting them, i.e. dij = dji

for every pair of cities. A TSP is called asymmetric if dij 6= dji for at least one
pair of cities.

The TSP is an NP-hard optimization problem [Lawler et al., 1985], which has
attracted a reasonable amount of research activities, e.g., [Reinelt, 1994, Johnson
and McGeoch, 1995]. With regard to ACO, the TSP has always played an impor-
tant role, because of its intuitive close relation to the shortest path finding behav-
ior observed in ant colonies, and was therefore chosen as the application of the
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first ACO algorithm, called Ant System (AS), introduced in [Dorigo et al., 1991a,
Dorigo, 1992, Dorigo et al., 1996]. Many subsequent variants of ACO algorithms
have also (initially) been developed for the TSP, e.g., Ant-Q by [Gambardella and
Dorigo, 1995, Dorigo and Gambardella, 1996], the Ant Colony System by [Dorigo
and Gambardella, 1997a,b], the Rank-based Ant System by [Bullnheimer et al.,
1997, 1999c], and also the most successful approach, the MAX-MIN Ant System
(MMAS) in combination with local search by [Stützle and Hoos, 1996, Stützle,
1999, Stützle and Hoos, 2000]. Although ACO algorithms perform reasonably
well on TSP, there exist other better heuristics like [Lin and Kernighan, 1973] or
polynomial time approximation schemes for Euclidean TSP [Arora, 1998]. One
motivation of using TSP as the ACO standard application is that this problem
is easily understandable. Furthermore, ACO strategies can intuitively be applied
as the objective of TSP is closely related to the natural paradigm of ants finding
shortest paths. New algorithmic ideas, which have shown a good performance
on TSP, could often successfully be adapted to other optimization problems, for
which ACO algorithms belong to the best known approaches.

Algorithm 2.3 shows an application of ACO for the asymmetric TSP as pro-
posed by [Dorigo, 1992]. Pheromone information is stored and maintained in an
n × n pheromone matrix [τij], where every entry τij expresses how attractive
it is for an ant located in city i to select j as the next city to be visited. This
means that the pheromone matrix is encoded in an item×item fashion with an
item corresponding to a city. Item-item encoding is employed whenever the re-
lation between predecessor and successor plays an important role, e.g., TSP, the
Sequential Ordering Problem (SOP), or scheduling problems with setup costs.
At the beginning of the algorithm, all values in the pheromone matrix are set
to an initial value τ0 > 0 (line 4). Note that the actual values of the diagonal
elements are irrelevant due to the tour construction mechanism, which prevents
an ant from returning to a previously visited city.

After initialization, the ants iteratively construct solutions (tours). In every
iteration, m tours are constructed, one per ant. Starting from an initially empty
tour, each ant successively selects cities until a tour is complete. To avoid the
creation of loops, an ant a located in city i is only allowed to choose the next
city from a neighborhood N a

i called the selection set S, which contains all so far
unchosen cities. At the beginning of each tour construction, S contains all city
indices from the interval {0, . . . , n − 1} (line 10). Whenever a city j is selected,
index j is removed from S (line 16).

The first selection is made for start city c, which is determined either ran-
domly or by a deterministic rule (line 11). All following selections in a row i are
performed according to a specific transition rule (line 15). Selection probabilities
are biased by the pheromone information stored in the i-th row of the pheromone
matrix.
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Algorithm 2.3 ACO algorithm for asymmetric TSP.

1: /* initialize pheromone matrix */
2: for i := 0 to n− 1 do
3: for j := 0 to n− 1 do
4: τij := τ0

5: end for
6: end for
7: /* start iterations */
8: repeat
9: for a := 0 to m− 1 do

10: S := {0, . . . , n− 1} /* initialize selection set */
11: select start city c ∈ S
12: S := S \ {c}; i := c
13: for h := 0 to n− 1 do
14: if h 6= n− 1 then
15: j := select(i) /* probabilistic selection */
16: S := S \ {j}
17: else
18: j := c /* finally, return to start city */
19: end if
20: πa(i) := j
21: i := j /* move to next city */
22: end for
23: end for
24: a∗ := arg mina∈{0,...,m−1} La /* determine best tour */
25: π∗ := πa∗

26: /* pheromone update */
27: for i := 0 to n− 1 do
28: for j := 0 to n− 1 do
29: τij := (1− ρ) · τij /* evaporation */
30: end for
31: τiπ∗(i) := τiπ∗(i) + ∆ /* intensification */
32: end for
33: until stopping condition met
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Additionally, heuristic information may also be integrated. In TSP, the heu-
ristic value of choosing to visit city j after the last chosen city i is commonly con-
sidered to be inversely proportional to the distance separating them: ηij = 1/dij.

The selected city j is then added to the tour being currently under con-
struction (line 20). A tour can be expressed by a permutation π of city indices
j ∈ {0, . . . , n − 1}, whereby an entry π(i) = j indicates that in tour π city j is
visited immediately after city i. Afterwards the ant moves to city j, i.e. it steps
to row number j of the pheromone matrix (line 21). By the end of each solution
construction, the ant returns to the start city to complete its tour (line 18).

All m tours constructed are evaluated to calculate their tour lengths La =∑n
i=1 diπa(i) and to determine the best tour π∗ of the current iteration (lines 24

and 25). The pheromone matrix is then updated in two steps: First all phero-
mone values in the matrix are evaporated by a certain percentage ρ (line 29).
Afterwards the pheromone values along the best tour π∗ are increased by a fixed
amount ∆ (line 31). In the case of symmetric TSP, one has to ensure that all
operations sustain the symmetry of the pheromone matrix. Hence, during phero-
mone update, pheromone value τiπ∗(i) and also τπ∗(i)i are increased by ∆/2. The
algorithm is terminated as soon as a certain stopping condition is fulfilled.

2.4.2.2 Quadratic Assignment Problem

Given n locations, n facilities, and two n×n matrices [dij] and [fhl], with dij being
the distance between locations i and j, and fhl denoting the flow between facilities
h and l, the goal of the Quadratic Assignment Problem (QAP) is to find an as-
signment of locations to facilities, i.e. a permutation π of {0, . . . , n−1}, such that
the sum of distance-weighted flows between facilities F =

∑n−1
h=0

∑n−1
l=0 dπ(h)π(l)fhl

is minimized.
QAP is known to be an NP-hard optimization problem [Sahni and Gonzalez,

1976], which plays an important role in theory and in many practical applications.
A great variety of ACO algorithms has been developed for the QAP including
the Ant System (AS) [Maniezzo et al., 1994, Maniezzo and Colorni, 1999], ANTS
[Maniezzo, 1999] and MMAS [Stützle, 1997, Stützle and Hoos, 2000]. ACO
belongs to the best-performing meta-heuristics known for the QAP. Other ant-
based algorithms, though not ACO algorithms, for QAP comprise the Fast Ant
System (FANT) [Taillard, 1998] and the Hybrid AS (HAS) [Gambardella et al.,
1999b].

An application of ACO to the QAP is listed in Algorithm 2.4. The phero-
mone matrix is encoded in a place-item fashion, i.e. row indices i represent places
(facilities) in the solution vector whereas column indices j stand for items (loca-
tions) to be assigned to places. Note that there also exist other implementations
with swapped interpretations of places and items. First, all entries in the phe-
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romone matrix are initialized by a value τ0 > 0. Afterwards m ants iteratively
start constructing solutions by successively assigning locations to facilities. For
every assignment, a location j ∈ S is randomly selected according to a specific
transition rule (line 7).

Algorithm 2.4 ACO algorithm for the QAP.

1: initialize pheromone matrix
2: /* start iterations */
3: repeat
4: for a := 0 to m− 1 do
5: S := {0, . . . , n− 1} /* initialize selection set */
6: for i := 0 to n− 1 do
7: j := select(i) /* probabilistic selection */
8: S := S \ {j}
9: πa(i) := j

10: end for
11: end for
12: a∗ := arg mina∈{0,...,m−1} F a /* determine best tour */
13: π∗ := πa∗

14: update pheromone matrix
15: until stopping condition met

ACO applications to QAP often use no heuristic at all. Alternatively, heuristic
guidance based on two types of potential values derived from the flow and dis-
tance matrices are proposed in [Dorigo et al., 1996]. Flow potential f̄h =

∑n−1
l=0 fhl

determines the sum of flows associated with facility h. The higher the flow poten-
tial of a facility the more important this facility is in the system of flow exchange.
Distance potential d̄i =

∑n−1
j=0 dij indicates the relative position of location i with

respect to all other locations. The lower the distance potential of a location
the more centrally it is situated. The aim of the QAP heuristic is to support
the assignment of locations, which have low distance potentials, to facilities with
high flow potentials. Therefore, one possible approach is to sort the facilities in
non-increasing order of their flow potentials such that facilities with high flow
potentials are assigned earlier in the process of solution construction. The recip-
rocal values of the distance potentials are used as heuristic information ηij = 1/d̄j,
which is independent of row index i.

Constructed solutions are evaluated and the solution with the lowest objective
function value F a∗ is used to update the pheromone matrix. This is done in the
same way as in Algorithm 2.3. This process is iteratively repeated until some
stopping condition is met.
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2.4.2.3 Single Machine Total Tardiness Problem

For the Single Machine Total Tardiness Problem (SMTTP), n jobs are given to
be processed on a single machine. Every job j is described by its due date dj and
processing time pj. If Cj denotes the completion time of job j in a schedule then
Lj = Cj −dj defines its lateness and Tj = max(0, Lj) its tardiness. The objective
is to find a schedule minimizing the total tardiness of all jobs

∑n−1
j=0 Tj.

SMTTP has been shown to be an NP-hard optimization problem [Du and
Leung, 1990] even though from the theoretical point of view, SMTTP can be
solved in pseudo-polynomial time [Lawler, 1977]. Powerful branch-and-bound
algorithms are reported to solve SMTTP to optimality up to problem sizes of
n = 500 [Szwarc et al., 2001]. An ACO application to SMTTP is presented
in [Bauer et al., 2000]. Note that the related problem with weighted tardiness
(SMTWTP) is NP-hard in the strong sense [Lenstra et al., 1977]. Applications of
ACO to SMTWTP are described in [den Besten et al., 2000a], and the ACO algo-
rithm presented by [Merkle and Middendorf, 2003] belongs to the best-performing
heuristics for this problem.

The ACO algorithm for SMTTP, as used in this thesis, is very similar to
Algorithm 2.4, and is therefore not listed explicitly. As in the case of QAP,
the pheromone matrix is also encoded in a place-item fashion, and solutions
(schedules) are constructed by successively assigning items (jobs) to places in the
solution vector. Heuristic information can be defined via priority rules. According
to the earliest due date rule (EDD), heuristic information ηij = 1/dj prefers jobs
with low due dates. Next to due dates, the heuristic information ηij = 1

max{T +pj ,dj}
used by the modified due date rule (MDD) also considers the individual processing
time pj of job j ∈ S and the total processing time T of all as yet scheduled jobs.

2.5 Variants of ACO

Since the first publication of an ant algorithm [Dorigo et al., 1991a] many new
algorithmic concepts have been developed and tested. These approaches mainly
differ in the type of pheromone update, or in their mode of execution, either
sequential or parallel. Some of the most interesting variants of ACO algorithms
are presented in this section.

2.5.1 Sequential ACO Algorithms

The Ant System (AS), as presented by [Dorigo, 1992] for the TSP, calculates an
update value ∆a

ij for every ant a in the current iteration. If a pheromone value
τij is not related to a tour πa constructed by ant a, then τij does not receive
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an update, i.e. ∆a
ij = 0. Otherwise the update value depends on the update

strategy applied: The Ant-density strategy assigns a constant value ∆a
ij = ∆;

using Ant-quantity, the update value ∆a
ij = 1/dij is inversely proportional to

the distance between two cities; the update value ∆a
ij = Q/La for Ant-cycle is

inversely proportional to the tour length La with Q being a constant parameter.
The actual update value ∆ij =

∑m−1
a=0 ∆a

ij is the sum over the individual update
values of all m ants in the iteration. Furthermore, an elitist strategy is introduced,
which allows the ants that found the so far shortest tours to perform an additional
pheromone update. In experimental studies, using a small number of such elitist
ants produces better results.

In [Dorigo and Gambardella, 1995, Gambardella and Dorigo, 1995, Dorigo
and Gambardella, 1996], the Ant System algorithm is extended by Q-learning
[Watkins, 1989] techniques. Accordingly, this variant is called Ant-Q. The au-
thors apply Ant-Q to the TSP and propose two types of pheromone update (rein-
forcement): The immediate reinforcement modifies pheromones directly after an
ant decision, whereas using delayed reinforcement, the ants perform an update
after a construction of a complete tour. The amount of pheromone update also
depends on the length of the respective tour. The Ant-Q algorithm is extended
by a so-called belief factor, which reflects the confidence an ant has in the per-
ceived pheromone concentration [Monekosso et al., 2002]. During early phases of
the optimization process, this factor makes an ant believe to a lesser degree in
the pheromone information because the system is still in a explorative state.

Based on Ant-Q, the Ant Colony System (ACS) is introduced in [Gambardella
and Dorigo, 1996, Dorigo and Gambardella, 1997a,b], which is also applied to the
TSP. Each time a city is selected, a so-called local pheromone update reduces the
concerned pheromone value by a certain percentage and performs a partial reset
to the initial value: τij := (1− ρ)τij + ρτ0. A further global pheromone update is
executed after the construction of a tour. However, in contrast to AS, not all ants
are allowed to update, but only the best ant of the current iteration or the elitist
ant (or both of them). In experimental studies, this version of global pheromone
update yields very good results [Stützle and Hoos, 2000, Merkle et al., 2002].

Another modification of the Ant System, called AS-rank, is presented by
[Bullnheimer et al., 1999c]. The k best ants of the current iteration, together
with a certain number of elitist ants, are allowed to execute a global pheromone
update. The amount of pheromone they are allowed to update is proportional to
their individual rank of solution quality.

In [Stützle and Hoos, 1997, Stützle, 1999, Stützle and Hoos, 2000], the MAX-
MIN Ant System is introduced and successfully applied to several optimization
problems. The authors propose to restrict the pheromone values to an interval
[τmin, τmax] thereby bounding the selection probabilities in Equation 2.4 if the
heuristic values are also limited. This strategy avoids an early convergence to
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a local optimum, and in combination with local search and elitist ants, leads to
very good results on TSP and QAP.

Other variants of update strategies have been presented, which do not include
an explicit evaporation. In [Maniezzo, 1999], it is proposed to compare the solu-
tion quality of an ant with the average quality of the m preceding ants. If the
solution quality is better, then the corresponding pheromone values receive a pos-
itive update, and a negative update otherwise. The substitution of evaporation
by a combination of positive and negative update is also a key concept of the
Population-based ACO (P-ACO) by [Guntsch and Middendorf, 2002b]. P-ACO
keeps and maintains a population of the k best solutions from the k preceding
iterations. A positive update is realized by an insertion of a new solution into
the population, a negative update is accomplished by removing a solution from
the population. From this population the corresponding pheromone matrix can
be derived. A detailed description of P-ACO is provided in Section 4.4.

2.5.2 Parallel ACO Algorithms

So far the described ACO variants try to achieve an improved optimization per-
formance mainly by a modification of the pheromone update techniques. Another
intuitive way to improve the performance is to parallelize the execution of the
ACO algorithm. For a survey of parallel implementations of ACO and various
decomposition techniques the reader is referred to [Randall and Lewis, 2002].

A very fine-grained version of parallelization with only one single ant per pro-
cessor is investigated by [Bolondi and Bondaza, 1993]. Due to a very high rate of
communication, scaling the algorithm to a high number of processors deteriorates
the optimization performance. Better results can be obtained by a coarse-grained
variant implemented on a transputer cluster [Bolondi and Bondaza, 1993, Dorigo,
1993]. Both variants can be considered as direct parallelizations, which do not
adapt the underlying ACO algorithm with respect to the parallel architecture.

In [Bullnheimer et al., 1998] several ant colonies are distributed over the pro-
cessors of a parallel machine. These colonies exchange information after a pre-
defined fixed number of iterations. In simulations, the authors only examine the
reduction of runtime. However, it is not investigated how much impact this new
kind of parallel ACO algorithm has on optimization performance.

In [Stützle, 1998b] it is examined, in which cases the execution of multiple
short runs of an ACO algorithm (optionally started with different parameter set-
tings) performs better than the execution of a long run of the algorithm requiring
the same time as the short runs altogether. This work does not make use of
some interesting features a parallelization can offer, like an early termination of
unpromising algorithm runs.

The parallel ACO algorithm presented by [Talbi et al., 1999] is based on a
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master-worker model. Every worker processor is assigned exactly one ant con-
structing one solution, which is then submitted to the master processor. The
master collects all received solutions to calculate a new pheromone matrix, which
in turn is sent to all workers. The algorithm is applied to the QAP, but the
optimization performance is not compared with other parallel approaches. In
[Rahoual et al., 2002], the same master-worker model is applied to the Set Cov-
ering Problem (SCP) [Balas, 1983], and the computation time is compared to a
multi-start variant of multiple parallel ACO algorithms, which do not exchange
any information.

In [Iredi et al., 2001] as well as in [Merkle and Middendorf, 2001a] a coarse-
grained parallel variant of ACO implemented on a workstation cluster is pre-
sented. Multiple ant colonies work in parallel to find good solution to the bi-
criterion single machine total tardiness problem (SMTTP) with changeover costs.
In continued studies [Middendorf et al., 2002], different strategies of cooperation
between ant colonies with a variable frequency and quantity of exchange of locally
good solutions are compared. It turns out that an infrequent exchange of small
quantities of information positively affects optimization performance. Whereas
most parallelizations of ACO are based on multiple processors cooperating by
message passing, [Delisle et al., 2005] present an implementation with ants com-
municating via a shared memory.

Another fine-grained parallel ACO approach that is suitable for the Recon-
figurable Mesh (RMesh) is proposed in [Merkle and Middendorf, 2001b, 2002a].
The RMesh is a standard model of a reconfigurable processor array, in which the
processors are connected by a dynamically reconfigurable bus system. Refer to
Section 3.3.2 for a detailed explanation of the RMesh model. The authors propose
to map the pheromone matrix onto the array of reconfigurable processors. Solu-
tions are generated by systolically piping the ants top-down through the mesh.
Asymptotically, this variant leads to a significant asymptotic speedup with re-
spect to the software implementation of standard ACO. An extended description
of this approach is presented Section 4.2. Based upon this RMesh implementation
of ACO, [Janson et al., 2002, 2003] describes a strategy to enforce the convergence
of the algorithm by repeatedly deleting those rows and columns from the phe-
romone matrix, which are associated with pheromone values exceeding a certain
threshold value.

Whereas the RMesh is an abstract computational model, an implementation
of ACO on commercially available Field-Programmable Gate Arrays (FPGAs)
is presented by the author of this thesis, cf. [Diessel et al., 2002, Scheuermann
et al., 2003, 2004a,b, Scheuermann and Middendorf, 2005, Scheuermann et al.,
2005]. An FPGA consists of an array of configurable logic blocks, which are
linked by programmable interconnect. Users of FPGAs can configure and re-
configure the chip for various applications. The authors show that – with several
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restrictions and modifications – ACO can be implemented on FPGAs, leading
to a significant speedup in runtime compared to implementations in software
on sequential machines. A detailed description of these approaches is given in
Chapter 4. For deeper insights into FPGA technology refer to Section 3.2.2.

2.6 Analytical Results

Most publications in the field of ACO algorithms describe new algorithmic vari-
ants or applications. However, so far only a few works exist, which analyze
ACO algorithms from the theoretical point of view. Possible reasons for the
lack of theoretical examinations are that, in contrast to other meta-heuristics
like Evolutionary Algorithms, the ACO field of research is rather young, and the
interdependencies between individual ant decisions render a mathematical de-
scription very difficult. All previously presented proofs imply simplified versions
of ACO, and do not give direct guidelines for real-world usage, nevertheless they
are interesting due to the ascertainment of general properties of the algorithms
considered. These algorithms include, for instance, the Graph-based Ant System
(GBAS) [Gutjahr, 1998, 2000, 2002, 2003b], ACO for stochastic combinatorial op-
timization [Gutjahr, 2003a], and the MAX-MIN Ant System [Stützle and Dorigo,
2002], where a proof of convergence is given. As opposed to AS, these variants
of ACO are based on the assumption that only such ants are allowed to update
pheromones, which found a new solution that is at least as good as the so far
best found solution. Given a problem instance with a single global optimum, it
is shown that both algorithms can find the optimum with a probability, which is
either equal 1 or can be made arbitrarily close to 1.

Other heuristics like the Cross-Entropy-Method [Rubinstein, 1999] or the Hyper-
cube Framework for ACO [Blum et al., 2001] are proposed, which show a close
relation to ACO algorithms and also allow to give a theoretical proof of conver-
gence. A deterministic model for the analysis of ACO is presented in [Merkle
and Middendorf, 2001d, 2002c,b, Merkle, 2002]. Assuming an average expected
behavior of the algorithm, the authors analytically demonstrate how the prop-
erties of the pheromone matrix influence ant decisions. The results explain the
complex dynamic behavior of ACO even in the case of just one ant per iteration,
i.e. without competition.



Chapter 3

Reconfigurable Computing

Optimization algorithms, such as the previously introduced ant algorithms, tradi-
tionally are of significant interest to computer scientists, whereas the development
and production of hardware circuits and devices has for a long time been the re-
sponsibility of electrical engineers. Reconfigurable computing as a new albeit
rapidly establishing paradigm integrates both disciplines and demands a great
deal of research in the field of reconfigurable technology as well as tools sup-
porting the efficient design and execution of applications based on reconfigurable
systems.

This chapter introduces reconfigurable computing, describing its characteris-
tics and differentiating it from other conventional computing techniques. There-
after, a classification of various reconfigurable architectures and an overview of
abstract models is given. The main emphasis is thereby put on the architectural
domain, especially on Field-Programmable Gate Arrays (FPGAs), which have
provided the basis for the most part of recent advances in reconfigurable com-
puting. This is followed by a discussion of the models, benefits, and problems
involved with reconfiguring hardware at runtime. Finally, an overview of various
important applications of reconfigurable computing systems, a summary of main
trends as well as an outlook on emerging directions are provided.

3.1 Introduction

The term reconfigurable computing refers to operations performed on programm-
able hardware, which is customized via a number of physical control points dis-
tributed over the target device. If the hardware permits, these control points can
be reconfigured, i.e. programmed multiple times to adapt the functionality of the
device to changing applications. Some devices even allow the settings of a subset
of the available control points to be changed during the runtime of the imple-
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mented circuit, such that parts of a running application can be altered while the
rest continues to operate. This way of changing the structure and functionality
of an application is known as partial reconfiguration.

The concept of reconfigurable computing in a wider sense has been known for
a considerably long time [Estrin et al., 1963]. Even in current general-purpose
processors some sort of reconfiguration is applied in as far as several computa-
tional components can be reused for independent computations with multiplex-
ers controlling the routing to these components. Reconfigurable computing in
the stronger sense, however, as agreed by current researchers, refers to such sys-
tems incorporating a certain degree of hardware programmability as explained
above. Essentially driven by the introduction of FPGA technology in the mid-
1980s, reconfigurable computing has attracted a great deal of research. However,
reconfigurable computing is still a maturing field.

Being different from the von-Neumann computing paradigm, reconfigurable
computing requires new computational models, which vary substantially from
the conventional models (mainly relying on a processor fetching and executing
instructions from a sequence). Also tools are needed, which continuously support
the design of applications based on reconfigurable systems. This lack of models
and tools is known as the 2nd design crisis in Makimoto’s wave describing and
predicting a cyclic development within the semiconductor market [Makimoto,
2000].

A variety of devices is currently available for developing and implementing dig-
ital systems. Usually, a designer can choose from a wealth of software-oriented de-
vices like general-purpose-processors, micro-controllers, digital signal processors,
or Application-Specific Instruction Set Processors (ASIPs). On the other hand,
hardware devices – so-called Application-Specific Integrated Circuits (ASICs) –
are available, which are designed for predefined processing tasks. Reconfigurable
computing systems can be considered to be located at the intersection between
software and hardware-oriented systems.

General-purpose processors offer the highest degree of flexibility. By changing
certain instructions in a program running on a processor the software can easily be
altered with no need to redesign the hardware. However, for many applications,
single processors – even very expensive high-performance chips – are often too
slow: Every instruction must be read from memory, be decoded and then executed
thereby causing a high execution overhead. With a power consumption often in
the range around 100W and costs of possibly thousands of dollars per device,
such processors are economically not justifiable for many embedded applications,
where small form factors and low power consumption are important issues.

ASICs are constructed to solve specific problems. Their ability to use paral-
lelism and pipelining can increase processing performance significantly, but their
lack of flexibility is their major disadvantage. Due to their cost structure – mainly
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influenced by the mask production cost (ranging up to $1 million [Saxe and Faith,
2004]) – ASICs are suited for mass production but they are inappropriate for
prototyping and development. Their long developing and manufacturing times
extend the duration of early phases in the product life cycle and may therefore
not meet time-to-market requirements.

By providing a programmable selection of alternate logic and routing struc-
tures, reconfigurable computing systems allow circuits to be designed and im-
plemented very rapidly, thereby avoiding the up-front cost of designing custom
circuits and providing a quick means of correcting design errors. After config-
uring the circuit onto the hardware, it is switched into operational mode, upon
which the inherent parallelism and pipelined design style can offer considerable
speedup over instruction stream processors. Reconfigurable computing systems
like FPGAs facilitate system development, they also allow for easy and quick
design changes and verification. Not only are they suitable for rapid prototyping,
they can also substitute for standard logic and gate array solutions in small and
medium volume productions. However, their high level of flexibility demands
additional switches and routing, which in turn increase circuit delays and chip
area relative to custom fabricated circuits. Since their introduction FPGAs have
run through a rapid progress in execution speed, memory technology, capacity
and versatility. If this process continues together with the reduction in price the
attractiveness of reconfigurable computing will be further increased.

3.2 Architectures

This section describes the characteristics of reconfigurable computing architec-
tures from a system level as well as from a component level point of view. Since
in most reconfigurable computing systems one or more FPGAs create the recon-
figurable part, field programmable technology is explained in greater detail.

3.2.1 Classification

A wealth of reconfigurable architectures has been developed by industry and the
research community. These architectures can be classified using several parame-
ters. A choice of appropriate distinguishing parameters is listed below [Bondala-
pati and Prasanna, 2002, Compton and Hauck, 2002]:

Host coupling: Commonly, reconfigurable computing systems are more or less
tightly coupled to a host processor, which is amongst other tasks responsible
for configuring the reconfigurable fabric, scheduling input and output data,
executing control functions, or interfacing external devices. Depending on
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the respective applications, the bandwidth and speed of the communication
channel between CPU and reconfigurable fabric has a strong impact on
the achievable execution speed. Section 3.2.3 differentiates reconfigurable
systems by their degree of coupling to a host processor.

Granularity: The granularity of reconfigurable architectures is determined by
the smallest structure that can be addressed by mapping tools. Granularity
refers to the size of logic elements as well as connective structures. Fine-
grained architectures allow for a high degree of flexibility, and the circuits
can be suitably tailored according to the specification demands. However,
when composing large designs, the fine-grained structures may possibly
cause a considerable overhead slowing down computational speed. There-
fore, some fine-grained architectures are enhanced with special-purpose logic
and routing like fast carry chains, which allow large arithmetic circuits to
be composed from very small functional units. Coarse-grained architectures
provide components specialized in word-width computations such that cer-
tain applications can be executed very quickly, but as their components are
static, they are unable to properly adapt to optimizations in the size of
operands. Other medium-grained architectures offer a compromise between
these two extremes. More and more architectures come up with compo-
nents of mixed granularity, they combine very fine-grained bit-level logic
with embedded special-purpose word-width blocks. Examples of config-
urable architectures with different granularity are given in Section 3.2.4.

Reconfiguration method: The speed of configuring and reconfiguring a device
or parts of a circuit depends on the configuration interface. Some devices
support bit-parallel, others allow for bit-serial configuration. The attain-
able configuration speed (often in the magnitude of many milliseconds) is
crucial and influences the applicability of circuit reconfigurations. Depend-
ing on the application and capabilities of the device, reconfigurations can
be performed at different stages. Reconfiguration can take place prior to
compiling the circuit (compile time reconfiguration), or the configuration
stream is adapted on-the-fly when uploading the configuration data (load
time reconfiguration), or during the application runtime (runtime reconfig-
uration). Runtime reconfiguration is one of the most promising features
of reconfigurable computing systems as it can potentially help saving chip
area, energy, and execution time. Reconfiguration at runtime is further
discussed in Section 3.4.

Memory: Reconfigurable architectures provide different types of memory to
store computation and configuration data. Off-chip memory offers high
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capacity storage at low cost, however, communication delays can be pro-
hibitively long. On-chip memory is commonly smaller and more expensive,
but is also more flexible and can be accessed very quickly. It is therefore
important to store frequently needed data in close proximity to the compu-
tation blocks. Modern architectures provide on-chip storage by configuring
logic resources as distributed memory or in the form of large embedded
RAM blocks.

3.2.2 Field Programmable Gate Arrays

FPGAs are the most common micro-chips commercially available providing the
reconfigurable fabric of a reconfigurable computing system. Originally, FPGAs
were produced as a hybrid architecture located between Programmable Array
Logic (PAL) and Mask Programmable Gate Arrays (MPGAs), and were primarily
used as a glue-logic replacement or for rapid-prototyping purposes. However, as
the capacity, flexibility, and performance of the devices grew, FPGAs come to
be considered as an interesting platform for high-performance and reconfigurable
computing.
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Figure 3.1: Simplified schematic of an FPGA, top-left corner.

Figure 3.1 depicts a simplified representation of an FPGA comprising the
three major configurable elements commonly present:

• Configurable logic blocks (CLBs) provide the basic functional components
for implementing logic and registers.

• Input/output blocks (IOBs) interface the routing network and the package
pins.
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• The routing network consists of horizontal and vertical multi-track channels
and configurable switches that allow logic blocks to be interconnected to
form complex computational structures.

Usually, CLBs consist of two or three look-up tables (LUTs) and two flip-flops.
Any LUT can be configured to either compute an arbitrary boolean function with
a restricted number of input signals, or they can be used as a small RAM providing
storage for up to 16 bits. Horizontal and vertical communication resources provide
configurable connections among CLBs or between CLBs and IOBs. Global buses
of different length connect components across longer distances, whereas local
wires allow for a fast communication between direct neighbors. User-defined
linkages between bus lines can be established either within routing matrices or at
specific programmable interconnect points (omitted in Figure 3.1).

3.2.3 Host Coupling

Typically, a reconfigurable computing system comprises components like pro-
cessors, reconfigurable fabrics, memory/caches, interfaces, and a communication
network as visualized in Figure 3.2. Depending on their degree of host coupling,
reconfigurable computing systems can be divided into five different classes. In
an ascending order of coupling degree these are the stand-alone processing unit,
the attached processing unit, the co-processor, the reconfigurable functional unit
(RFU), and the embedded processing unit [Compton and Hauck, 2002, Todman
et al., 2005].
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Figure 3.2: Different types of host coupling of reconfigurable logic on system
level. Reconfigurable components are shown as shaded boxes. Complemented
and updated based on [Compton and Hauck, 2002].
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Stand-alone Processing Unit: Commonly, a stand-alone processing unit con-
sists of one or more reconfigurable fabrics accommodated on an external
board communicating with the host processor (if present) via an I/O in-
terface. As the data transfer is relatively slow, this most loosely coupled
type of system configuration only makes sense if the application on the re-
configurable fabric can be executed with only little processor intervention.
However, stand-alone processing units are very popular, especially for emu-
lation purposes, e.g., Cadence Palladium II [Cadence Design Systems Inc.,
2005] or Mentor Graphics VStation Pro [Graphics, 2003].

Attached Processing Unit: Circumventing peripheral I/O interfaces an at-
tached processing unit behaves like an additional processor in a multi-
processor system or like an additional compute engine. Typically attached
to internal high speed communication buses, however, without access to the
host processor memory cache, this kind of reconfigurable computing system
is well-suited for CPU-independent computations with only semi-frequent
communications [Vuillemin et al., 1996, Annapolis Microsystems Inc., 1998,
Laufer et al., 1999, Singh et al., 2000, Goldstein et al., 2000, Leong et al.,
2001, Schmit et al., 2002].

Co-Processor: Reconfigurable components can also act as a co-processor, which
at start-up is initialized by the host processor and can perform then more or
less independent operations. Generally, the host CPU sends the processing
input data directly to the co-processor or provides the addresses of the
memory locations holding the required information. In contrast to the
attached processing unit, the co-processor can also make use of the CPU
memory caches [Wittig and Chow, 1996, Hauser and Wawrzynek, 1997,
Miyamori and Olukotun, 1998, Rupp et al., 1998, Chameleon Systems Inc.,
2000].

Reconfigurable Functional Unit: As an embedded component on the proces-
sor chip itself, the reconfigurable functional unit (RFU) represents the tight-
est possible coupling with the host. Sharing common registers to exchange
input and output parameters, the RFU executes custom instructions and
allows to use traditional programming environments [Razdan and Smith,
1994, Mirsky and DeHon, 1996, Hauck et al., 1997, Marshall et al., 1999,
Taylor et al., 2002].

Embedded Processing Unit: A further emerging variant of tightest host cou-
pling are CPU blocks embedded into the reconfigurable fabric. These blocks
can be either hardware cores (i.e. physical CPU blocks) [Altera Corp., 2002,
Xilinx Inc., 2005b], or software cores (i.e. synthesizable circuit descriptions)
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[Seng et al., 2000, Fidjeland et al., 2002, Leong and Leung, 2002, Seng et al.,
2002, Altera Corp., 2005, Xilinx Inc., 2005a, Dimond et al., 2005]. Given
that such platforms have in-built CPUs, they can work completely stand-
alone, however, it may also be possible to couple them in different ways to
a workstation processor.

3.2.4 Granularity

In most cases reconfigurable hardware consists of an array of reconfigurable logic
blocks linked by a network of programmable interconnect. The granularity of
these structures may vary from very small components executing bit-wise oper-
ations up to large components like arithmetic logic units (ALUs) or multipliers.
The following survey gives a brief summary of the characteristics and some exam-
ples of architectures with different degrees of granularity [Compton and Hauck,
2002, Todman et al., 2005].

Fine-grained: The most common example of fine-grained logic in reconfigurable
logic are the lookup tables (LUTs) inside configurable logic blocks of FPGAs,
e.g., [Xilinx Inc., 2002, Actel Corp., 2004]. Typically, LUTs operate on
inputs of three to four bits and can also be combined to compute more
complex functions. Extremely fine-grained logic blocks could be found in
the FPGAs series Xilinx XC6200 [Xilinx Inc., 1996]. However, the pro-
duction and sale of this FPGA family has been discontinued to the regret
of many researchers, who favored the chip for its accessibility and directly
addressable configuration registers. Fine-grained architectures are flexible
and well-suited to perform bit manipulations, but produce much overhead
when implementing more complex functions like multiplications or expo-
nentiations. Also computations on complex data types, e.g., floating-point
numbers consume an enormous amount of chip area. Although there ex-
ist floating-point encodings adapted to fine-grained architectures [Shirazi
et al., 1995b], and FPGAs can very well compete with CPUs in terms of
floating-point execution speed [Underwood, 2004], due to space require-
ments, applications should avoid a large number of parallel floating-point
circuits or seek for an alternative approximation by integer numbers, or
move such operations into specialized logic if available.

Medium-grained: Architectures with medium-grained technology are built of
components with a larger number of input bits and may efficiently support
more complex functions at the cost of reduced flexibility. Such architecture
may be composed of configurable ALUs or multiplier blocks [Hauser and
Wawrzynek, 1997, Haynes and Cheung, 1998, Marshall et al., 1999, Altera
Corp., 2004].
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Coarse-grained: Devices based on coarse-grained logic block are primarily de-
voted to special computations on word-width data and can perform these
operations much quicker consuming less chip area than finer-grained archi-
tectures. However, computations on smaller than the intended bit-width
lead to a waste of computing resources, and the variety of efficiently pro-
grammable functions is much more restricted. Architectures of this types
may be composed of word-sized adders, multipliers, shifters, and ALUs
[Ebeling et al., 1996, Mirsky and DeHon, 1996, Laufer et al., 1999, Gold-
stein et al., 2000, Chameleon Systems Inc., 2000, Singh et al., 2000, Becker
and Glesner, 2001, Schmit et al., 2002, Elixent Corp., 2003, Mei et al., 2003,
Veredas et al., 2005], or they consist of an array of small processors [Moritz
et al., 1998, Miyamori and Olukotun, 1998].

Mixed-grained: One way to circumvent the disadvantages inherent to homoge-
neously grained architectures is to combine components of different granu-
larity into a heterogeneous structure. Most often an array of fine-grained
logic is enhanced by embedded blocks for special purposes like memory
blocks [Haynes and Cheung, 1998, Chameleon Systems Inc., 2000, Xilinx
Inc., 2002, Atmel Corp., 2004, Xilinx Inc., 2005e,f,d], multipliers [Xilinx
Inc., 2005e,f,d], digital signal processing blocks [Altera Corp., 2004, Xilinx
Inc., 2005d], or CPUs [Altera Corp., 2002, Xilinx Inc., 2005f,d]

3.3 Abstract Models

Reconfigurable computing is not restricted to the advances of semiconductor tech-
nology. A range of models exists satisfying the special needs for examining the
capabilities of reconfigurable computations. The following survey does not seek
to cover every related model. It rather presents a selection of some interesting
and important contributions in this research sector. Due to its relevance for the
implementation of ACO algorithms, the RMesh model is described in greater
detail.

3.3.1 Overview

Several approaches are closely FPGA-oriented providing an abstract, virtual view
on the logic and routing resources with the aim to achieve a device-independent
and portable way of programming or to enhance the restricted capabilities of the
physical hardware.

A virtual FPGA, very similar to the concept of virtual machines, is proposed
by [Lagadec et al., 2001]. The virtual FPGA is considered to be a simplified
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variant of a physical FPGA. The model consists of a regular pattern of virtual
configurable logic blocks arranged in a so-called virtual layer. Applications are
mapped, placed and routed onto this device-independent layer. The resulting
portable code can then be transformed to be implemented on the target platform
(physical layer) using vendor-specific tools.

Another variant of a virtual FPGA is presented by [Fornaciari and Piuri,
1998]. As opposed to the previously described model, the goal is not to provide a
device-independent programming interface, but to extend the capabilities of the
physical hardware. It is intended to realize very large applications with no need
for a large FPGA or multiple connected FPGAs. Furthermore, a multitasking
and time-shared operating system should allow multiple applications to run in
parallel. These applications have only a virtual view of the FPGA, the operat-
ing system is responsible for mapping the applications onto the physical device
in a way similar to virtual memory. A further model to virtually enhance the
hardware capabilities is proposed by [Babb et al., 1997]. The authors suggest
to overcome the communication bottleneck on I/O pins of FPGAs by a concept
called Virtual Wires. The idea is to multiplex each physical wire among multi-
ple logical wires. Communication via these connections is then pipelined at the
maximum attainable clocking frequency.

In [Bolotski et al., 1994] a computational model is presented, which unifies
SIMD (Single Instruction Multiple Data) arrays and FPGAs. The model is com-
posed of a grid of array elements with interconnection resources linking these
elements together. Within a single clock cycle, every array element can perform
a simple function depending on several states and input data coming from the
array, and can update its own state to store its own processing results or share
these results with other array elements.

This model has some similarities with the Reconfigurable Mesh (RMesh) [Miller
et al., 1993, Jang et al., 1994], which also consists of a grid of processing elements
with local communication buses (see Section 3.3.2). The RMesh can further cre-
ate global communication buses, which can be changed dynamically. In contrast
to the preceding models, the abstract RMesh model is stronger decoupled from
physical hardware (e.g. FPGAs). It is the reconfigurable bus system that makes
the RMesh a powerful computational model, but there exist also other concepts
for reconfigurable bus networks, e.g., the Reconfigurable Multiple Bus (RMB)
[ElGindy et al., 1996] or the Segmentable Bus [Trahan et al., 1996].

The Hybrid System Architecture Model (HySAM) [Bondalapati, 2001] consists
of a von-Neumann style processor, a configurable logic unit (CLU), memory, and
a configuration cache linked together via an arbitrary communication network.
Computations on this model comprise a declarative aspect and a generative as-
pect. The declarative aspect refers to the specification of the parameterized
hybrid architecture model and creates the basis for algorithmic analysis. The
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generative aspect describes how the declarative aspect can evolve by the use of
generative functions, which execute rule based transformations of model param-
eters.

3.3.2 Reconfigurable Mesh

The Reconfigurable Mesh represents an abstract model of a runtime reconfig-
urable architecture [Miller et al., 1993, Jang et al., 1994]. A brief overview of re-
search and applications on the RMesh is provided by [Bondalapati and Prasanna,
1997]. The RMesh is distinguished by its reconfigurable bus systems connecting
an n× n grid of processing elements (PEs).

N

S

EW

Figure 3.3: RMesh PE (left) and its 15 possible configurations (right).

Each PE contains four I/O ports labelled north (N), east (E), south (S), and
west (W) as visualized in Figure 3.3. Via these ports every PE can communi-
cate with its immediate neighbors. Furthermore, the ports of every PE can be
connected internally by switched lines according to one of 15 possible configura-
tions. The PEs are allowed to configure the internal connections autonomously
based on local state information. By means of these internally wired ports the
RMesh can create a runtime reconfigurable communication bus thereby forming
a dynamic topology amongst the PEs (see Figure 3.4 for example of an RMesh
with a configured bus topology).

The PEs are supposed to operate synchronously. Within every machine cycle,
each PE is allowed to locally configure the bus, to read/write from/to one of the
buses it is connected to, and to perform an arithmetic, logic or control operation.
There exist different assumptions on the further capabilities and restrictions of the
RMesh resources. With respect to the bus arbitration, the PE may communicate
as per a concurrent read exclusive write policy (CREW), i.e. all connected PEs
may simultaneously read from the bus, but it must be ensured that at most
one at a time writes to the bus. Following the CRCW policy, the PEs can
under certain conditions also perform a concurrent write operation, e.g., the write
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conflict can be resolved by forming the bitwise OR over the written output. Also
different delay models may apply, e.g., the unit time delay model assumes that
all broadcasts along a bus require Θ(1) time irrespective of the actual bus length,
whereas in the log-time delay model, a broadcast takes Θ(log s) with s denoting
the maximum number of intermediate switches between two PEs communicating
via the bus.

Figure 3.4: Example of a 4× 4 RMesh with configured bus.

The RMesh, a powerful computation model, has attracted a great deal of re-
search. However, so far there exists no realization of this model in real hardware,
although it is possible to develop RMesh programs targeting simulation and vi-
sualization tools proposed by [Steckel et al., 1998, Bordim et al., 1999, Miyashita
and Hashimoto, 2000].

3.4 Runtime Reconfiguration (RTR)

Reconfiguring hardware at runtime means that the programming bits of the con-
figured circuit are changed while the implemented application is being executed.
Runtime reconfiguration can be beneficial if the application is (or multiple par-
allel applications are) too large to fit entirely onto the available resources. This
means that during the runtime, repeatedly different configurations are swapped in
and out of the reconfigurable device as they are required by the application. Fur-
thermore, runtime reconfiguration allows for new algorithmic techniques, which
accelerate the application by transferring certain operations into the structure of
reconfigurable logic and routing resources.

The following sections introduce various models of runtime reconfiguration
and discuss the techniques, the challenges, and the problems involved with re-
configuration at runtime. The major problem identified is the slow configuration
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speed. Therefore, several strategies are introduced to cope with this configuration
latency.

3.4.1 Reconfiguration Models

Loading configuration data or reconfiguring part of a circuit requires consider-
ably long time. To efficiently exploit the advantages of dynamic reconfiguration,
it is therefore necessary that configuration changes occur not too often or can
be hidden behind computation. The methods of reconfiguration can be classified
into four different reconfiguration models: single context, multi-context, partial,
and pipeline reconfiguration. The following overview briefly describes the char-
acteristics of these models and gives examples of related systems:

Single context reconfiguration: Commonly, FPGAs are configured by up-
loading a serial stream of programming bits. Such devices solely supporting
single context reconfigurations do not allow to individually access the con-
figuration registers. Any configuration change affords an entire reprogram-
ming of the complete chip. Single context devices get by with relatively
primitive reconfiguration logic, however, complete context swaps incur a
high overhead if only small portions of the configuration memory actually
need to be changed. Single context devices currently available include, e.g.,
Altera Flex10K [Altera Corp., 2003] or Xilinx Spartan II [Xilinx Inc., 2004].

Multi-context reconfiguration: In Multi-context FPGAs, the configuration
points possess multiple configuration bits. At any time, one of these bits
is considered as active, i.e. is loaded into the configuration point. Multi-
context devices can quickly switch between several configuration bits each
belonging to a different context. Depending on the specific device, it is
possible to load configuration data into inactive contexts in the background
while the active context is being executed. However, as in the case of
single context devices, changing only a portion of configuration bits also
requires reloading an entire context. While the loading time for a new
context is also in the range of milliseconds, the switching between different
loaded configurations can be accomplished within nanoseconds. Examples
of multi-context systems are presented in [Trimberger et al., 1997, Scalera
and Vazquez, 1998, Chameleon Systems Inc., 2000, Puttegowda et al., 2003].

Partial reconfiguration: Using partial reconfiguration only a portion of the
configuration bits on the chip are altered. It comes in very handy that
unaltered portions of the circuit can continue operating allowing an overlap
between computation and reconfiguration. It is not necessary to reprogram
the complete device. As opposed to single and multi-context devices, partial
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reconfiguration requires the configuration registers to be addressable similar
to memory. This means that programming a partially reconfigurable device
is potentially subject to longer configuration delays as not only configuration
data, but also addresses have to be loaded. The Xilinx XC6200 FPGA
[Xilinx Inc., 1996] for instance allowed a very convenient way of partial
reconfiguration, since all configuration bits could be addressed separately.
Xilinx has substituted this series with the Virtex family of FPGAs [Xilinx
Inc., 2002, 2005e,f,d], which only allow for reconfigurations of complete
columns. Other partially reconfigurable systems include, e.g., Chimaera
[Hauck et al., 1997], PipeRench [Goldstein et al., 2000], or PACT XPP
[Baumgarten et al., 2003].

Pipeline reconfiguration: Pipeline reconfigurable systems apply the concept
of pipelining to processing data as well as to configuration data. Such sys-
tems (also called striped FPGAs) contain circuits executing on pipelined
processing data while other portions undergo partial reconfiguration. As
soon as reconfiguration is complete, the configured circuitry starts operating
while another portion is being terminated and then reconfigured. Therefore,
computation can overlap with reconfiguration in a pipelined fashion. Ex-
amples for pipeline reconfiguration are given in [Luk et al., 1997c, Goldstein
et al., 2000, Dasasathyan et al., 2002]

3.4.2 Partial Evaluation

A circuit mapped onto a device should occupy as little area as possible. Further-
more, the processing time for the circuit is to be minimized. Partial evaluation
is a method to reduce the hardware requirements by performing optimizations
based on static constants or infrequently changing values [Compton and Hauck,
2002]. This optimization can be applied at compile time and at runtime (by
means of runtime reconfiguration). At compile time, the idea is to propagate
constant values through the gates and to only map those portions of the circuit
into hardware, which depend on time-variant input data. The resulting circuit is
likely to be smaller and faster than a design that assumes all input values to be
variable.

Partial evaluation at runtime can consider input values, which are supposed to
change only very infrequently. Such input values are compiled similar to constant
values, however, when at a time the respective input is changed, the affected por-
tion of circuitry is partially reconfigured so as to continue operating on a different
constant. This method gives partial evaluation an advantage over ASIC devices,
which always have to provide logic for generalized input values. Examples for
applications using partial evaluation at runtime are constant coefficient multi-
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pliers or key-specific reconfigurable encryptors/decryptors. Constant coefficient
multipliers can substitute general-purpose multipliers for a sequence of additions
on the variable input, which is repeatedly shifted by static lengths. Changes to
the constant coefficient invoke an alteration of the multiplier by partial reconfig-
uration [Payne, 1997, Wirthlin and McMurtrey, 2001]. Key-specific encryption
and decryption are optimized for a specific constant key, but can be adapted
to different keys using runtime reconfiguration [Leonard and Mangione-Smith,
1997].

3.4.3 Accelerating Configuration Speed

As mentioned above, the re-/configuration of currently available reconfigurable
architectures takes relatively long time in the range of many milliseconds. There-
fore reconfiguration causes an overhead, which may under some circumstances
abolish the gain of execution speed. Hence, the acceleration of configuration times
is a crucial aspect in the area of reconfigurable computing, and various strategies
have been developed to reduce the incurred overhead: prefetching, compression,
and caching of configurations as well as rearrangement and defragmentation:

Prefetching: Considering a cooperative system consisting of a host CPU and
reconfigurable device, it should be prevented that the CPU execution is
stalled to wait for the configuration to complete. Configuration prefetching
[Hauck, 1998, Resano et al., 2005] therefore tries to maximize the overlap
of reconfigurations and useful computations on the host processor. It pre-
determines the time when to initiate reconfigurations and minimizes the
chance of false prefetchings, which would overwrite configurations actually
executed next.

Compression: Another way to speed-up the reconfiguration is to reduce the
amount of data transferred in the configuration bit-stream by compres-
sion techniques as discussed, e.g., in [Hauck and Wilson, 1998, Dandalis
and Prasanna, 2001]. Compression algorithms are actually applied to pur-
chasable FPGAs like Altera Stratix II [Altera Corp., 2004], but also the
wildcarding techniques [Hauck et al., 1998, James-Roxby and Cerro-Prada,
1999, Li and Hauck, 1999] for the obsolete Xilinx XC6200 series [Xilinx
Inc., 1996] have been largely investigated. A further possibility to reduce
the amount of data sent is to reuse configuration bits already stored within
the array and to only toggle those bits which really need to be changed.
This kind of incremental reconfiguration is proposed in [Luk et al., 1997b,
Shirazi et al., 1998] and is used by, e.g., Xilinx Spartan 3 FPGAs [Xil-
inx Inc., 2005c]. Hyper-reconfiguration as another concept to reduce the
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amount of reconfiguration information is introduced by [Lange and Mid-
dendorf, 2004]. The main idea is that typically applications running on a
device do not use dynamic reconfiguration all the time. The authors there-
fore regard the potential of reconfiguration itself as reconfigurable. By this
means reconfiguration operations are accelerated whenever only a fraction
of the total flexibility is actually needed.

Caching: A great proportion of configuration delay is caused by the distance and
small bandwidth between reconfigurable device and host processor or due to
high access time when reading from files or memory. Storing and buffering
configuration data in a fast cache directly attached to the reconfigurable
unit can therefore help reducing reconfiguration delays [Deshpande et al.,
1999, Compton et al., 2000].

Rearrangement and defragmentation: Partially reconfigurable FPGAs can
be shared among multiple independent applications (tasks). An attached
host processor controlling the execution of tasks on the FPGA can decide
online where and when to place new tasks. Since online allocation suffers
from fragmentation of the chip area, tasks can end up waiting despite there
being sufficient, albeit non-contiguous resources available to service them.
Rearranging a subset of the tasks executing on the FPGA often allows the
next pending task to be processed sooner such that configuration latency
is also reduced. Evolutionary Algorithms and several other heuristics for
the rearrangement of tasks and defragmentation of the FPGA area are
presented, for instance, by the author of this thesis in [Scheuermann, 1999,
Diessel et al., 2000, ElGindy et al., 2000, 2002].

3.5 Applications

The following list gives a survey of applications of reconfigurable architectures
and models.

Audio processing
Digital-to-analog-Converter [Cheung et al., 2003b, Ludewig et al., 2004]
Speech recognition [Brucke et al., 1999, Melnikoff et al., 2000, 2001, 2002]

[Stogiannos et al., 2000]
Synthesizer [Raczinski and Sladek, 2000, Saito et al., 2001, Sheidaei et al., 2001]

Video processing
Encoding [Schoner et al., 1995, Sanz et al., 1996, Lienhart et al., 2001]

[Ramachandran and Srinivasan, 2001, Roma et al., 2003]
[Denolf et al., 2005, Janiaut et al., 2005, Lehtoranta et al., 2005]

Decoding [Verderber et al., 2003, Gorgon et al., 2005]
Convolution [Ratha et al., 1995, Haynes et al., 1999, Sedcole et al., 2003]
3D-Vision [Dunn and Corke, 1997, Bellis and Marnane, 2000]

[Arias-Estrada and Xicotencatl, 2001]
[Miyajima and Maruyama, 2003]
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Image processing
Line/shape detection [Abbott et al., 1994, Pan, 2000, Guo et al., 2004]

[Nagata and Maruyama, 2004]
Image recognition [Villasenor et al., 1996, Rencher and Hutchings, 1997]

[Zakerolhosseini et al., 1998, McCready, 2000]
[Williams et al., 2002, Paschalakis and Bober, 2003]
[Yamada et al., 2003, Maruo et al., 2004]

Filter [Datta, 1999, Voß and Mertsching, 2001, Coric et al., 2002]
[Srivastava et al., 2003, Fahmya et al., 2005]

Rendering/ray tracing [MacVicar et al., 1999, Ye and Lewis, 1999, Fender and Rose, 2003]
Compression [Fagin and Chintrakulchai, 1994, Nagano et al., 1999]

[Ritter and Molitor, 2001, Simpson et al., 2001]
[Boluda and Pardo, 2003, Gangadhar and Bhatia, 2003]

Other digital signal processing (DSP)
Fourier transform [Panneerselvam et al., 1995, Shirazi et al., 1995a, Dick, 1996]

[Choi et al., 2003, Ebeling et al., 2003, Uzun et al., 2003]
Modulation [Rowley and Lyden, 1996, Ramı́rez et al., 2000, Pan et al., 2001]

[Jamin and Mähönen, 2002]
Demodulation [Meyer-Bäse, 1996, Jong et al., 1997, Cardells-Tormo et al., 2002]

[Dick and Harris, 2002]
Filter [Dick and Harris, 1996, Do et al., 1998, Haynes et al., 1999]

[Ting et al., 2001, Carreira et al., 2002, Turner et al., 2002]
[Yeung and Chan, 2002, Benkrid et al., 2003]

Communication
Routing [Haddy and Skellern, 1996, Lockwood et al., 2000, 2001]

[Braun et al., 2001, Majer et al., 2005, Schelle and Grunwald, 2005]
[Wolkotte et al., 2005]

Wireless network [McDermott et al., 1997, Rabaey, 2000, Swaminathan et al., 2002]
[Oliver and Akella, 2003, de Souza et al., 2003, Canet et al., 2004]
[Esquiagola et al., 2005, Saito et al., 2005]

Mobile communication [Becker et al., 2000, Blaickner et al., 2000, Revés et al., 2000]
[Shankiti and Leeser, 2000, Pionteck et al., 2003, Chugh et al., 2005]

Stream scanning [Ditmar et al., 2000, Miyazaki et al., 2002]
[Sugawara et al., 2004, 2005]

Error correction [Babvey et al., 2005]
Network security IPsec

[Bellows et al., 2003, Lu and Lockwood, 2005]
Intrusion detection
[Clark and Schimmel, 2003, Sourdis and Pnevmatikatos, 2003]
[Song and Lockwood, 2005]
Firewalls
[McHenry et al., 1997, Lee et al., 2003]

Cryptography
A5 [Charlwood and James-Roxby, 1998]
AES [Elbirt and Paar, 2000, Chodowiec et al., 2001]

[McLoone and McCanny, 2001, McMillan and Patterson, 2001]
[Tong et al., 2002, Adachi et al., 2003, Charot et al., 2003]
[Järvinen et al., 2003, Saggese et al., 2003, Saqib et al., 2003]
[Standaert et al., 2003a, Pramstaller and Wolkerstorfer, 2004]
[Zambreno et al., 2004]

Blowfish [Charlwood and James-Roxby, 1998]
Camellia [Ichikawa et al., 2001, Denning et al., 2004]
CAST-128 [Nastou and Stamatiou, 2002]
DES/Triple-DES [Hauser and Wawrzynek, 1997, Leonard and Mangione-Smith, 1997]

[Chodowiec et al., 2001, Cheung and Leong, 2002]
[Rouvroy et al., 2003, Standaert et al., 2003b, 2004]

ECC [Leung et al., 2000, Bednara et al., 2002, Leong and Leung, 2002]
[Daly et al., 2003, Nguyen et al., 2003, Kumar and Paar, 2004]
[Telle et al., 2004, Cheung et al., 2005]

IDEA [Gonzalez et al., 2003, Michalski et al., 2003]
RC6 [Chodowiec et al., 2001, Beuchat, 2003]
RSA [Kim and Mangione-Smith, 2000, Ploog et al., 2000]
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[Chodowiec et al., 2001, Standaert et al., 2003b, Tang et al., 2003]
[Crowe et al., 2004, Nibouche et al., 2004]

SHACAL [McLoone and McCanny, 2003]
Twofish [Chodowiec et al., 2001]

Optimization problems
Boolean satisfiability [Suyama et al., 1996, 1998, 1999, 2001, Abramovici and Saab, 1997]

[Hamadi and Merceron, 1997, Zhong et al., 1998, Yung et al., 1999]
[Abramovici and de Sousa, 2000, Platzner, 2000]
[Boyd and Larrabee, 2000, Redekopp and Dandalis, 2000]
[Dandalis et al., 2001, de Sousa et al., 2001]
[Skliarova and Ferrari, 2002, Yap et al., 2003, Sklyarov et al., 2004]
[Tavares et al., 2004, Kanazawa and Maruyama, 2005]

Clustering [Estlick et al., 2001]
Golomb ruler derivation [Dollas et al., 1998, Sotiriades et al., 2000]
Graph problems [Babb et al., 1996, Dandalis et al., 1999]

[Ichikawa et al., 2000]
Maximum clique [Wakabayashi and Kikuchi, 2004]
Minimum covering [Plessl and Platzner, 2001]
N-Dame [Abramson et al., 1998b]
Sorting [Yeh et al., 1999]
String pattern matching [Pryor et al., 1993, Sidhu et al., 1999b, Weinhardt and Luk, 1999]

[Bobda and Lehmann, 2000, Baker and Prasanna, 2004]
Meta-heuristics

Ant colony optimization [Merkle and Middendorf, 2001b, 2002a, Diessel et al., 2002]
[Janson et al., 2002, 2003, Scheuermann et al., 2003, 2004a,b]
[Scheuermann and Middendorf, 2005, Scheuermann et al., 2005]

Genetic algorithms/
Evolutionary algorithms [Graham and Nelson, 1995, 1996, Scott et al., 1995, 1997a,b]

[Bland and Megson, 1996, 1998c,a,b, Megson and Bland, 1997]
[Kajitani et al., 1998, Shackleford et al., 2000]
[Aporntewan and Chongstitvatana, 2001, Lei et al., 2002]

Genetic programming [Sidhu et al., 1999a]
Simulated annealing [Abramson et al., 1998a]

Machine learning
Neural networks [Lysaght et al., 1994, Bade and Hutchings, 1994]

[Eldredge and Hutchings, 1994, Alderighi et al., 1997]
[Zhu et al., 1999, Zhu and Milne, 2000, Zhu and Sutton, 2003]
[Maya et al., 2000, Sousa et al., 2003, Thoma et al., 2003]

Bayesian learning [Pournara et al., 2005]
Cellular automata [Marchal and Sanchez, 1994, Shackleford et al., 2002]

[Cerdá et al., 2003, Kobori and Maruyama, 2003, Zipf et al., 2005]
Bio-informatics

Genome/protein identification [Lemoine and Merceron, 1995, Alex et al., 2004, Oliver et al., 2005]
Protein sequence alignment [Dydel and Bala, 2004, Yamaguchi et al., 2004]
Biomolecular systems /
chemical reactions [McCaskill and Wagler, 2000, Osana et al., 2003, Court et al., 2004]

[Keane et al., 2004, Yoshimi et al., 2004]
Arithmetics

Additions [Jebelean, 1995, Laurent et al., 1997, Mencer et al., 2001]
[Lee and Burgess, 2003a,b]

Multiplications [Louca et al., 1996, Ahlquist et al., 1999, Andrejas and Trost, 2000]
[Courtney et al., 2000, Miomo et al., 2000, Mencer et al., 2001]
[Visavakul et al., 2001, Wires et al., 2001]
[Wirthlin and McMurtrey, 2001, Daly and Marnane, 2002]
[Corsonello et al., 2003, Kim et al., 2003]
[Myjak and Delgado-Frias, 2004, Sidahao et al., 2004]

Divisions [Andrejas and Trost, 2000, Kim et al., 2003]
Matrix multiplications [Middendorf et al., 1995, 1999, Amira et al., 2001, Jang et al., 2002]

[deLorimier and DeHon, 2005, Dou et al., 2005]
[Zhuo and Prasanna, 2005]
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The spectrum of applications is manifold with a rapidly increasing number of
contributions published in recent years. Even though FPGAs have been produced
for more than 20 years, it took some time before they became widely accepted.
Finally, the gate count breaking the 10K barrier considerably leveraged the re-
search and industry activities in the area of reconfigurable computing in the early
1990s.

Most applications originate from the domain of standard logic devices like
DSP (including audio, video, and image processing), communication systems,
and cryptography. However, the high degree of flexibility, improved tool support,
and comparatively low development cost make reconfigurable devices more and
more attractive for such applications, which have predominantly been reserved
to software engineering. Such applications include algorithms for optimization
problems and machine learning. The list above distinguishes between optimiza-
tion algorithms for specific optimization problems and generic meta-heuristics.
The optimization problem, which has attracted most attention is the Boolean
Satisfiability Problem (SAT). This might be explained by its practical relevance
in the field of electronic engineering, where SAT solvers are needed for testing
and debugging of electronic circuits, logic synthesis, pattern recognition etc.

The range of meta-heuristics implemented on reconfigurable architectures and
models comprise Ant Colony Optimization, Genetic/Evolutionary Algorithms,
Genetic Programming, and Simulated Annealing. Most designs are proposed for
Genetic/Evolutionary Algorithms, which might be due to the great success of
these meta-heuristics on a wide range of optimization problems. Furthermore,
fast on-chip implementations of evolutionary techniques are specially interesting
with respect to the development of Evolvable Hardware (see [Gordon and Bentley,
2002] for an introduction to Evolvable Hardware). The only known implemen-
tations of ACO on reconfigurable hardware target the abstract RMesh model
[Merkle and Middendorf, 2001b, 2002a, Janson et al., 2002, 2003] as well as com-
mercially available FPGAs as proposed by the author of this thesis [Diessel et al.,
2002, Scheuermann et al., 2003, 2004a,b, Scheuermann and Middendorf, 2005,
Scheuermann et al., 2005].

Many authors compare their reconfigurable circuits design with implementa-
tions in software on general-purpose processors. The main advantages reported
concern the increase in speed and the reduction of energy consumption. For
example [Telle et al., 2004] achieve a speedup factor of 540 for Elliptic Curve
Cryptography (ECC) implemented on a Xilinx Virtex II pro FPGA running at
66 MHz in comparison to a software implementation on a dual-Xeon processor
clocked at 2.6 GHz. A further recent analysis [Stitt et al., 2004] points out that
migrating critical software loops into reconfigurable hardware allows to reduce
the average energy consumption between 35% and 70% together with an average
speedup between 3 and 7. A further overview of attainable speedup factors is
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given in [Guo et al., 2004].

3.6 Trends and Emerging Directions

The main trends, which can be observed regarding the current research and de-
velopments in the field of reconfigurable architectures, include a move towards
coarse-grained and embedded heterogeneous systems as well as software cores.
With the continuous advances in VLSI technology it is possible to accommodate
more and more logic onto the chip area coming along with an increasing demand
for routing resources. To restrict the amount of required interconnect, the gran-
ularity of logic blocks is increased, e.g., the Altera Stratix II [Altera Corp., 2004]
device uses logic blocks with seven input bits instead of a common composition of
LUTs with four input bits. An increasing number of devices are offered with em-
bedded blocks for special purposes, these systems come in variations with distinct
combinations of fine-grained and coarse-grained logic, e.g., Xilinx Virtex 4 [Xilinx
Inc., 2005d]. Software cores – often offered as so-called intellectual property cores
(IP) – become increasingly attractive as they provide a very flexible and conve-
nient way to integrate ready-to-use functions. Even though software cores require
more chip area than physical hardware cores, this overhead becomes less hindering
due to an increasing count of transistors. Several emerging directions regarding
reconfigurable architectures can be observed in the rise of asynchronous architec-
tures [Goldstein et al., 2000, Kagotani and Schmit, 2003, Teifel and Manohar,
2003, Wong et al., 2003] as well as low-power techniques [George et al., 1999,
Lamoureux and Wilton, 2003, Rahman and Polavarapuv, 2004, Gayasen et al.,
2004] and molecular micro-electronics [Williams and Kuekes, 2000, Butts et al.,
2002, DeHon and Wilson, 2004].



Chapter 4

ACO on Reconfigurable
Architectures

Ant Colony Optimization offers a meta-heuristic framework for ant-based algo-
rithms, which have been applied successfully to many optimization problems. On
the other hand reconfigurable architecture like FPGAs provide the capabilities
to design fast circuits at low cost combined with a high degree of flexibility. In
this section, it is therefore proposed to investigate the parallel implementation
of ACO algorithms targeting field programmable technology. First of all the
objectives and opportunities, but also the challenges and restrictions connected
with this endeavor are explained. It is shown that fine-grained programmable
architectures do not readily support certain data types and operations typically
used by conventional ACO algorithms. After a brief overview of related work
by other authors, alternative hardware-oriented variants of ACO algorithms, the
Counter-based ACO (C-ACO) and the Population-based ACO (P-ACO), are de-
scribed. Special algorithmic modifications and new techniques are examined for
these two approaches. Sequential software simulations comparing C-ACO and
P-ACO with standard ACO signify that both variants can be considered as com-
petitive algorithms not only for the hardware implementation on FPGA but also
as interesting software substitutes to standard ACO. Subsequently, the properties
as well as the asymptotic runtime and resource requirements of both variants are
compared with each other.

Note that the description of the henceforth introduced algorithms is restricted
to optimization problems with solutions represented by permutations of numbers
{0, . . . , n− 1}. However, appropriate adaptions also allow to apply the proposed
algorithms to other non-permutation problems.

51



52 CHAPTER 4. ACO ON RECONFIGURABLE ARCHITECTURES

4.1 Objectives and Restrictions

Usually, ACO algorithms are implemented in software on sequential machines.
Depending on the specific optimization problem, algorithm parameters, and CPU
speed, processing times may often range between several minutes and even multi-
ple days. However, if short computation times become crucial, there exist mainly
two options to speed-up the execution. One possibility is to develop parallel
variants of the algorithm to be executed on multi-processor machines (see Sec-
tion 2.5.2 for an overview of such ACO algorithms). The other very promising
approach is to directly map the ACO algorithm in hardware, thereby exploiting
the parallelism and pipelining capabilities of the target architecture. When us-
ing reconfigurable architectures, one may further benefit from the advantages of
reconfiguration at runtime like smaller circuit sizes, faster execution or reduced
power consumption as outlined in the previous chapter.

As implementation platform FPGAs as the de facto only commercially avail-
able reconfigurable fabrics are considered. Due to their versatile programmability,
FPGAs allow to implement different hardware variants of ACO that can be tested
on the same chip. Certain properties of ACO make this meta-heuristic a very
good candidate for the implementation in reconfigurable hardware:

Iterative structure: The algorithm mainly consists of a core of iteratively re-
peated instructions. Thus, most time of the algorithm execution is spent
within this core. Mapping this core into hardware may therefore consider-
ably accelerate the algorithm.

Rare conditional branches: Commonly, ACO algorithms contain only a very
restricted number of conditional branches, which would otherwise afford
complicated control structures. Programs with many conditional operations
should rather be reserved to micro-controllers or CPUs.

Variable memory bandwidth requirements: Typically, ACO algorithms
process data of various bandwidths. One advantage of reconfigurable de-
vices like FPGAs is that the interface bandwidth for accesses to internal
and external memory can be tailored to the specific requirements of the
algorithm (though limitations by the available amount of I/O and rout-
ing resources have to be considered). Also very high bandwidths interfaces
can be created, whereas the typical von-Neumann style computer only pro-
vides fixed bandwidths often causing a bottleneck, when data needs to be
transferred sequentially through a narrow data path.

Array-based memory operations: The parallel implementation of ACO per-
forms operations on data distributed over local and global memory re-
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sources. FPGAs provide storage elements of different latencies and ca-
pacities, which suitably adapt to the need of the algorithm.

Concurrency: Many operations performed by ACO are predestined for an in-
tensive parallelization. The hardware implementation allows to accelerate
the execution by utilizing spatial (parallel functional units) as well as tem-
poral (pipelining) concurrency.

However, some characteristics of ACO algorithms render a hardware realiza-
tion on fine-grained reconfigurable device like FPGAs a difficult task:

• Usually, pheromones, heuristic values, and random numbers afford floating-
point representations.

• Evaporation and the integration of heuristic information require a large
number of multiplication operations. Only few FPGAs have dedicated mul-
tiplication blocks though these are restricted in size and number.

• The integration of weights α and β into the selection probabilities pij (cf.
Equation 2.4) demands numerous exponentiation operations.

The realization of the required floating-point numbers, multiplication operations,
and exponentiation operations in hardware is possible, but would afford long com-
putation times and a high amount of chip resources on fine-grained programmable
logic devices like FPGAs (as outlined in Section 3.2.4).

For these reasons it is proposed to implement alternative ACO approaches,
which are specifically adapted to the characteristics of reconfigurable hardware.
Two hardware-oriented variants of ACO, the Counter-based ACO and the Popula-
tion-based ACO are introduced in sections 4.3 and 4.4. The goals of these al-
ternative variants are to speed-up the execution and to economically use logic
resources such that large instances of the optimization problem can be accom-
modated thereby preserving a good optimization performance in comparison to
the standard ACO algorithm. To cope with the restrictions posed by the fine-
grained hardware, the strategies followed are to replace floating-point numbers
by integers, to avoid multiplications or to approximate them by shift operations
on a bit level, and to avoid or to pre-calculate exponentiations.

4.2 Related Work

The utilization of reconfigurable computing to accelerate ACO has already been
proposed by other authors [Merkle and Middendorf, 2001b, 2002a]. These ap-
proaches targeting the abstract computational model of the RMesh do not aim
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to provide executable implementations on commercially available platforms. In
the following, the proposed algorithm is referred to as RMesh ACO. The authors
propose to map the pheromone matrix onto the grid of processing elements (PEs)
of the RMesh such that every PE holds one pheromone value. A continuous flow
of ants is pipelined top-down through the matrix, and every ant makes a decision
in the respective row in which it is currently located. Afterwards all ants step
one matrix row forward to proceed with the next decision. After the initial n
decisions, the first complete solution is constructed, and in every following step,
the construction of a further solution is completed.

log  n2

n/log  n2

Figure 4.1: Alignment of a single row i of the pheromone matrix into a submesh
[Merkle and Middendorf, 2002a].

All pheromone values in a row of the pheromone matrix are arranged in a
snake-like form mapped to a log2 n × (n/log2n) submesh as visualized in Figure
4.1. Correspondingly, the entire pheromone matrix occupies an area of n · log2 n×
(n/log2n) PEs. The algorithm utilizes the dynamically reconfigurable bus system
to speed up the selection process performed within every ant decision. Selection
probabilities are calculated based on transformed pheromone and heuristic values:

∀j ∈ S : fij :=

{
h : τα

ij · η
β
ij > t

l : otherwise

This means that the product range of the weighted pheromone and heuristic
values is mapped to only two possible values h and l with h > l > 0; t > 0 defines
a threshold. Items j ∈ S with fij = h (fij = l) receive a high (low) selection
probability. PEs store these transformed values in the form of two bits:

hij :=

{
1 : fij = h
0 : otherwise

lij :=

{
1 : fij = l
0 : otherwise

(4.1)

An item is selected by drawing a random number r from the interval [0, nl·l+nh·h)
with nl or nh denoting the number of PEs in a row, which have the l-bit or h-bit
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set to one respectively. If r ∈ [(p − 1) · l, p · l) then the p-th PE with the l-bit
equal one is selected. If r ∈ [nl · l + (p − 1) · h, nl · l + p · h) then the p-th PE
with the h-bit equal one is selected. Using the dynamically reconfigurable bus
system, it is demonstrated that nl and nh can be calculated in O(log∗ n) time.1

The selected PE can also be identified in time O(log∗ n). Hence the entire ant
decision can be performed in O(log∗ n).

The determination of the updating ants is also shown to require O(log∗ n)
time, and the update operation itself can be performed in constant time. To
maintain a fast execution speed, it is required that the evaluation of every sin-
gle ant decision also does not exceed O(log∗ n). This condition is fulfilled, e.g.,
by TSP, sparse QAP, or SMTTP. Considering the pipelined flow of ants with
parallel evaluation and pheromone update, it follows that new solutions can be
constructed with an average period of O(log∗ n), and a total number of z so-
lutions can be computed in quasi-linear time O((z + n) · log∗ n) in comparison
to O(z · n2) required by the sequential software implementation of the standard
ACO algorithm. In software simulations on QAP instances, the proposed algo-
rithm with modified selection strategy shows a good optimization behavior only
slightly worse than ACO with a standard selection procedure.

Based upon the work by the previously mentioned authors, [Janson et al.,
2002, 2003] examine various aspects of scheduling multiple ACO algorithms con-
currently running on an RMesh. Any of these ACO algorithms occupies a sub-
mesh of which the dimensions depend on the respective problem size n. During
the algorithm runtime, however, this problem size is successively reduced when-
ever a pheromone value τij exceeds a certain high threshold value (local con-
vergence). A high pheromone value τij would cause the ants to almost always
select item j in row number i. Therefore, item j is written as a henceforth con-
stant value at place number i of the solution vector (π(i) := j). Accordingly, row
number i and column number j of the pheromone matrix are deleted by appropri-
ately adjusting the size of the submesh. These size reduction steps are repeated
whenever a local convergence occurs resulting in a gradually shrinking submesh
size. As multiple ACO algorithms are executed in parallel, these repeated size
reductions yield a growing amount of free but fragmented computing resources.
This fragmentation is alleviated by applying heuristics for the compaction of the
occupied area on the RMesh thereby releasing consecutive space for the execution
of other ACO algorithms or for the repetition of the same ACO algorithm with
different random seeds. The described procedure causes an increased throughput
and an improved average solution quality in comparison to executions without
dynamic size reduction.

1log∗ n is the number of log-operations that must repeatedly be applied to n until the result
is less or equal 1.
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The described implementations of ACO have been developed for the RMesh
model. The computational power of the RMesh, which largely relies on its dynam-
ically reconfigurable bus system, has not yet been met by commercially available
reconfigurable architectures. Therefore, the execution on FPGA must be ex-
pected to be effectively slower with respect to the attainable asymptotic runtime.
However, the RMesh implementation can be regarded as an inspiring source for
the ACO hardware realization on FPGA aiming to achieve a considerable speedup
in comparison to the sequential software implementation.

4.3 Counter-based ACO (C-ACO)

In this section, the C-ACO algorithm is introduced as a hardware-oriented variant
of ACO targeting FPGAs as an implementation platform. A comparison between
C-ACO and standard ACO is given in terms of analytical as well as empirical
examinations. Subsequently, alternative ways of integrating heuristic information
are described. Two different types of parallelizing C-ACO are discussed combined
with adapted variants for updating the pheromone matrix. The parallel hardware
implementation also supports or even demands alternatives ways of comparing
new solutions, sequencing ant decisions, and encoding the pheromone matrix.
The respective algorithmic modifications are described and tested in experimental
studies. Finally, the mapping of C-ACO onto FPGA is briefly sketched. The
contents of this section is based on previous work by the author of this thesis
[Scheuermann and Middendorf, 2005, Scheuermann et al., 2005].

4.3.1 Algorithm

In the following, the characteristics of C-ACO (listed in Algorithm 4.1) are ex-
plained.

Pheromone Representation: In contrast to standard ACO, pheromone val-
ues τij ≥ τmin > 0 are represented by integer numbers, which demand less
chip resources than floating-point numbers. During initialization all phe-
romone values τij receive the same start value τmin + τinit (line 3). The
usage of limited integer values instead of floating-point numbers also means
that pheromones can take fewer possible values. Inspiring source for this
discretization of pheromone values is the RMesh ACO (cf. Section 4.2) re-
stricting pheromones values to only two possible levels with no tremendous
degradation in optimization performance.

Local Evaporation: Instead of global evaporation by multiplications with 1−ρ,
pheromones are locally evaporated during the selection process: When an
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item j is selected in row i, the respective pheromone value is decremented by
∆ρ = min{τij − τmin, 1}, i.e. pheromones behave like decremental hardware
counters (lines 14 and 15). Each time an item is selected, the pheromone
value is decreased, thereby reducing the attractiveness of the same decision
for following ants. Consequently, the exploration of the search space is
supported and ants are less likely to converge to a common suboptimal
path. Furthermore, the immediate evaporation reduces the selection bias,
such that an item selected early in a solution of one ant is more likely to
be selected later in the solutions generated by succeeding ants. [Dorigo and
Gambardella, 1997b] also investigate a similar form of on-line evaporation
(local pheromone update) as outlined in Section 2.5.1. However, the local
evaporation process in C-ACO, which results in a subtraction of a constant
integer value, is better suited for an FPGA implementation.

Algorithm 4.1 Counter-based ACO (place-item encoding).

1: for i := 0 to n− 1 do
2: for j := 0 to n− 1 do
3: τij := τmin + τinit /* initialize pheromone matrix */
4: end for
5: Ui := 0 /* initialize update counters */
6: end for
7: while stopping condition not met do /* begin iterations */
8: for a = 0 to m− 1 do /* construct m solution */
9: S := {0, . . . , n− 1} /* initialize selection set */

10: for i := 0 to n− 1 do /* n ant decisions per solution */
11: j := select(i) /* probabilistic selection */
12: S := S \ {j}
13: πa(i) := j /* insert selected item into solution */
14: ∆ρ := min{τij − τmin, 1}
15: τij := τij −∆ρ /* local evaporation */
16: Ui := Ui + ∆ρ /* increment update counter */
17: end for
18: end for
19: a∗ := argmina∈{0,...,m−1}F (πa); π∗ := πa∗ /* determine best solution */
20: for i := 0 to n− 1 do
21: τiπ∗(i) := τiπ∗(i) + Ui /* pheromone update */
22: Ui := 0 /* reset update counters */
23: end for
24: end while /* end iterations */
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Update Counters: Per row of the pheromone matrix there exists an update
counter Ui, which accumulates the total amount of pheromone evaporated
in that row during an iteration (line 16). At the end of an iteration, when
m solutions have been constructed, each update counter holds a value 0 ≤
Ui ≤ m. Note that an update counter can be less than m. This happens
when ants select such items for which the corresponding pheromone value
is already equal to τmin.

Pheromone Update: When the best solution π∗ of the current iteration has
been determined, the pheromone update is done according to this solution
as follows: The pheromone value π∗(i) in row i is incremented by the value
of the update counter in the same row, i.e. τiπ∗(i) := τiπ∗(i) + Ui (line 21),
instead of adding value ∆ as stated in Section 2.4.2. Thus, the total amount
of pheromone in each row remains constant.

Hitherto the C-ACO algorithm has been described for optimization problems
working on a place-item encoded pheromone matrix. Hence, the ants construct
solutions while traversing top-down through the rows of the pheromone matrix.
For optimization with item-item encoding the algorithm has to be modified as the
ants would move arbitrarily between the rows. The index of the next row to be
visited is equal to the last item selected. Further modifications are necessary to
handle symmetric problem with item-item encoding, e.g., symmetric TSP: If a city
j is selected in row i, then pheromone values τij and τji have to be decremented
and the respective update counters Ui and Uj are incremented. Accordingly, the
update process has to be adapted. In order to maintain a symmetric pheromone
matrix, pheromone values τij and τji are always increased by the same amount.
Since in every row i, two updates are performed, the pheromone values are only
increased by at most bUi/2c. If in a row the amount of update is smaller than
the update counter value, the remainder is transferred into the next iteration.

4.3.2 Comparison of Standard ACO with C-ACO

The standard ACO and the C-ACO algorithm share common techniques like the
encoding of the pheromone matrix, the representation of solutions, the integra-
tion of heuristic information as well as the selection process. The main differences
concern the limitation of pheromone values to range between a certain minimum
τmin and maximum τmin + n′ · τinit with n′ = n for place-item and n′ = n− 1 for
item-item encoded problems. To some degree, bounding pheromone values to an
interval resembles the MAX-MIN Ant System [Stützle and Hoos, 1997, Stützle,
1999, Stützle and Hoos, 2000]. Furthermore, pheromones are represented by in-
teger values, which are locally decremented with every selection of an item. The
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sequence of local evaporations by multiple ants can be considered as a substitute
to global evaporation. Finally, pheromones are not updated by adding a constant
or fitness-dependent value. In C-ACO, matrix entries associated with good so-
lutions are updated by adding pheromones collected in update counters thereby
maintaining a constant sum of pheromones in each matrix row.

The following sections further compare standard ACO and C-ACO. First the
effect of pheromone intensification is examined analytically. This is followed by
experimental studies comparing the optimization performance of both algorithms.

4.3.2.1 Analytical Approach

In this section, the pheromone update rule of C-ACO is motivated and its rela-
tion to the standard pheromone update rule is discussed. In the standard ACO
pheromone update, each pheromone value τiπ∗(i) that belongs to the best solution
π∗ is increased by a fixed value ∆ > 0. In the following, it is examined how
much this individual portion of added pheromone affects the decisions of ants in
the succeeding iterations and demonstrate that pheromone intensification in C-
ACO and standard ACO have a similar stochastic effect. It is supposed that for
standard ACO the pheromone values are normalized, such that the sum over all
values in a row is T =

∑n−1
j=0 τij = 1. Therefore, the total amount of pheromone

evaporated per iteration is equal to ρ. In order to keep T constant, the value of
pheromone intensification is equal to the total amount of evaporated pheromone,
i.e. ∆ = ρ (if only one ant per iteration is allowed to update). This version
of pheromone update for standard ACO has been used by several authors, e.g.,
[Blum et al., 2001, Guntsch and Middendorf, 2000].

Standard ACO Consider an amount of pheromone ∆, which has been added
to τij in an arbitrary iteration, and define an iteration counter t starting from
this specific iteration t := 0. Assuming all items to be contained in the selection
set, p1 := ∆/T = ρ denotes the probability that in the following iteration t = 1,
an ant selects item j in row i on account of value ∆. Since the pheromone is
evaporated in every iteration, the probability that item j is selected in iteration
t = 2 is p2 = (1 − ρ)ρ = (1 − p1)p1, or more general: pt = (1 − p1)

t−1p1. Let Xt

be a random variable, which expresses the number of ants selecting item j in row
i due to update value ∆ in iteration t. Obviously, Xt is distributed binomially
according to B(m, pt) with expected value:

E(Xt) = mpt = m(1− p1)
t−1p1. (4.2)

C-ACO In C-ACO, the intensification received by τij is ∆ = Ui. Let p1 = Ui/T
(with T = n · (τmin + τinit)) denote the probability, that the first ant in iteration
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t = 1 selects item j in row i on account of value ∆. With every selection the
respective pheromone value τij is exactly reduced by 1 such that random variables
Xt are distributed hyper-geometrically H(T, Ui, m). Accordingly, the expected
value in iteration t = 1 is E(X1) = mUi/T , and in the succeeding iterations
t > 1:

E(Xt) =
m

T
(Ui −

t−1∑
t′=1

E(Xt′)). (4.3)

Assuming that τij received the maximum update Ui = m, then the following
equation for the expected value can be proved by induction:

E(Xt) = m(1− m

T
)t−1Ui

T
= m(1− p1)

t−1p1, (4.4)

which is equal to the corresponding value for the standard ACO (see Equation
4.2).
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Figure 4.2: Development of expected value E(Xt) for standard ACO and C-
ACO. The shaded area is equal to m.

Hence, for standard ACO and C-ACO, an intensification on τij causes an
average of m(1− p1)

t−1p1 selections of item j in row i in all iterations t > 0. Let
random variable YN =

∑N
t=1 Xt denote the frequency of selecting item j in the

next N iterations. Then the expected value E(YN) =
∑N

t=1 E(Xt) is determined
by

E(YN) = mp1

N∑
t=1

(1− p1)
t−1 → m. (4.5)

Hence, in both algorithms, item j is selected approximately m times (see Figure
4.2). Due to these similarities, it is expected that C-ACO shows an optimization
behavior comparable to standard ACO.

4.3.2.2 Experimental Studies

In this section, the experimental studies are described, which are conducted to
compare the standard ACO with the C-ACO algorithm. The results are obtained



4.3. COUNTER-BASED ACO (C-ACO) 61

from sequential implementations of both algorithms in software. These examina-
tions allow to compare the optimization performance irrespective of any specific
hardware platform.

Experimental Setup The experiment is conducted on a range of TSP and
QAP instances. TSP instances are chosen from the TSPLIB benchmark library
[Reinelt, 1991]:

symmetric instances asymmetric instances
gr48 (48 cities) ry48p (48 cities)
eil101 (101 cities) kro124p (100 cities)
d198 (198 cities) ftv170 (171 cities)

QAP instances are a selection from the QAPLIB benchmark library [Burkard
et al., 1997]:

symmetric instances asymmetric instances
wil50 (size 50) lipa50a (size 50)
sko72 (size 72) lipa70a (size 70)
tai100a (size 100) tai100b (size 100)

For both algorithms, common parameter settings are α = 1, and m = 8 ants
per iteration. The results are computed without heuristic (β = 0), and with
the standard heuristic (β = 5 for TSP and β = 2 for QAP) as explained in
Section 2.4.2. Parameter q0 modelling the average relation between exploitation
and exploration is chosen from q0 ∈ {0, 0.5, 0.9} (cf. Section 2.3.2). Simulations
are run with and without elitism (with elitism means that not only the best ant
of the current iteration, but also the best-so-far ant is allowed to update).

Standard ACO is implemented such that T = 1 and ∆ = ρ (see Section
4.3.2.1) with ρ ∈ {0.005, 0.01, 0.02, 0.05, 0.1}. A minimum pheromone value τmin

is introduced to allow for a fair comparison with C-ACO, which is also equipped
with a lower pheromone bound. Hence, items are selected with probability

pij =
(τij + τmin)αηβ

ij∑
l∈S(τil + τmin)αηβ

il

. (4.6)

The minimum pheromone value is determined by τmin = γsτinit = γs/n
′ with γs ∈

{0, 0.001, 0.01, 0.1, 0.5, 1} and n′ = n − 1 (TSP) or n′ = n (QAP). For C-ACO,
the initial pheromone value τinit is varied with τinit ∈ {1, 2, 3, 4, 5, 8, 10, 50, 100,
1000}. The minimum pheromone value is set to τmin = dγcτinite with γc ∈
{0.001, 0.01, 0.1, 0.5, 1}. Duplicate pairs (τmin, τinit) are removed. Parameters γc

and γs model the relation between the initial and the minimum pheromone value.
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The ranges of parameters γc and γs are chosen to be the same, except that γc = 0
is not allowed since a pheromone value τij dropping to its lower bound τmin = 0
would prohibit any further selection of item j in row number i.

Each run is terminated after tmax = 50000+1000n iterations, which allows all
algorithm runs to nearly converge. Note that using a minimum pheromone value
τmin > 0, absolute convergence is hard to obtain. This is in contrast to ACO
with lower bound τmin = 0, which earlier suppresses a further exploration of the
search space.

Solution qualities are measured in relative iterations ti = b1
7
itmaxc, i =

1, . . . , 7. The average solution qualities are calculated as the mean tour lengths
(TSP) or mean assignment cost (QAP) over 10 runs with different random seeds.
These average solution qualities are transformed into two different types of ranks:

Best ranks: Given a specific algorithm (standard ACO/C-ACO), problem class
(TSP/QAP), problem instance, elitism strategy (with/without), and a fixed
triple (β, q0, ti), the respective best parameter combinations ((ρ, γs) for stan-
dard ACO and (τinit, γc) for C-ACO) are determined. The better algorithm
receives rank 1, the other rank 2. Thereafter, the final ranks are calculated
as the average over the two elitism strategies and all problem instances of
a problem class.

Average ranks: Given a specific algorithm, problem class, problem instance,
and a fixed triple (β, q0, ti), the solution qualities for all 122 variable pa-
rameter combinations (60 for standard ACO, and 62 for C-ACO) are ranked.
The final ranks for an algorithm are calculated as the average over all vari-
able parameter combinations and all problem instances of a problem class.

Results Based on Best Ranks In figures 4.3 and 4.4, the columns represent
different degrees of exploitation. The bottom/top row shows the results received
with/without heuristic. Regarding the TSPLIB instances (see Figure 4.3) the C-
ACO algorithm outperforms standard ACO in all but one case (β = 0, q0 = 0.5).
With an overall average rank of 1.30 C-ACO performs considerably better than
standard ACO, which achieves a mean rank of only 1.70. The advantage of C-
ACO over standard ACO grows with an increasing degree of exploitation. Also
all subsequent test results based on best as well as average ranks show that it
is advantageous to run C-ACO with a higher and standard ACO with a lower
rate of exploitation. Concerning the test runs on QAPLIB instances (see Figure
4.4), C-ACO receives better ranks than standard ACO with only one exception
(β = 0, q0 = 0.0) in relative iteration t1. Calculating the average ranks for both
algorithms the lead of C-ACO (mean rank 1.09) against standard ACO (mean
rank 1.91) is even more noticeable than in the experiments for TSP.



4.3. COUNTER-BASED ACO (C-ACO) 63

2

1

 2

 1

t7t6t5t4t3t2t1t7t6t5t4t3t2t1t7t6t5t4t3t2t1
rel. iteration

TSP Comparison of Standard ACO vs. C-ACO for Best Parameters

q0 = 0 q0 = 0.5 q0 = 0.9

β 
=

 0
β 

=
 5

ra
nk

ra
nk

Standard ACO
C-ACO
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Figure 4.5: Comparison Standard ACO vs. C-ACO on TSP. Ranks averaged
over all input parameters and TSP instances.
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Results Based on Average Ranks With respect to the TSPLIB instances
(see Figure 4.5), standard ACO performs better than C-ACO for β = 0 and q0 ∈
{0, 0.5}. In runs with heuristic guidance (β = 5), C-ACO performs consistently
better than standard ACO with only one exception (t1, q0 = 0). Overall the
average ranks for TSP are 67.25 (standard ACO) and 54.69 (C-ACO). Figure 4.6
demonstrates that on the selection of QAPLIB instances, standard ACO performs
better than C-ACO for q0 = 0. In all remaining cases, however, the ranks for
C-ACO are better than for standard ACO. In contrast to TSP, the ranks with
heuristic (β = 2) are very similar to the ranks obtained without heuristic (β = 0).
For QAP, the overall average ranks are 68.43 (standard ACO) and 54.16 (C-ACO).

Overall, the simulation results on both benchmark libraries indicate that on
average C-ACO shows a competitive or even superior optimization behavior.

4.3.3 Heuristic Extensions

Optimization performance usually benefits from the integration of heuristic in-
formation. However, with respect to the intended hardware realization, including
heuristic information into the calculation of selection probabilities (see Equation
2.4) requires multiplication and exponentiation operations with floating-point
numbers. To save computation time and FPGA resources, an alternative proce-
dure is proposed, which consists of the following two steps:

1. Heuristic values are weighted by β and then scaled to integer values. In
the case of static heuristic information (cf. Section 2.3.2), this can be pre-
computed on an external processor.

2. The transformed values are combined with pheromone values in a multi-
plicative or additive way.

Two alternative types of heuristics, the η-heuristics or τ -heuristic, are exam-
ined.

4.3.3.1 Algorithmic Modifications

η-Heuristics The so-called η-heuristics integrate heuristic information into the
ant decision process by multiplying transformed heuristic values η′ij with phero-
mone values τij. Three variants of η-heuristics are considered (see Figure 4.7):

REALVAL : Heuristic values are processed unchanged: η′ij = ηβ
ij.
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INTVAL : Heuristic values are transformed into integer numbers η′min ≤ η′ij ≤
η′max, where η′ij is determined by η′ij = bf(ηβ

ij)c ∈ IN with

f(ηβ
ij) =

η′max − η′min

ηβ
max − ηβ

min

(ηβ
ij − ηβ

min) + η′min (4.7)

where ηmin and ηmax denote the minimum, respectively the maximum of
all values ηkl in the heuristic matrix (with k 6= l for item-item encoded op-
timization problems). Multiplications by integers instead of floating-point
values save FPGA resources and computation time.

ηmax
,

ηmin
,

ηmin
β ηmax

β ηij
β

ηij
,

2

8

= 16

4
POTVAL

INTVAL

= 1

Figure 4.7: Example of scaling standard heuristic information to an interval
between η′min = 1 and η′max = 16.

POTVAL : Heuristic information is transformed to an interval of integer num-
bers η′min ≤ η′ij ≤ η′max, where η′ij = 2k with k = blog2 f(ηβ

ij)c and f being
the same scaling function as in Equation 4.7. Multiplications by numbers
η′ij = 2k in hardware can be realized by shifting the respective bit rep-
resentation of the pheromone value by k digits. The implementation in
shift registers demands very little chip resources and allows for a expedited
execution.

τ-Heuristic In the τ -heuristic, values ηβ
ij are transformed into integers η′ij in

the same way as the η-INTVAL heuristic. The resulting values are then included
into the pheromone matrix as lower bound τ ′ij = τmin + η′ij. Pheromone values
are not allowed to fall below this bound, i.e. τij ≥ τ ′ij. Initial pheromone values
are calculated as τij := τ ′ij + τinit, where τinit = dvη̄e with v a parameter and
η̄ is the average over all values η′kl (with k 6= l for item-item encoding). As
opposed to Algorithm 4.1, pheromone values of selected items are decremented
by dwτinite with w being a parameter. Selection probabilities are computed as
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pij = τij/
∑

l∈S τil. Thus, no multiplications with heuristic values are required at
all.

4.3.3.2 Experimental Results

To compare these heuristics, they are tested on the kro124p TSPLIB instance
using parameter values: q0 = 0.3, α = 1, β = 5, m = 8, τmin = 1, η′min = 1,
and η′max = 2k with k ∈ {0, . . . , 25}. The η-heuristics are run with τinit ∈
{1, 2, 3, 4, 5, 8, 10, 50, 100}, the τ -heuristic with v ∈ {1.0, 10.0, 100.0} and w ∈
{0.00001, 0.1, 1.0}.
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Figure 4.8: Comparison of the η- and τ -heuristics.

Figure 4.8 shows the average solution qualities (20 repetitions) after 150000
iterations. For every value of k, the corresponding solution quality is determined
as the minimum average tour length over the input parameter combinations. The
chart shows two horizontal lines indicating the best tour length reached by the
standard heuristic (REALVAL) on a level of 36610.6 and the best tour length ob-
tained without heuristic on a level of 39524.6, i.e. switching off heuristic support
deteriorates solution quality by about 8% with respect to the results gathered
during this experiment. With an increasing exponent k the alternative heuristics
achieve solution qualities comparable to the standard heuristic. Starting from
a value of η′max ≥ 29, the INTVAL/POTVAL heuristics reach solution qualities,
which are at most 0.66% worse than the best quality of the standard heuris-
tic. This means that multiplications by floating-point numbers can reasonably
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be substituted for multiplications with integer numbers with a size of at most
k = 9 bits. Both heuristics, INTVAL and POTVAL, perform equally well even
though POTVAL works on a very restricted range of possible heuristic values.
The POTVAL heuristic even allows to efficiently replace large multiplication cir-
cuits by significantly smaller and faster shift registers. The τ -heuristic performs
worse than the INTVAL and POTVAL heuristics but reaches a minimum tour
length only 0.43% above the best tour found by the standard heuristic. In this
case, one would have to provide pheromone counters with a lower bound of size
k = 15 bits. Altogether, the results show that POTVAL represents a good choice
in terms of size and execution speed.

4.3.4 Parallel Execution

So far all considered ACO algorithms have been executed sequentially. However,
the goal is to speed-up the execution by a parallel implementation of C-ACO in
hardware. This section outlines the differences between sequential and parallel
execution as well as the experimental studies, which compare these two operation
modes.

4.3.4.1 Terminology

First of all, various terms are introduced, which are used to characterize the al-
gorithmic concepts described in the subsequent sections. Given a certain instant
during the algorithm run, all ants being currently involved in solution construc-
tion are referred to as active ants. The duration needed to allow all active ants to
finish their current decisions is denoted as an algorithm step (AS). Usually, ants
in ACO are grouped into generations, and the number of ants within a generation
is called the generation size m. All ants in a generation directly compete with
each other, i.e. only the best (or several best) of the m solutions constructed by
this generation is allowed to update the pheromone matrix.

4.3.4.2 Execution Modes

In the following, the characteristics of the sequential and the parallel execution
mode are described. The parallel execution mode refers to the aspects of imple-
menting C-ACO in hardware. Other approaches to parallel software implemen-
tations of ACO, as introduced in Section 2.5.2, are not considered.

Sequential Execution Mode Typically, when implementing a sequential ACO
algorithm in software, every ant makes one decision per row of the pheromone
matrix until it has created a complete solution. The m solutions of a generation
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are constructed one after another. This means that at any time of the algorithm
run, only one ant is actually active (see Figure 4.9a). Accordingly, the number of
algorithm steps required in the sequential case can be computed as AS = t ·m ·n
with t denoting the number of completed generations. The best (or several best)
of the m solutions constructed by a generation may update the pheromone ma-
trix. This update is finished before the next generation starts constructing new
solutions.
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Figure 4.9: Process of solution construction in the sequential and parallel case
after 4 algorithm steps. In this example: n = 8, m = 3, and M = 6.

Parallel Execution Mode An implementation in hardware aims to speed up
the execution of C-ACO by parallelizing certain operations and by exploiting the
pipelining capabilities of hardware algorithms. Two variants of parallel execution
are considered, which can be distinguished by their type of pipelining: piped ants
and piped pheromone.

Piped ants (PA): The pheromone matrix is mapped statically onto the chip
area. A continuous flow of ants is piped top-down through this circuitry
in a systolic fashion as visualized in Figure 4.9b. This flow of ants is sub-
divided into generations of m consecutive ants. As in the sequential case, an
ant makes a decision for its current row of the pheromone matrix. However,
pipelining of ants allows not just one but up to n ants to be active at a time.

Piped pheromone (PP): An array of M ants is accommodated statically onto
the chip area. The pheromone matrix is piped perpetually top-down through
this ant array (see Figure 4.9c), which is sub-divided into M/m generations
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of m consecutive ants. An ant makes a decision for every row of the phe-
romone matrix passing by. This type of pipelining allows up to M ants to
be active at a time. To allow for a fair comparison between these two types
of pipelining, it is assumed that henceforth the size of the ant array M is
equal to the problem size n.

After the initial n algorithm steps, the systolic pipelining of ants or phero-
mones, respectively, yields one complete solution with every following algorithm
step. Therefore, the number of algorithm steps in the parallel execution mode
can be described as AS = t ·m + n− 1.

4.3.4.3 Spectrum of Parallelization

The hardware implementation of C-ACO allows to speed-up the execution by
parallelizing a wide range of tasks, which are traditionally executed in a sequential
manner. From a top-level point of view, these tasks include the construction, the
evaluation, and the comparison of new solutions, the update of the pheromone
matrix, and the check on the fulfillment of certain stopping condition.

Solution Construction Every solution construction by an ant a consists of n
decisions Dai, one decision per row i of the pheromone matrix with i ∈ {1, . . . , n}
(see Figure 4.10). Considering an individual ant, all these decisions have to
be computed sequentially as every decision directly depends on its preceding
decisions. For each decision, the ant has to compute the following sequence of
steps:

Calculation of selection probabilities: The selection probabilities pij are com-
puted for all items in selection set S:

∀j ∈ S : pij =
τα
ij · η′ij∑

l∈S τα
il · η′il

, (4.8)

with η′ij representing one of the four possible alternative heuristics2 proposed
in Section 4.3.3. In order to create the probability distribution, it is not
necessary to calculate the denominator in Equation 4.8 and to perform the
division. It is sufficient to calculate the prefix sum

∀j ∈ S : prij =
∑

l∈S,l≤j

τα
il · η′il (4.9)

over the numerators of the as yet unselected items. A hardware implemen-
tation on FPGA requires O(log n) time to compute this prefix sum.

2In the case of the τ -heuristic, no multiplications are afforded as heuristic information is
integrated into the pheromone matrix.
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Generation of random number: An integer random number ri is drawn from
the interval ri ∈ {0, . . . , Bi − 1}, where the upper bound Bi is determined
by the maximum prefix sum Bi = maxl∈S pril in row i. Random numbers
on FPGAs can be generated by an appropriate choice of a parallel pseudo
random number generator [Ackermann et al., 2001], which can produce a
random number in O(1) time.

Selection: Random number ri is compared with the prefix sums calculated in
row i. If pri,j−1 ≤ ri < prij, then item j ∈ S is selected and removed
from S. The parallel implementation in hardware allows the selection to be
computed in O(1) time.
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Figure 4.10: Example of a schedule of tasks associated with the computations
for one generation of m = 3 ants starting from ant number a. Ants are piped
systolically through a pheromone matrix consisting of n rows. Matrix rows are
updated all at once. Key: D = decision, E = evaluation, CMP = comparison,
UPD = update, and STPC = stopping condition.

The time to compute a decision amounts to O(log n), such that a complete
solution is constructed in O(n · log n). As ants are piped through the pheromone
matrix (or vice versa), multiple solutions can be constructed concurrently. With
respect to the number of simultaneously active ants, the hardware implementation
attains a pipelining degree of n, and solution constructions can be started with
a period of O(log n).

Evaluation Every solution constructed by an ant is assigned a solution quality.
If the optimization problem permits, this evaluation can be split into a sequence
of n evaluations of individual ant decisions. This online evaluation (cf. Section
2.3.2) means that it is possible to calculate how much an individual decision
Dai contributes to the final solution quality. In Figure 4.10, the corresponding



72 CHAPTER 4. ACO ON RECONFIGURABLE ARCHITECTURES

process is denoted by Eai, which can be started as soon as the associated decision
Dai has finished. In order to maintain a rapid flow of solution constructions and
evaluations with a period of O(log n), it is essential that every evaluation Eai of
a single decision can also be computed in at most O(log n) time.

Consider TSP as an example: If in decision Dai city j is selected, the respective
evaluation simply consists of adding distance dij to the length of the path along
all as yet visited cities. Obviously, this operation demands only O(1) time. The
same is true for many scheduling problems. With respect to QAP, the sequential
evaluation of a solution in software usually requires a computation time of O(n2),
whereas in hardware, this process can be divided into a sequence of n evaluation
steps (one per assignment) each requiring O(log n) time.

Comparison The qualities of new solutions are compared with each other to
determine the best solution of the current generation. The systolic construction of
new solutions also allows comparisons to be done on the fly: The latest solution
is compared with the best of the previously constructed solutions of the same
generation. After m − 1 comparisons the generational-best solution is known.
Every comparison takes O(1) time and does therefore not affect the critical path.
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Figure 4.11: Update operations as they are propagated through the pheromone
matrix for all three update modes. Update operations are represented by shaded
boxes with numbers. Equal numbers indicate that the corresponding update
operations belong to the same update. In this example, the initial six updates
are shown with n = 9, m = 3, and M = 9.

Pheromone Matrix Update The pheromone matrix is modified according to
an update solution, which might be the best solution of a generation or the hith-
erto overall best solution found (elite solution). With respect to C-ACO, those
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entries in the pheromone matrix, which are associated with the update solution,
are incremented by the value stored in the update counters. The hardware im-
plementation allows to parallelize the requested operations. Depending on the
respective pipelining type (cf. Section 4.3.4.2), three different update modes can
be distinguished:

ATONCE: In the case that ants are piped through the pheromone matrix, the
circuitry for each matrix cell memorizes the decision made by each passing
ant, i.e. whether the cell is selected or not. After an update solution
has been determined, the most intuitive approach is to update the rows
of the pheromone matrix all at once (see Figure 4.11a). This is done by
broadcasting to every matrix cell the index of the ant, which constructed
the update solution. This index is used as an address to restore the decision
made for the update solution. This at-once-update can be executed very
efficiently in O(1) time. However, the matrix is updated while ants are
engaged in solution construction. With respect to a solution being currently
constructed, this means that one part of this solution may possibly be
produced based on older pheromone information than another part of the
very same solution. It must be examined how much impact this online
pheromone update has on optimization performance.

PIPED: This update mode also targets the parallel implementation with piped
ants. In contrast to ATONCE, the index of the updating ant is not broad-
cast to the whole pheromone matrix, but piped top-down through the ma-
trix rows within the flow of ants constructing solutions (see Figure 4.11b).
As before, this index is used as an address to restore the decision made for
the update solution. As opposed to ATONCE, update steps do not inter-
fere with solution construction. Like in the sequential execution mode, an
individual solution is entirely constructed based on pheromone information
of the same age. The operations within a single row require O(1) time and
can be executed in parallel to solution construction.

STATIONARY: When pheromone matrices are piped through a statically al-
located ant array, decisions are stored within the ant circuitry. This means
that each ant can memorize the solution it constructed. After the update
solution of a generation has been determined, the solution index is broad-
cast to the ants thereby identifying the ant, which constructed and stored
this solution. Immediately, this ant starts updating the pheromone values.
An update operation is performed with every matrix row received by the
stationary positioned update ant. Figure 4.11c shows that the propaga-
tion of update operations very much resembles the PIPED update process.
However, updates do not start consistently from matrix row number 1. The
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first row to be updated rather depends on the position of the update ant
within the ant array. Consequently, updates can interfere with solution
constructions. One part of a solution may be created based on older phe-
romone information than the other part. This interference can be avoided
if the update is delayed until row number 1 of the pheromone matrix is
passing the update ant. As before, the update operations within a single
row require O(1) time.

To save computation time, all three update modes are executed in parallel
to ant decisions. However, read-write-conflicts must be avoided while accessing
pheromone values.

Stopping Conditions Stopping conditions are also checked on the fly and
do not influence the critical path. The most common stopping condition is to
terminate the optimization after a predefined maximum number of generations
executed. In hardware this stopping condition can easily be realized by a gener-
ation counter.

4.3.4.4 Experimental Results

In experimental studies, the sequential and the parallel implementation of C-
ACO are compared with each other. For both variants, also in the parallel
case, the results are obtained from simulations in software. The parallel vari-
ants comprise both types of pipelining (PA and PP). The parallel PA variant is
tested with the ATONCE and the PIPED update mode, whereas the algorithm
with PP is combined with the STATIONARY update mode. The latter one is
also run with delayed update, such that every matrix update starts from row
number 1. As problem instance, QAP instance tai100a with a problem size of
n = 100 is used with constant parameters q0 = 0.3, α = 1, β = 0, τmin = 1,
τinit = 10, and including elitism. The parallel variant with PP is executed with
an ant array of size M = n and chooses the generation size from the range
m ∈ {1, 2, 4, 5, 10, 20, 25, 50, 100} such that m is a divider of M . All other com-
binations are started with m ∈ {1, . . . , n}. For every algorithm run, the best
assignment cost is recorded, of which the average is calculated over 20 repetitions
with different random seeds.

For a varying generation size m, Figure 4.12 shows the average assignment
cost of the QAP obtained after 12 million solutions have been generated. Note
that the comparison based on solutions generated does not account for differ-
ences in execution speed. In particular, the potential speedup of the parallel
over the sequential implementation is disregarded at this stage. This experiment
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solely aims to examine the impact of different execution and update strategies on
optimization performance.
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Figure 4.12: Comparison of execution and update modes for varying generation
size m after 12 million solutions generated.

Considering the sequential, the parallel PA ATONCE, and the delayed PP
STATIONARY execution and update modes, solution qualities improve with a
growing number of ants per generation. However, starting from a generation size
of approximately m ≥ 8, the solution qualities do not change much. On average,
these three execution and update modes perform equally well. Seemingly, the
concurrent pheromone updates by PA ATONCE, which interfere with the con-
tinuous parallel solution construction, has no measurable impact on optimization
performance.

The qualities for the parallel PA PIPED ad PP STATIONARY variants im-
prove with an increasing generation size till about m = 20. These two execu-
tion and update modes perform slightly worse than the sequential, parallel PA
ATONCE, and the delayed PP STATIONARY variants. Obviously, the PP STA-
TIONARY variant benefits from the introduction of delayed updates.

Figure 4.13 shows the development of the average solution qualities during the
complete optimization run executed with the generation size, which yields the re-
spective best average assignment cost after 12 million solutions generated. The
curves show no significant differences between the five alternative execution and
update modes. The results suggest that concurrent pheromone update during
solution construction of active ants does not notably affect optimization perfor-
mance. Furthermore, both types of pipelining, piped ants and piped pheromone,
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are equally well suited. However, piped ants should preferably be combined with
ATONCE update and piped pheromone works best with delayed STATIONARY
update. All subsequent examinations are based on piped ants and ATONCE
update mode.

 21.6

 21.8

 22

 22.2

 22.4

 22.6

 22.8

 23

 0  2  4  6  8  10  12

av
er

ag
e 

as
si

gn
m

en
t c

os
t /

 1
06

solutions generated / 106

Execution and Update Modes, Runs With Best m

sequential
parallel PA ATONCE

parallel PA PIPED
parallel PP STATIONARY

parallel PP STATIONARY delayed

Figure 4.13: Comparison of execution and update modes during complete op-
timization runs. Average assignment cost for respective best generation size m.

4.3.5 Comparison Modes

Commonly in ACO, multiple recently constructed solutions are compared with
each other to determine the best solution, which is then allowed to update the
pheromone matrix. In practice, the methods applied to identify updating solu-
tions and the frequency of performing matrix updates may differ. As one possible
way of classification, it is proposed to distinguish between the generational and
the non-generational comparison mode.

4.3.5.1 Generational Comparison Mode

The most widely used approach is to wait for all m ants of a generation to com-
plete their solution constructions. Thereafter, these m new solutions are com-
pared to determine the best solution, which is used for updating the pheromone
matrix. This generational update mode has also been employed in all previous
examinations.



4.3. COUNTER-BASED ACO (C-ACO) 77

4.3.5.2 Non-generational Comparison Mode

In the parallel hardware implementation, the pipelining of ants through the phe-
romone matrix produces new solutions with a period of O(log n). This steady
flow of new solutions suggests to compare solutions online instead of waiting for
a sequence of solutions to complete. This means that each time a solution has
been constructed, it is immediately compared with others. If a best solution is
found, this solution is as before allowed to perform a matrix update. Since this
approach differs from the standard generational way of comparing solutions, it is
referred to as the non-generational comparison mode.

A kind of non-generational comparison is also proposed in [Maniezzo, 1999] (cf.
Section 2.5.1). A further variant of non-generational comparison for RMesh ACO
(cf. Section 4.2) is presented in [Merkle and Middendorf, 2002a]: A new solution
is allowed to update the pheromone matrix if it is better than the m′ − 1 best
solutions generated by the m− 1 preceding ants, where m′ and m with m′ ≤ m
are external algorithm parameters. However, the algorithm allows updates to
the pheromone matrix while other ants are involved in solution constructions.
Therefore, it is possible that the m − 1 preceding ants have worked on older
pheromone information and might have worse chances to find good solutions.
Hence, the authors propose a modification of the described comparison method:
Whenever an ant has created a new solution, it has to wait until the succeeding
b(m− 1)/2c ants have also finished their solution construction. This ant is then
allowed to update the pheromone matrix, if its solution is better than the m′− 1
best solutions of the d(m− 1)/2e preceding ants and the b(m− 1)/2c succeeding
ants.

solution quality

solution quality

solution quality

solution quality

qualitysolutionnew arriving

mprc

msuc

candidate pointer qualitycandidate solution

Figure 4.14: Comparison queue filled completely with mprc preceding solutions,
msuc succeeding solutions, and a candidate solution. New arriving solutions are
inserted at the top.

The comparison method introduced in this thesis can be considered as a gen-
eralization of the two previously described approaches. Whenever a new solution
has been constructed, it is inserted into a so-called comparison queue, which pro-
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vides storage for multiple solution vectors and their associated solution qualities
(see Figure 4.14). The queue maintains a pointer to a candidate solution, which
is allowed to update the pheromone matrix if it is the winner in a comparison
with its mprc preceding and msuc succeeding solutions. Two types of comparison
are distinguished:

BEST: The candidate solution is allowed to update the pheromone matrix if it
is at least as good as the best of the mprc preceding and msuc succeeding
solutions.

AVERAGE: The candidate solution is allowed to update the pheromone matrix
if it is at least as good as the average over all mprc preceding and msuc

succeeding solutions.

In the very special case of mprc = msuc = 0, the candidate solution always updates
the pheromone matrix. All matrix updates are performed in parallel with solution
constructions by other ants. After the initialization of the algorithm, the first
comparison takes place after mprc + msuc + 1 solutions have been created, i.e. as
soon as the comparison queue is filled entirely. The queue is organized according
to a FIFO-policy, i.e. after every comparison (and matrix update if applicable),
the oldest solution is removed from the queue before the next arriving solution is
inserted.

4.3.5.3 Experimental Results

Experimental studies are conducted to support the design of an appropriate com-
parison procedure for the parallel implementation of C-ACO. These studies are
sub-divided into two stages: First, aspects related to the new non-generational
comparison mode are examined followed by a competition between the genera-
tional and the non-generational comparison mode.

Properties of the Non-generational Update Mode The first series of ex-
periments examines the effect of the two possible comparison types (BEST and
AVERAGE) and determines a good choice of parameters msuc and mprc. All
experiments are run on the QAPLIB instance tai100a with n = 100 and the
following common parameter values: q0 = 0.3, α = 1, β = 0, τmin = 1, and
τinit = 10. The number of successors msuc = 2k and the number of predecessors
mprc = 2k are scaled logarithmically with k ∈ {0, . . . , 14}. Additionally, the case
of a comparison queue without successors (msuc = 0) or without predecessors
(mprc = 0) is considered. Both comparison types, are tested with and without
elitism. For every algorithm run, the best assignment cost is recorded, of which
the average is calculated over 20 repetitions with different random seeds. Figures
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4.15 and 4.16 show the results after 1.2 million solutions per simulation run have
been generated with the attained average assignment cost represented by colors.
The axes for msuc and mprc are scaled logarithmically. To be able to also include
the results for msuc = 0 (and mprc = 0), the respective solution qualities are
plotted at the actual position of msuc = 0.5 (and mprc = 0.5).
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Figure 4.15: Average assignment cost after 1.2 million solutions generated for
a varying number of succeeding and preceding ants. QAPLIB instance tai100a,
without elitism.

Figure 4.15 shows the results obtained with no consideration of an elitism
update strategy. Applying comparison type BEST (see Figure 4.15a), it is unfa-
vorable to choose a high value of predecessors mprc, because the candidate solution
has to compete against a large number of preceding solutions. This leads to very
infrequent updates of the pheromone matrix and too many solutions are gener-
ated on the very same distribution of pheromone information. Very high values of
succeeding solutions msuc also worsen the attainable solution quality as the phe-
romone matrix is updated with a comparatively old candidate solution, which
was generated msuc algorithm steps ago. However, the incline of assignment cost
regarded for high values of msuc is less strong than for equally high values of mprc.
In general it is unprofitable to choose a very high number of successors and/or
predecessors as it takes an increasingly long time to fill the comparison queue
completely, such that the overall first matrix update is performed very late. This
is especially true for short simulation runs. In the case of msuc = mprc = 0,
candidate solutions (also very bad ones) are always allowed to update the phero-
mone matrix. This lack of competition with other solutions results in the worst
solution quality measured. With respect to the parameter combinations tested,
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the overall best choice (indicated by the red circle) is situated at msuc = 256 and
mprc = 16 with an average solution quality of 21969330. Starting from about
300000 solution constructions, good solution qualities are always located in the
interval msuc ∈ [128, 1024] in combination with mprc ∈ [0, 256]. It can be observed
that in very early phases of the algorithm run, this favorable region is located
closer to the origin with msuc, mprc ∈ [0, 32] (except for the origin itself).
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Figure 4.16: Average assignment cost after 1.2 million solutions generated for
a varying number of succeeding and preceding ants. QAPLIB instance tai100a,
with elitism.

Considering the results for comparison type AVERAGE (see Figure 4.15b),
the choice of a very high parameter value mprc has an less significant impact
on solution quality than observed for comparison type BEST. The candidate
solution quality is compared with the average quality of the other solutions in the
queue. Therefore, a high number of predecessors still allows for relatively frequent
matrix updates, as opposed to comparison type BEST. As far as the number
of successors is concerned, comparison type AVERAGE shows a behavior very
similar to its counterpart BEST. However, the incline in the average assignment
cost is very rapid. Therefore, three additional test points are inserted in the
interval msuc ∈ [8192, 16384]. The deterioration in solution quality is also due
to the updates based on comparatively old candidate solutions. The origin with
msuc = mprc = 0 is as before related with the worst average solution quality.
With respect to the parameter combinations considered, the overall best setting
is situated at msuc = 4096 and mprc = 128 with an average solution quality
of 22097890. A region of good solution qualities can be identified for msuc ∈
[2048, 8192] irrespective of the choice of the number of predecessors. As above,
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in very early phases of the algorithm run, this favorable region is situated closer
to the origin.

The results obtained from the corresponding simulation runs with an addi-
tional pheromone update by the elite solution is visualized in Figure 4.16. In the
case of comparison type BEST (see Figure 4.16a), the minimum average assign-
ment cost of 21947490 is measured for msuc = 32 and mprc = 0. For comparison
type AVERAGE, the minimum is located at msuc = 1 and mprc = 16 with a
solution quality of 22017570 (see Figure 4.16b). It is noteworthy that for com-
parison type AVERAGE with elitism, the solution qualities are very insensitively
to changes of msuc and mprc. The deterioration in solution quality for a high
number of successors is measurable, though less immense than in Figure 4.15b.
For both comparison types, BEST and AVERAGE, the favorable regions of good
combinations of successors and predecessors are located closer to the origin than
observed in the simulations without elitism. In contrast to the algorithm runs
without elitism, the favorable regions constantly stay at about the same location.
The solution qualities for msuc = mprc = 0 are better than in the experiments
without elitism due to the updates with the potentially good elite solution.

Overall it can be summarized that the solution qualities obtained for com-
parison type BEST are better than for AVERAGE and that, as expected, the
inclusion of elitism further improves optimization performance. In accordance
with the results of Merkle and Middendorf [2002a], it is beneficial to compare the
candidate solution not only with its predecessors (as done in Maniezzo [1999])
but also to compare it with succeeding solutions. The presented results show
that it might even be better to completely abandon a comparison with preceding
solutions (i.e. mprc = 0), thereby reducing the amount of resources needed for
the implementation of the comparison queue.

Generational versus Non-generational Comparison The next experiment
aims to examine the differences between the generational and the non-generational
comparison mode. As outlined in Section 4.3.4.3, the comparison of solutions is
embedded in a sequence of tasks including solution construction, evaluation, com-
parison and pheromone matrix update. The attainable execution speed strongly
depends on how these tasks are synchronized. The synchronization is determined
by the execution time of these tasks and with which period they can be started.
To efficiently exploit the pipelining capabilities, it is essential that the periods are
in the same order of magnitude. However, depending on the respective execution
times, it may happen that the final task of updating the pheromone matrix is
delayed by some time interval, which is referred to as the update delay δ. Such an
update delay may occur for instance, when solution constructions are followed by
some local optimization or repair mechanisms, or when the sequence of evaluating
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ant decisions is preceded/succeeded by some initial or concluding calculations, or
when comparison is not done on the fly but at once after an entire generation.
In the following, it is abstracted from the a specific reason for the occurrence
of update delays. It is simply assumed that after every solution construction all
subsequent tasks are delayed by δ algorithm steps.

The experiment is also run on QAPLIB instance tai100a with n = 100 and
the following common parameter values: q0 = 0.3, α = 1, β = 0, τmin = 1,
and τinit = 10. The update delay, applied to both comparison modes, is scaled
logarithmically within the range between 0 ≤ δ ≤ 217. Experiments are run with
and without elitism. In algorithm runs with elitism, the generation size m = 36
for the generational comparison mode is a favorable choice with regard to the
experimental results in Section 4.3.4.4. As for the non-generational comparison
mode, the preferable settings are retrieved from the previous experiment, i.e.
comparison type BEST is combined with mprc = 0 and msuc = 32. Algorithm
runs without elitism use a generation size of m = 98 (determined in preliminary
experiments) for the generational comparison mode, whereas comparison type
BEST is combined with mprc = 16 and msuc = 256 with respect to the non-
generational comparison mode. The best assignment cost is recorded, whereof
the average is calculated over 40 repetitions with different random seeds.
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Figure 4.17: Average assignment cost after 12 million solutions generated for a
varying update delay δ. QAPLIB instance tai100a.

Depending on the specific update delay, the average assignment cost after
12 million solutions generated is plotted in Figure 4.17. Regarding the results
without elitism (cf. Figure 4.17a), initially, both comparison types react very
insensitive to a change of the update delay δ. Also common to both comparison
modes is that for very high values of δ, solution qualities degrade considerably.
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Obviously, a moderate update delay does not notably affect optimization perfor-
mance, whereas a high delay may cause too many solutions to be constructed
based on obsolete pheromone information. It is noteworthy that the genera-
tional comparison mode can even profit from a delayed pheromone update with
update delays around δ = 16384. This behavior can be observed during the
complete algorithm run. However, this phenomenon cannot be recorded for the
non-generational comparison mode. Almost consistently, the non-generational
comparison mode performs better than the generational counterpart. The results
obtained from the experiments with elitism also show a decline in optimization
performance as the update delay takes very high values (see Figure 4.17b). How-
ever, the deterioration is less immense than in the experiments without elitism.
The differences between the solution qualities of both comparison modes are not
significant.

In the following, the influence of an update delay is further examined by
observing the development of the pheromone entropy. The pheromone entropy in
row i shall be defined as Hτ

i = − 1
n
·∑j=n−1

j=0 log pij, with pij denoting the relative
frequency of pheromone value τij in the i-th row of the pheromone matrix. The
average pheromone entropy Hτ = 1

n
·∑i=n−1

i=0 Hτ
i measures the uniformity/diversity

of the distribution of pheromone values within the pheromone matrix. The term
entropy is introduced an explained in [Shannon, 1948].

Figure 4.18 shows the average pheromone entropy associated with the algo-
rithm runs in Figure 4.17a with generational comparison mode, without elitism
and for a selection of update delays between δ = 0 and δ = 131072. All exe-
cutions start with an average pheromone entropy of Hτ = 0 as all pheromone
values are initialized to τij = τmin + τinit. In the case of immediate updates
(δ = 0) the overall highest diversity of pheromone values is attained after 1276
algorithm steps. This is followed by a decline of pheromone entropy until a level
of about 0.08 is reached, which corresponds to a converged pheromone matrix,
i.e. in every matrix row, all freely movable pheromones are concentrated on one
entry while the others remain on the minimum pheromone value τij = τmin. With
an increasing update delay δ > 0 more and more pheromones are accumulated
in the update counters before the first update takes place. Correspondingly, dur-
ing the first 2048 algorithm steps, the maximum attainable pheromone entropy
becomes increasingly restricted. The curves for update delays δ ≥ 2048 show
that all disposable pheromones have entirely been transferred into the update
counters prior to the first update. This means that temporarily, all pheromone
entries fall to their minimum values τmin and the average entropy decreases to
0. Starting with the first update, algorithm runs with δ ≥ 1024 are subject to a
second rise in entropy. Regarding executions with δ ≥ 8192, it can be observed
that pheromone matrices do not converge in a steady but rather wave-like form
with a wave length in the proximity of δ algorithm steps.
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Figure 4.18: Development of average pheromone entropy for generational com-
parison mode, without elitism, and for different update delays δ.

Seemingly, entropy momentarily falls whenever the algorithm has been able to
find a new good solution, but the following updates based on comparatively old
solutions disperse the distribution of pheromone values leading to an intermittent
increase in pheromone entropy. Presumably, update delays cause a dispersion of
pheromone values with two different effects. On the one hand, the diversity of
pheromone values is maintained for a longer time, which may potentially avoid
getting trapped in unfavorable local optima. On the other hand, the perpetual
update with old solutions slows down the convergence of pheromone values and
hinders the rapid improvement of solution qualities. Figure 4.18 shows that only
algorithm runs with δ ≤ 16384 can finally converge (all others remain on an
almost constant level for about the last 3000000 algorithm steps). It is also an
update delay of δ = 16384 which yields the best solution qualities in Figure
4.17a. Given a maximum number of 12 million solutions generated, apparently,
this update delay offers the right balance between prevention of local optima and
fast convergence speed.

This experiment demonstrates that the preference for one of the two com-
parison modes strongly depends on the specific update delay. An appropriately
chosen update delay δ ≤ 16384 does not critically affect or can, under some
circumstances, even improve optimization performance. This is an important
result, as the designer may choose from a wider range of circuit instantiations.
For a given hardware algorithm, usually, there exist alternative instantiations,
for which one has to consider trade-offs between specific design objectives, e.g.,
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size and speed: A small-sized but relatively slow module can very often be sub-
stituted for a larger but faster circuit and vice-versa. Especially, in the case of
scarce resources, one may prefer a small but slower module if the induced update
delay is acceptable.

All subsequent experiments are made for δ = 0 and including elitism. For this
parameter setting, both comparison modes perform equally well. It is decided to
continue the following examinations for the generational variant, as in practice
this comparison mode is widest spread.

4.3.6 Decision Sequencing

As a constructive meta-heuristic, ACO creates new solutions by a sequence of
local ant decisions. Considering optimization problems with a place-item encod-
ing of the pheromone matrix, it is common practice to let all ants make the
first decision for row number 0 and to always step one row further with every
subsequent decision. This decision sequence DS = (0, . . . , n − 1) is equal to all
ants and does not change during the algorithm runtime. Too much importance
is given to the first decisions. At the beginning of the solution construction, an
ant can choose from a wider range of available items than at later stages of the
construction process. An item j may be favorable at the beginning for it has a
high pheromone value τij for a small row index i. Therefore, it is very likely to
be selected at an early stage of the construction process and to be removed from
selection set S, even if a later placement would actually be more favorable.

[Merkle et al., 2002] observe that during the process of solution construction,
the strong interdependencies between ant decisions lead to a so-called selection
bias. This means that at later stages of the construction process, the distribution
of pheromone values in a row of the pheromone matrix does not properly reflect
the distribution of selection probabilities. Hence, the order in which an ant makes
decisions plays an important role and can influence the degree of selection bias.
In the following, three different types of decision sequences are distinguished.

4.3.6.1 Fixed Decision Sequence

The fixed decision sequence (FDS) refers to the standard decision sequence as
introduced before. All ants make the first decision in the first row and then
proceed top-down through the pheromone matrix. A variant to this kind of
sequencing for QAP is presented in [Dorigo et al., 1996]. As outlined in Section
2.4.2.2, the authors suggest to sort the facilities in non-increasing order of their
flow potentials. This means that the at the beginning of the algorithm, the rows of
the pheromone matrix are permuted such that facilities with high flow potentials
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are assigned earlier in the process of solution construction. Subsequently, this
variant is called the sorted fixed decision sequence (S-FDS).

4.3.6.2 Random Decision Sequence

Using the random decision sequence (RDS), an ant steps through the phero-
mone matrix following a randomly generated permutation of the row indices
i ∈ {1, . . . , n}. For every solution to be constructed, a new random sequence is
created. After multiple solution constructions according to RDS, on average the
decisions in all matrix rows become equally important. A drawback of this ap-
proach is that ants proceed arbitrarily through the rows of the pheromone matrix,
which in turn prohibits pipelining. Therefore, RDS is not suited for a hardware
implementation.

Applying ACO to the Single Machine Total Weighted Deviation Problem
(SMTWDP), [Merkle and Middendorf, 2001c] compare FDS with RDS. It is
shown that RDS yields better solutions than FDS, even though the optimization
problem considered only allows to integrate heuristic information when scheduling
jobs in a forward order. Further improvements are obtained by using two types
of ants simultaneously: One group of ants complies to FDS (with heuristic), the
other proceeds according RDS (without heuristic).

4.3.6.3 Cyclic Decision Sequence

The cyclic decision sequence (CDS) allows for a parallel implementation in hard-
ware but diverts from the principle of a continuous flow of ants being piped
top-down through the pheromone matrix as described in Section 4.3.4.2. The
idea is to evenly distribute a generation of m ants over n rows of the phero-
mone matrix. Here it is supposed that ant a is placed in row number a with
a ∈ {0, . . . ,m − 1}. After every algorithm step, all ants are shifted cyclically
one row forward. This means that for each ant a the decision sequence can be
described as DSa = (r

(a)
0 , . . . , r

(a)
n−1) where the i-th decision of ant a is made in

row r
(a)
i = (a + i) mod n with i ∈ {0, . . . , n − 1}. CDS intends to combine the

advantages of the fixed and the random decision sequence: Pipelining of ants
is maintained, and on average the decisions in all matrix rows are equally im-
portant. One further advantage of the new decision sequence is that it allows
an easy use of heuristic information for many types of problems. For RDS the
use of heuristic information in such problems is more difficult (see [Merkle et al.,
2002]). Using this type of decision sequencing, it requires AS = m · t algorithm
steps to complete t generations. Note that the parallel implementation of the
non-generational update mode cannot be combined with CDS. The continuous
process of comparison and pheromone update demands FDS instead.



4.3. COUNTER-BASED ACO (C-ACO) 87

4.3.6.4 Experimental Results

Software simulations are conducted to compare the fixed decision sequence (FDS,
S-FDS) and the cyclic decision sequence with regard to the parallel hardware
implementation of C-ACO. As the random decision sequence is not suited for
systolic algorithms, it is tested for the sequential implementation. Experiments
are run on the QAP instance tai100a with problem size n = 100 with the
following constant parameters: q0 = 0.3, α = 1, β = 0, τmin = 1, τinit = 10,
and including elitism. The number of ants per generation is varied with m ∈
{1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Note that for CDS, only with m = n
the maximum possible pipelining degree can be achieved. For every algorithm
run, the best assignment cost is recorded, of which the average is calculated over
20 repetitions with different random seeds.
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Figure 4.19: Comparison of decision sequences after 12 million solutions gener-
ated.

For all decision sequences under test, Figure 4.19 visualizes the average as-
signment cost for a varying number of m ants per generation. As in the previ-
ous experiment, the curves show the solution qualities obtained after 12 million
solutions generated. The differences between the results for the fixed decision
sequences, FDS and S-FDS, are only marginal. The results obtained for CDS
and RDS are, as expected, better than for the fixed decision sequences. The
optimization performance for both, CDS and RDS, is approximately the same.

Figure 4.20 visualizes the development of the average solution qualities dur-
ing the complete optimization executed with the generation size, which per-
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formed best after 12 million solutions generated. The results show that both
CDS and RDS outperform the fixed decision sequences. FDS and S-FDS differ
only marginally and the curves for CDS and RDS are almost congruent. The ex-
perimental studies clearly demonstrate that sequencing ant decisions in a cyclic
order can compete with the random decision sequence. CDS should therefore be
preferred for the parallel implementation in hardware, as it allows for a pipelined
flow of ants through the pheromone matrix, but also for the sequential implemen-
tation in software, CDS represents an attractive substitute to RDS.
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Figure 4.20: Comparison of decision sequences during complete run with best
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4.3.7 Matrix Encoding

Depending on the optimization problem, the pheromone matrix may be encoded
in different ways as outlined in Section 2.4.2. Most common are the place-item
encoding (PIE) and the item-item encoding (IIE). Generally, PIE is preferred if
it is essential to model to which place in the solution vector an item should be
assigned to. IIE is more suited to express which item is selected next after the
previously selected item. Therefore, IIE is commonly chosen for TSP, which is
used as an example for the subsequent explanations.

If an ant, currently located in row number i, randomly selects city j, then the
ant moves to row number j to make its next decision according to the IIE encod-
ing. Hence, ants can move arbitrarily between the rows of the pheromone matrix.
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This is a major drawback with respect to the parallel hardware implementation
as IIE prevents a continuous pipelining of ants. Alternatively, the pheromones
could be place-item encoded, though this is commonly not done for TSP as it is
not meaningful to which place in the solution vector a city is assigned to. In fact
there exist n different solution vectors, which all map to the same tour, because
shifting the sequence of cities does not change the tour.

4.3.7.1 Place-Item-Item Encoding

A new matrix encoding is proposed, which unifies the advantages of PIE and
IIE. Therefore, this approach is named place-item-item encoding (PIIE). The
pheromone matrix is represented in the same manner as IIE. However, ants make
decisions while they are row-wise moving through the matrix as if it was place-
item encoded. Considering TSP, in every row i, an ant selects a successor j for
city i. For its next decision, the ant does not move to row j but selects a successor
for city i + 1 as shown in Figure 4.21.
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(a) item-item encoding
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(b) place-item-item encoding

Figure 4.21: The same tour along cities (A,D,E,B,C) constructed by using IIE
(a) and PIIE (b). Numbers on arcs indicate the order in which cities have been
selected.

Starting from single cites, PIIE produces many small paths, which are linked
together until at last a complete tour is constructed. During the construction
process the creation of cycles must be avoided (only the last decision may produce
a Hamiltonian cycle comprising all n cities). Using IIE, a tour is constructed
by repeatedly appending cities to the as yet constructed path. Therefore, it is
sufficient to exclude selected cities from selection set S to prevent the creation of
cycles.

For PIIE, it is proposed to complement the selection set by two tabu-tables.
One of them is called the tabu-to-table Tto. For an ant located in city i, Tto(i)
returns the city to which the ant must not move to in order to avoid the creation
of a cycle, the ant may only select a city from S \ {Tto(i)}. Consider the example



90 CHAPTER 4. ACO ON RECONFIGURABLE ARCHITECTURES

shown in Figure 4.22: The current location i of the ant is always the last city on a
path starting from city h = Tto(i). It is sufficient to declare city h as a tabu, since
all successors of h have already been excluded from S. It is supposed that the ant
randomly selects city j. A selected city is always the first city of another path. If
these two paths are linked together, the tabu-to-table has to be updated for city
k, which is the last city of the appended path. In order to determine this city,
a further tabu-table is maintained. Given a city j, the tabu-from-table provides
city k = Tfrom(j) from which the ant is not allowed to come from. Algorithm 4.2
lists all steps required to update both tabu-tables when an ant decides to select
city j in row number i. The update of the tabu-tables can be computed very
efficiently in O(1) time.

j ki

select

h

Figure 4.22: An ant located in city i may not return to one of the preceding
cities of its path. City j is selected, which is the first city on a different path.

Algorithm 4.2 Update of tabu-tables.

1: h := Tto(i)
2: k := Tfrom(j)
3: Tto(k) := h
4: Tfrom(h) := k

4.3.7.2 Experimental Results

In experimental studies, the three different types of matrix encoding, PIE, IIE,
and PIIE, are compared with each other. All simulations are performed with C-
ACO on the TSPLIB instance kro124p with n = 100 cities and with the following
common parameters: q0 = 0.3, α = 1, β = 5, τmin = 1, τinit = 10, and including
elitism.

PIE and PIIE are tested in combination with CDS and RDS, whereas im-
plicitly IIE defines its own decision sequence and is therefore compared indepen-
dently with its opponents. Algorithms with CDS are run in parallel execution
mode while RDS and IIE can only be executed sequentially. The number of ants
per generation is varied with m ∈ {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. As
before, the parallel execution of CDS can only benefit from the maximum degree
of pipelining with the generation size set to m = n. For every algorithm run, the
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best tour length is recorded, of which the average is calculated over 20 repetitions
with different random seeds.
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Figure 4.23: Comparison of different types of matrix encoding.

Figure 4.23a shows the best tour lengths obtained for a varying number of
ants per generation after 12 million tours constructed. It can be seen that IIE
and PIIE far outperform the PIE variant. The solution qualities for IIE are
somewhat better than for PIIE with CDS. For both, IIE and PIIE, solutions are
encoded in the same fashion, the only difference lies in the order in which the
ants step through the pheromone matrix. Presumably, the alternating sequence
of ant decisions inhibited in IIE can reduce the selection bias and gives this type
of matrix encoding a slight advantage over PIIE with CDS. However, IIE is not
suitable for a hardware implementation as the ants move arbitrarily between the
rows of the pheromone matrix. Using PIIE with RDS in place of CDS consistently
achieves better results than IIE, since ants make their decisions in an arbitrary
order, thereby reducing the degree of biased selections. Whereas PIIE benefits
from sequencing ant decisions in a random order, it is noteworthy that in combi-
nation with RDS the performance of PIE deteriorates drastically. The respective
average tour length is lifted from an average value of 38982.9 (PIE with CDS) to
a level around 145899 (not visualized).

Choosing the generation size, which achieves the best solution qualities after
12 million tours generated, Figure 4.23b shows the tour lengths during the whole
algorithm run. The results for IIE and PIIE with CDS differ only slightly. Both
of them far outperform the PIE variant, whereas PIIE with RDS is throughout
the best choice. The experiments conducted suggest that PIIE with CDS is an
appropriate alternative type of encoding the pheromone matrix, which supports
pipelining of ants such that traditionally item-item encoded optimization prob-
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lems are also suited for a parallel implementation in hardware. Furthermore,
PIIE in combination with randomly sequenced ant decisions may offer an attrac-
tive substitute for IIE with regard to sequential ACO algorithms.

4.3.8 Mapping C-ACO onto FPGA

This section sketches the mapping of C-ACO onto an FPGA assuming a statically
allocated pheromone matrix with piped ants (PA). Thus, the index of ant a and
its selection set are propagated top-down through the cells of the matrix circuitry.
Such an individual cell is depicted in Figure 4.24.
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Figure 4.24: Circuit of cell (i, j) of the pheromone matrix. For reasons of clarity,
signals for clock, reset and control are omitted.

The current selection set of ant a in row i is denoted by Sai = {sa,i,0, . . . , sa,i,n−1}
with saij = 1 if j has not yet been selected by ant a located in row i, else saij = 0.
Pheromone value τij is stored in a loadable decremental counter with minimum
value τmin. In this design, heuristic knowledge is disregarded, but it can be
extended by one of the alternative heuristics introduced in in Section 4.3.3. Phe-
romones are weighted by α := 1 (common choice in standard ACO, see Section
2.2) to avoid exponentiations. Therefore, the calculation of selection probabilities
(cf. Equation 2.4) can be simplified to pij = τij/

∑
h∈S τih. In order to select an

item, it is not necessary to calculate the denominator in this equation and to
perform the division. It is sufficient to calculate the prefix sum over the numera-
tors of the yet unselected items (as explained in Section 4.3.4.3). Hence, in every
row of the pheromone matrix, the design contains a circuit to calculate the prefix
sum prij =

∑j
l=0 sailτil. Which item is selected next is decided probabilistically

by a random number ri (see, e.g., [Ackermann et al., 2001] for a random num-
ber generator on FPGA). All decisions daij in cell (i, j) are stored in a decision
memory with daij = 1 if pri,j−1 ≤ ri < prij (CMP), else daij = 0. After a gen-
eration of ants have constructed their solutions and the best solution has been
determined, the index a∗ of the best ant best ant index is broadcast to all cells
(assuming ATONCE update). The received index is used as an address to read
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the decision da∗ij made by this ant. If da∗ij = 1 then the load enable signal of
the pheromone counter is asserted and the contents Ui of the update counter is
added to pheromone value τij.

4.4 Population-based ACO (P-ACO)

In the previous section, the C-ACO algorithm is presented as a hardware-oriented
variant of ACO. As explained, this variant exhibits many favorable properties
supporting an efficient FPGA implementation. The Population-based ACO (P-
ACO) algorithm used in this section is introduced in [Guntsch and Middendorf,
2002b]. Originally designed for the sequential implementation in software and tar-
geting dynamic optimization problems [Guntsch and Middendorf, 2002a], P-ACO
also offers certain features making it very attractive for a realization on FPGAs.
Similar to C-ACO, the population-based variant allows to represent pheromone
values by integer numbers, which are confined to an interval between a specific
minimum and maximum. It is also common that both approaches avoid an ex-
plicit evaporation of pheromone values as known from standard ACO. C-ACO
substitutes global evaporation for a local evaporation step with every selection of
an item, whereas P-ACO applies a concept of positive and negative pheromone
updates, which correspond to updates of a so-called population. Giving birth to
the name of this algorithm, the population keeps and maintains a set of previously
generated good solutions.

In the following, the P-ACO algorithm is briefly introduced. Several modi-
fications to the original algorithm are explained, which allow to accelerate the
execution and facilitate the mapping into hardware. The P-ACO algorithm is
actually implemented and tested on FPGA. Furthermore, a new kind of heuristic
is presented as a straightforward extension to the existing hardware implemen-
tation. The following contents concerning P-ACO is based on previous work by
the author of this thesis [Diessel et al., 2002, Scheuermann et al., 2003, 2004a,b].

4.4.1 Introduction

The main idea of the P-ACO algorithm proposed by [Guntsch and Middendorf,
2002b] is to manage a population P = {π0, . . . , πl−1} as a memory of l good
solutions constructed in the preceding iterations with 0 ≤ l ≤ k. Population size
k denotes the maximum number of solutions the population can hold.

From this population the corresponding pheromone matrix can be derived as
illustrated in Figure 4.25. In this example, it is assumed that the pheromone
matrix is encoded in a place-item fashion and that the population comprises the
maximum number of k solutions. Within this population, each solution πh is
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shown as a column, and πh(i) describes the item stored at place number i of
solution h. Initially, every cell in the pheromone matrix is assigned a minimum
pheromone value τmin > 0, which represents a lower bound. Afterwards for
every item πh(i) = j in the population, the respective pheromone value τij is
incremented by a constant amount of pheromone ∆P > 0. Hence, an individual
pheromone value τij can be calculated as follows:

∀ i, j ∈ {0, . . . , n− 1} : τij = τmin + ζij ·∆P , (4.10)

with ζij denoting the number of occurrences of item j at the i-th place of all
solutions in the population, i.e. ζij = |{π ∈ P : π(i) = j}|. It follows that for
each entry in the pheromone matrix, there exist only k + 1 possible pheromone
values between τmin and τmax = τmin + k ·∆P .
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Figure 4.25: Example of a population containing a maximum number of k = 3
solutions and the corresponding pheromone matrix.

As in standard ACO, ant decisions executed by the P-ACO algorithm are
based upon the information stored in the pheromone matrix and optional heu-
ristic knowledge. The difference to standard ACO lies in the pheromone update
procedure, which completely abandons the concept of global evaporation. The
update of the pheromone matrix consists of two steps tightly coupled to a syn-
chronous population update:

Positive update: Whenever the best solution π+ of the current iteration has
been determined, this solution is inserted into the population P := P∪{π+}.
This process is reflected by an equivalent update of all pheromone values
associated with π+:

∀ i ∈ {0, . . . , n− 1} : τiπ+(i) := τiπ+(i) + ∆P . (4.11)
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Negative update: If after a positive update the population contains more than
k solutions, then the oldest solution π− is removed from the population
P := P \ {π−}. This removal corresponds to an equivalent pheromone
update:

∀ i ∈ {0, . . . , n− 1} : τiπ−(i) := τiπ−(i) −∆P . (4.12)

Initially, the population is empty (P = ∅) and is subsequently filled up during
the first iterations until it reaches its maximum capacity k. Afterwards the oldest
solution is always removed whenever a new solution enters the population. This
means that the population is organized as a FIFO-queue of size k. Other schemes
for deciding which solutions should enter/leave the population are discussed in
[Guntsch and Middendorf, 2002a]. As the population behaves like a queue, it is
henceforth proposed to use a so-called queue matrix Q = [qih] as an alternative
notation with qih = πh(i). Therefore, the number of occurrences of item j in the
i-th row of the queue matrix can also be described as ζij = |{h : qih = j}|.

Empirical studies show that P-ACO is a competitive approach in comparison
to other ACO algorithms and that for population size k small values 1 ≤ k ≤ 8
are sufficient for all test instances regarded in [Guntsch and Middendorf, 2002b].
Therefore, k can be considered to be a small problem-independent constant.

4.4.2 Modifications

The modifications proposed in this section allow to speed up the execution of the
P-ACO algorithm and to profitably support the implementation on FPGA. The
first modification concerns the data types used to represent pheromone values.
Focusing on the usual implementation in software, [Guntsch and Middendorf,
2002b] only require the minimum pheromone value and the update values to be
positive real numbers, i.e. τmin ∈ IR+ and ∆P ∈ IR+. In their experimental
studies, the authors further demand that the sum over all pheromone values in a
row is equal to 1. However, scaling τmin and ∆P with a constant ratio ∆P /τmin

produces an identical probability distribution as per Equation 2.4 and therefore
has no influence on the decision process. With respect to an expedited and
resource-efficient implementation on FPGA, it is proposed to set τmin := 1 and
∆P := dfP · n/ke such that both parameters are integer values. Experimental
studies suggest that on average fP = 10 is a favorable choice.

A further modification avails of the fact that in P-ACO the pheromone ma-
trix represents redundant information for it can completely be derived from the
information stored inside the population. Consequently, a method is proposed,
which solely relies on population data, but produces ant decisions equivalent to
those made by means of pheromone information. At this stage it is supposed that
all ant decisions are only based upon pheromone information, thus the selection
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probabilities can be simply expressed as:

∀j ∈ S : pij =
τij∑
l∈S τil

. (4.13)

The integration of heuristic knowledge is discussed later in Section 4.4.5. Also
note that, as practised in conjunction with C-ACO, exponent α is set to 1 so as
to avoid exponentiations. If the probability distribution in Equation 4.13 were
to be built based upon the information stored in the pheromone matrix, every
single ant decision would afford O(n) time on a sequential processor, or O(log n)
time when choosing a parallel implementation (cf. Section 4.3).

With a closer look on the distribution of pheromone values in an arbitrary
row i of the pheromone matrix, there exist at most k values different from τmin

and every single entry has one of at most k + 1 possible pheromone values. This
information, however, is implicitly stored inside the population as pointed up by
Equation 4.10. It is an important aspect of P-ACO, which makes it interesting
for a hardware based implementation, that it transfers less and only the most
important information from one iteration of the algorithm to the next. This
observation inspires an alternative ant decision procedure, which processes data
only provided by the population as depicted in Figure 4.26.
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selection set S

s b0qi0
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q i,k−1
(P)
0 b

(P)
k−1

P−Buffer

Figure 4.26: Process of building distribution of selection probabilities. All
components are shown with their maximum number of items they can store.

Consider a decision in row number i, then population-vector (qi0, . . . , qi,k−1)
denotes the i − th row of queue matrix Q, and {s0, . . . , sN−1} describes the se-
lection set of the N ≤ n yet available items. One by one, all k items in the
population-vector are used to query the selection set whether the respective items
are still contained in S. A successful query (∃j ∈ {0, . . . , N − 1} : qih = sj) is
called a match producing a matching result. This matching result can be either
the matched item sj itself or the address aj = a(sj) at which this item is stored
within the selection set. Here it is assumed that matching results are represented
by matched items, which are collected in a match buffer. As the matched items
are associated with items from the population, this match buffer be more precisely
referred to as the population-buffer (P-Buffer). After all queries are finished, the
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P-Buffer keeps MP ≤ k matched items, each associated with the weight ∆P .
Since item j may occur multiple times within the population vector, the P-Buffer
finally holds ζij copies of this item if j is still contained in S. Filling the P-Buffer
implicitly produces a distribution of selection probabilities:

∀j ∈ S : pij =
τij∑
l∈S τil

=
τmin + ζij ·∆P∑

l∈S(τmin + ζil ·∆P )
=

1 + ζij ·∆P

N + MP ·∆P

(4.14)

A selection is made by drawing an integer random number rn from the range
[0, . . . , N + MP ·∆P − 1]. The selected item j∗ ∈ S is determined as follows:

j∗ :=

{
srn : rn < N

b
(P )
j : else

(4.15)

with j = b rn−N
∆P

c. This means that item j∗ is either chosen from selection set S
or from the P-Buffer. Building up the probability distribution in Equation (4.14)
requires O(k) steps. Drawing a random number and selecting an item can be ac-
complished in O(1) time. Hence, a complete ant decision can be computed in O(k)
time, compared to O(n) for ant decisions based on pheromone information. As
stated before, population size k can be considered as a small problem-independent
constant, so that the proposed modification allows to compute an ant decision in
asymptotically constant time.

4.4.3 Implementation of P-ACO on FPGA

This section first gives a general top-level overview of the P-ACO hardware im-
plementation. Thereafter the implementation of the main modules is explained
in greater detail. Note that in this section, heuristic information is disregarded,
but the inclusion of a suitable heuristic is discussed in Section 4.4.5. The P-ACO
implementation described uses SMTTP as an application example.

4.4.3.1 Overview

The processing flow executed by the P-ACO is presented in Figure 4.27. The al-
gorithm starts by initializing selection set S := {0, ..., n−1} and problem-specific
evaluation data (the processing times pj and due dates dj). The population is
initialized to an empty set P := ∅. Afterwards m ants iteratively construct so-
lutions until some stopping condition is fulfilled. Here m solutions are generated
and evaluated in parallel. After comparing the results of m evaluations, the best
of these m solutions is used to update the current population.
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Figure 4.27: Parallel P-ACO processing flow.

At high level, the mapping of the P-ACO algorithm into the corresponding
FPGA design consists of four main modules: Population, Generator, Buffer, and
Evaluation Module (see Figure 4.28). Note that, for the sake of clarity, the
Control circuitry and the control signals are omitted. The Population Module
provides the logic to store and control the queue matrix Q = [qij]. Here it is
assumed that the P-ACO algorithm is implemented with an additional elitism
strategy. The elitist solution is also a member of the population, and within the
queue matrix it is placed in column j = 0, whereas the FIFO-queue is situated in
the adjacent columns j ∈ {1, ..., k−1}. For SMTTP, each item qij ∈ {0, ..., n−1}
is the number of a job to be scheduled. The Population Module is responsible
for broadcasting items qih (h ∈ {0, ..., k − 1}) in the i-th row of the population
matrix to the Generator Module. Furthermore, at the end of the current iteration
it receives the best solution from the Evaluation Module, which is then inserted
into the queue. The Generator Module holds m solution generators working
concurrently, one Solution Generator per ant. The solutions are transferred from
there to m parallel solution buffers and evaluation blocks inside the Buffer and
the Evaluation Module respectively. Simply providing temporary storage until
the next population update, the Buffer Module is not further described. It is also
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possible to have less than m solution generators, solution buffers, and Evaluation
Blocks, which is discussed in greater detail in Section 5.1. The evaluation results
of these m solutions are collected in a Comparison Block, which determines the
best solution of the current iteration. This best solution also becomes the new
elitist solution, if it is better than the current elitist solution.
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Figure 4.28: P-ACO design with four main modules.

4.4.3.2 Generator Module

The Generator Module contains m identical solution generators, each of them
simulates the behavior of an artificial ant constructing a solution using the P-
ACO algorithm.
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The Solution Generator (see Figure 4.29) consists of the three blocks S-Array,
P-Buffer, and Selector. The S-Array stores and maintains selection set S ⊆



100 CHAPTER 4. ACO ON RECONFIGURABLE ARCHITECTURES

{0, ..., n−1} of items si ∈ S with i ∈ {0, ..., Cs}. Cs = |S|−1 = N−1 is the current
value of a decremental counter called S-Counter delivering the maximum index of
all items si ∈ S. This S-Counter is implemented in external logic in the Control
circuit. The current S-Counter value is available to all solution generators. The
S-Array can be queried for its contents. When it receives a broadcast item qih

from the Population Module, it compares this item with all remaining items in
S. If there exists an item sl ∈ S with sl = qih (i.e. item sl has been matched)
then the S-Array returns the matching result in terms of address al = l, which
is the address of sl within the S-Array. In this circuit design, matching results
are represented by match addresses needed to identify the selected item. The
P-Buffer stores these match addresses al into a register. The Selector builds-up a
probability distribution and randomly selects an item sl∗ ∈ S which is then sent
to the Solution Buffer.

Algorithm 4.3 Processing flow of Solution Generator.

1: /* initialization */
2: for j := 0 to n− 1 do
3: sj := j
4: end for
5:
6: /* construct solution */
7: for i := 0 to n− 1 do
8: MP := 0
9: /* filling P-Buffer */

10: for h : 0 to k − 1 do
11: if ∃sl ∈ S : sl = qih then
12: b

(P )
MP

:= al

13: MP := MP + 1
14: end if
15: end for
16:
17: /* selection */
18: randomly select address al∗ = l∗

19: search item j∗ = sl∗ ∈ S
20: S := S \ {j∗}
21: end for

The processing flow within a Solution Generator is described by Algorithm 4.3.
The Solution Generator starts off by initializing the selection set S with numbers
sj := j for all j ∈ {0, ..., n− 1}. All items qih with h ∈ {0, ..., k − 1} in row i are
received coming from the population and forwarded to the S-Array. Whenever



4.4. POPULATION-BASED ACO (P-ACO) 101

an item sl in the S-Array has been matched, i.e. sl = qih, then the corresponding
match address al is stored into the P-Buffer, and the Match Counter MP is
incremented by 1. Note that if an item matches multiple times its address is
also transferred multiple times, and MP is increased accordingly. After the last
repetition of the inner loop, the P-Buffer contains the addresses of all items
which appear in row i of the population as well as in selection set S. From these
matches the selection probabilities pij are derived as described by Equation 4.14.
According to this probability distribution the ant (Solution Generator) makes a
decision for the i-th place in the solution: It randomly selects an address al∗ = l∗,
which is sent to the S-Array to query for the selected item j∗ = sl∗ stored at
address al∗ . The selected item sl∗ is then transferred to the respective Solution
Buffer. Afterwards sl∗ is removed from selection set S and the process continues
making decisions for the remaining places of the solution.
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The organization of an S-Array within the Generator Module is shown in
Figure 4.30. Incoming queries are broadcast via a fanout bus to n parallel S-cells.
Each S-Cell is connected to its successor to realize a right-shift of items during
array compression (removal of the selected item from set S), which is done to
guarantee that the items in S are always stored in S-cells with addresses al ≤ Cs

(active S-cells). Only active S-Cells contain valid items in S as indicated by the
Active Flag (AF). An OR-tree generates the match detection bit for the entire
array. An n-to-dlog2 ne encoder is required to produce the address of the S-Cell,
which asserted the hit signal. This cell-address represents the select signal of
the multiplexer connecting the respective q-res bus to the query-result output.

An S-Cell performs the basic operations during solution generation, its ar-
chitecture is shown in Figure 4.31. It contains two comparators, a hard-coded
address a, and a register storing item s. It is controlled via two flags (Active Flag
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AF and Match Flag MF) and two signals (query-mode and compress) encoding
the current phase. The operation of the S-cells and the S-Array consists of three
phases: the Broadcast Phase, the Selection Phase and the Compression Phase.
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Figure 4.31: S-Cell architecture.

During the Broadcast Phase (query-mode=0, compress=0) the k items in
population row i are broadcast to all S-cells (i.e. query = qih). The eq-comparator
in the S-Cell compares the broadcast item with its own stored item s. If they
are equal the S-Cell emits its address a as query result q-res and asserts a hit

signal, if the respective S-Cell is active (AF=1).
After the Selector has randomly selected item sl∗ the S-Array enters the Selec-

tion Phase (query-mode=1, compress=0). The selected address al∗ is broadcast
to the S-cells (i.e. query = al∗). Each S-Cell uses its eq-comparator to compare
the broadcast address to its own address a. S-Cell l∗ forwards its stored item
sl∗ as query result q-res to the Solution Buffer. Each S-Cell l also uses its own
ge-comparator to check whether it is a predecessor of the selected S-Cell with
respect to the shift chain, i.e. al ≥ al∗ . All predecessor S-cells set their Match
Flags to MF:=1, all others set MF:=0. These flags are further processed during the
Compression Phase.

In final phase, the Compression Phase (query-mode=1, compress=1), each
S-Cell sends its Active Flag (AF) as AF-out and its stored item s as s-out to its
immediate successor. An S-Cell latches the corresponding data AF-in and s-in

arriving from its immediate predecessor, if its own Match Flag was set (MF=1)
in the Selection Phase. A logical zero is loaded into the AF flip-flop of S-Cell
number n − 1. The overall effect is that the selected item sl∗ is overwritten, all
items to the left of the selected cell (i.e. al > l∗) are shifted one cell to the right.
After an iteration is complete, the original values of the data registers in the
S-Array are re-initialized by loading the hard-coded S-Cell address values a into
the s-registers.
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The P-Buffer circuit stores incoming match addresses into a memory if the
match signal is asserted. The value MP of the Match Counter represents the
write address for the next match address to be stored. After the last broadcast
MP indicates the total number of matches. The architecture of the P-Buffer is
shown in Figure 4.32.
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The Selector (see Figure 4.33) receives the number of matches MP from the
P-Buffer. This circuit is designed to realize the selection of an item according
to Equation 4.14. The upper bound R = Cs + MP · ∆P for a pseudo-random
number generator is calculated, where ∆P = 2y is chosen to be a power of two in
order to replace multiplications and divisions, which are not readily supported on
current FPGA technology, by simple left and right shifts respectively. A random
number rn is drawn uniformly from the interval [0, R] using the parallel pseudo-
random number generator presented by [Ackermann et al., 2001]. Afterwards rn
is compared with Cs to determine whether an item from the S-Array or a buffer-
address in the P-Buffer has been chosen. If rn ≤ Cs, then al∗ = arn is the address
of the selected item j∗ = sl∗ ∈ S. Otherwise, al∗ = b

(P )
l , with l = (rn− Cs) � y,

i.e. the P-Buffer is queried for the actual match address al∗ . Recall that the P-
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Buffer contains the addresses {b(P )
0 , . . . , b

(P )
MP−1}. After al∗ has been determined,

the corresponding item sl∗ is queried from the S-Array and sent to the Solution
Buffer.

4.4.3.3 Evaluation Module

The Evaluation Module holding m Evaluation Blocks evaluates and compares the
solutions produced by the solution generators. An Evaluation Block is required
for each distinct optimization problem to be solved using the P-ACO algorithm.
Such an Evaluation Block takes problem specific evaluation parameters (e.g. job
processing times pi and due dates di for the SMTTP) and calculates the objective
function value of a solution arriving from a Solution Generator.
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The data path design for calculating the objective function for SMTTP is de-
picted in Figure 4.34. Dedicated registers are used to store the intermediate total
tardiness

∑
T and the job completion time C. If a job is determined to be tardy

(t = 1), then its lateness L is added to the tardiness sum
∑

T . The only pro-
cessing component used is an adder/subtractor, which can be implemented with
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small delays by the dedicated carry-chain present in current FPGA architectures.
The final solution quality SQ is sent to the Comparison Block.

The Comparison Block determines the best solution of the iteration and the
new elite solution (if found) to be stored into the population. The design of
the Comparison Block for SMTTP is shown in Figure 4.35. A comparator tree
reduces the logic delay of the Comparison Block. The index (best-index) of the
Solution Generator, which constructed the best solution, is used by the Solution
Forwarding Unit (SFU) to multiplex the buffered solutions. The items of the best
solutions is sequentially forwarded to the Population Module. If the best solution
of the current iteration is also better than the elite solution, then an elite flag
is-elite is asserted.

4.4.3.4 Population Module
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Figure 4.36: Population Module.

The Population Module (see Figure 4.36) provides the storage for the queue
matrix. This storage makes use of internal block RAM (BRAM) available on
many FPGA architectures. The BRAM is supposed to provide two ports A and
B for concurrent input and output, although output port B is actually not used.
Apart from the BRAM the remaining logic realizes the Population Controller.
The Population Module can be switched between two modes: the broadcast
mode and the update mode. When in broadcast mode, the concatenation of
the h-counter and the i-counter builds up the read address of queue item qih,
which is broadcast to the solution generators. Running in update mode, the
Population Module sequentially receives the n items of the best solution of the
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current iteration. This best solution replaces the oldest solution in the population
whose index is determined by the replace-counter. Together with the i-counter
this index creates the write address for the incoming items written via port B. If
this solution is also a new elitist solution (is-elite asserted) then the old elitist
solution is concurrently overwritten by use of port A.

4.4.3.5 Generic Framework for P-ACO on FPGA

So far the P-ACO design described targets SMTTP as an application. However,
the design exhibits many generic portions and can therefore be adapted to other
permutation problems by performing a few modifications. Subsequently, these
modifications are sub-divided into three groups referring to changes evoked by
the evaluation function, the encoding style, and symmetric problems.

Evaluation Function Most obviously, with every changing optimization prob-
lem the evaluation logic realizing the objective function may vary. In how far the
modifications affect the timing of the execution is discussed in Section 4.4.4.2.

Encoding Style Using SMTTP as an example, parts of the circuitry are spe-
cific for place-item encoding. If item-item encoded optimization problems are to
be implemented then the required changes concern the communication between
the Population Module and the solution generators. With respect to place-item
encoded optimization problems, the algorithm can be implemented such that all
solution generators synchronously receive the same items from the population,
i.e. at any time all solution generators access the same address of the BRAM
storing the population. When working on item-item encoded problems, however,
the solution generators may make ant decisions in different rows of the population
and demand an individual access to population data. Hence, a two port BRAM
storage would not be sufficient for more than two solution generators working in
parallel.

Therefore two options lend themselves to overcome this bottleneck. If the
amount of on-chip RAM blocks permits, then one could maintain multiple copies
of the population such that every two solution generators share a common two-
port BRAM. Another possibility would be to store population data in distributed
memory as typically provided by flip-flops or look-up tables. All rows of the popu-
lation (q0, . . . , qn−1) should be addressable in parallel, and all solution generators
share this distributed memory via an n×m crossbar switch as depicted in Figure
4.37. Using a crossbar even offers an interesting way of exploiting the partial
reconfiguration capabilities of FPGAs (see [Young et al., 2003] for an example of
a runtime reconfigurable crossbar switch).
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Item-item encoded problems further demand a slight modification to the Solu-
tion Generator: Whereas in place-item encoded problems, rows in the population
are broadcast top-down one after the other, item-item encoding demands the se-
lected item sl∗ also to be sent to the Population Module as the address of the next
row to be processed (see Figure 4.29). Correspondingly, the Population Module
has to be changed as well. Furthermore, prior to every first decision, a row i needs
to be determined from which the ant starts from. Memorizing row i, it must be
ensured that item i is selected with the final decision of the same construction
process. It is also necessary, that the Buffer Module stores the selected items
received in the proper order according to the item-item encoding.

Symmetry If symmetric problems are considered, i.e. such problems com-
monly using a symmetric pheromone matrix, this symmetry needs to be repro-
duced by the population. This can be easily accomplished by maintaining for
every solution π ∈ P an additional symmetric solution π′ ∈ P with π′(π(i)) = i.
Accordingly, the population and P-Buffer sizes increase to 2k, and every item in
the population is associated with only half of its usual weight ∆P /2.

4.4.4 Experimental Results

The hardware implementation of P-ACO is compared with its software counter-
part by utilizing contemporary FPGA technologies. For the hardware implemen-
tation, the design is encoded in register-transfer level VHDL targeting the Xilinx
Virtex-II Pro Platform FPGA XC2VP125. The design is synthesized by XST
5.2sp1 on normal optimization effort for high level logic synthesis, and Xilinx
ISE 5.2sp1 Place and Route for implementation on the FPGA. In software, P-
ACO is programmed in C++ to be executed on a AMD Athlon uni-processor
machine clocked at 1540 MHz to measure timing performance of the software
implementation. The experiments restrict to comparing the implementation on
a single FPGA with a software-based solution on a single processor. Considering
an implementation on a multi-FPGA-board or a parallel variant of the software
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implementation is an interesting aspect for future research.

The optimization problem regarded is SMTTP, where the problem size, i.e.,
the number of jobs, is scaled within the range from 40 ≤ n ≤ 320. Job processing
times are chosen randomly from the pi ∈ {1, . . . , 64}. The number of solution
generators (which equals the number of ants per iteration) ranges from m = 2 to
m = 32. The population size is set to k = 4 including one elitist solution. For the
hardware implementation, the utilization of FPGA resources, circuit delays, and
operational frequencies are recorded. For every problem instance of the software
counterpart, the execution time per iteration is recorded as an average over 100000
iterations of the P-ACO algorithm.

4.4.4.1 Resource Requirements

The resource requirements are measured by counting the number of look-up tables
(LUTs), slice registers (REGs), and internal block RAM cells (BRAM) used by
the design implementations. In Figure 4.38a, resource requirements are depicted
for a fixed number of solution generators m = 8 and variable problem size n. The
resource requirements shown in Figure 4.38b are for a fixed problem size n = 64
and a variable number of solution generators.
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As the problem size increases (see Figure 4.38a), the number of S-cells, i.e.
the width of an S-Array, grows proportionally. The height of the S-Array, grows
logarithmically, because each S-Cell stores one item represented by log n bits.
Since the S-arrays occupy the largest portion of the total P-ACO circuitry, the
overall consumption of LUTs and REGs grows according to O(m · n · log n).

Table 4.1: Regression results for # LUTs, # REGs and # BRAM. For every
regression function, the Bravais-Pearon correlation index r is given.

Fixed Resource Regression Function f r
LUTs 28.2257 · n · log n + 1531.71 0.999079113

m = 8 REGs 9.74471 · n · log n + 929.175 0.999861506
BRAM 21 undefined
LUTs 1516.17 ·m + 97.2749 0.999987262

n = 64 REGs 542.244 ·m + 244.764 0.998796397
BRAM 2.4802 ·m + 1.5297 0.999374327

This theoretical assumption is confirmed by the regression results (see Table
4.1) which correspond to the values shown in Figure 4.38. As indicated by the
Bravais-Pearon index r very close to 1, all resource requirements show a very
strong correlation to m and n respectively. The number of BRAM cells used
remains on a constant level of 21 when varying problem size n for fixed m. For
an increasing number of solution generators (see Figure 4.38b), all resource re-
quirements grow linearly. Given a fixed problem size of n = 64, additional 1516
LUTs, 542 REGs, and 2.5 BRAM cells approximately are needed, if the P-ACO
circuit shall be extended by a further Solution Generator (see Table 4.1).

Figure 4.39 provides an overview of the maximum attainable combinations of
m and n for the largest members of the Xilinx Virtex, Virtex E, Virtex II, Virtex
II pro, and Virtex 4 FPGA families. Note that in practice, it is inefficient to
use very large numbers of ants (solution generators). Therefore, in the diagrams
the upper limit in the range of solution generators is set to m = 32. The left
figure shows all combinations, if the implementations were only restricted by the
number of available LUTs; whereas the right figure shows all implementations,
if they were only restricted by the number of available REGs. On each of the
FPGA devices considered, the number of LUTs is equal to the number of REGs.
However, in the design implementation the number of configured LUTs is about
170% higher than the number of REGs used. Hence the curves in the right figure
are considerably higher than the respective curves on the left hand side. These
figures suggest that even on nowadays available FPGA devices, it is possible to
accommodate P-ACO circuits for SMTTP realizing combinations of m and n
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with practical relevance.
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Figure 4.39: Attainable combinations of n and m for different types of FPGAs.

4.4.4.2 Time Requirements

The generation of a solution for SMTTP consists of n decision steps (see Figure
4.40). For each decision, k queue items are broadcast and matched. The time
requirement for this operation is denoted by tbm. Afterwards item sl∗ is selected
and evaluated, which takes ts and te time. The time to compress the S-Array is
denoted by tcps. Due to the generic implementation of the solution generators, for
a given problem size n, the total time for any decision td is constant and does not
depend on the optimization problem under consideration. On the other hand,
the time to evaluate an item does strongly depend on the optimization objective.
Thus the time for generating a complete solution is tg = n · td if tcps ≥ te,
otherwise tg = max{n · td + te, n · te + td} − tcps. The experiments are conducted
for SMTTP so that evaluation does not retard the beginning of the next decision,
i.e. tg = n · td + te − tcps. In every iteration, m solutions are generated in
parallel. Afterwards these solutions are compared by their solution qualities and
the population is updated, which requires tcmp and tu time respectively. Thus the
time to finish a complete iteration is tit = tg + tcmp + tu. The time to re-initialize
the solution generators can be disregarded.

Table 4.2 shows the maximum global clock frequencies fgl for a fixed number
of solution generators m = 8 and varying problem sizes n. It further gives
an overview of the required clock tics: number of clock tics for generating a
solution cg = tg · fgl, clock tics for comparison ccmp = tcmp · fgl, clock tics per
population update cu = tu · fgl, and clock tics per iteration cit = tit · fgl = cg +
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ccmp + cu. Accordingly, the maximum frequency per iteration can be calculated:
fit = fgl/cit.
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Figure 4.40: Schedule of two decisions and evaluations. Here only one solution
generator is considered.

Table 4.2: Operating frequencies for the P-ACO implementation in hardware
with m = 8 solution generators on the Virtex-II Pro X2VP125-7 device.

Clock Tics Max fgl (MHz) Max fit (kHz)
n cg ccmp cu cit

40 403 2 40 445 27.651 61.935
48 483 2 48 533 32.219 60.448
56 563 2 56 621 30.806 49.607
64 643 2 64 709 25.997 36.667
96 963 2 96 1061 26.832 25.289

128 1283 2 128 1413 22.522 15.939
160 1603 2 160 1765 19.899 11.274
192 1923 2 192 2117 21.011 9.925
224 2243 2 224 2469 19.001 7.695
256 2563 2 256 2821 19.789 7.015
288 2883 2 288 3173 15.273 4.813
320 3203 2 320 3525 14.494 4.112

Figure 4.41 presents the timing results measured. The gap at m = 7 is present
as the endpoints of the critical path change. For m ≤ 7, the address counter to
the S-Array output is the critical path; whereas for m ≥ 8, a control signal is
the source of the critical path. The increase in the critical path length can be
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attributed to the increased logic levels as the design grows in size; the growth
in critical path length for increasing numbers of solution generators implemented
is likely to be due to the increased difficulty of solving the placement and rout-
ing problems for large circuit sizes. In all instances, routing delay is the major
component of the total critical path delay. Clock skew is a negligible problem for
larger circuits due to the dedicated clock routing resources of the FPGA. As the
number of solution generators is increased, propagation delays grow only slightly.
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Figure 4.43: Comparison of hardware and software implementation of P-ACO
for fixed n = 64.

In figures 4.42 and 4.43, the software and the hardware realizations of the P-
ACO algorithm are compared with each other. Since the software and hardware
versions produce the same solutions, their performances are compared by means
of the time required per iteration. Note that, except for the first k iterations, the
execution time for every iteration is constant. The figures on the left compare the
time per iteration, whereas the figures on the right depict the respective speedup
values, where the speedup is defined by:

Speedup = Time per iteration in software
Time per iteration in hardware

In Figure 4.42 the execution time per iteration for both, the software and the
hardware implementations, grow consistently as the problem size n is increased.
However, for every problem size, the hardware version runs faster than its software
counterpart. Speedup values range from a minimum of 2.04 for a problem size of
n = 320 to maximum value of 4.07 for n = 48.

Figure 4.43 shows that the time per iteration in software grows with a linear
trend as the number of solution generators is increased; whereas for the hardware
implementation, the time requirements remain on an almost constant level of
approximately 28 microseconds. The corresponding speedup values range from
1.59 for m = 2 solution generators to 10.22 at m = 32. The speedup grows
almost linearly in m, although the task of placing and routing the design becomes
considerably more difficult for larger m. From the P-ACO perspective this means
that within certain constraints (e.g. chip size), the degree of parallelism (in terms
of concurrently working ants) can be easily increased with only a marginal effect
on execution speed.
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4.4.5 Heuristic Extension

In this section, the Time-Scattered Heuristic (TSH) is introduced as a new heu-
ristic concept for the P-ACO algorithm that sustains the small runtimes of the
hardware implementation. The construction and the usage of the new heuris-
tic concept is demonstrated, and the proposed approach is tested on various
instances of TSP. The performance of TSH is compared with the standard heu-
ristic approach and candidate lists. Parts of the contents of this section are based
upon previous work by the author published in [Scheuermann et al., 2004a].

4.4.5.1 Time-Scattered Heuristic

The new heuristic approach aims to supply the P-ACO algorithm with heuristic
information thereby maintaining a constant asymptotic runtime per ant decision.
However, the integration of heuristic information into the P-ACO hardware al-
gorithm poses two problems: Heuristic values exist for all items of the set S, not
just an O(k) size subset. It should therefore be avoided to calculate the selection
probabilities based on products τα

ij ·η
β
ij for all items j ∈ S, which would result in a

runtime of O(n) per ant decision. Furthermore, a large number of arithmetic op-
erations on floating-point numbers would be afforded requiring enormous amounts
of logic resources on the FPGA.
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ij

βstandard heuristic

Time−Scattered
Heuristic

1.4

0 1 2 3 4 5 6 7city index j
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heuristic−vectors
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transformation

c

active heuristic−vector

0 52 3

Figure 4.44: Example of transformation process from standard heuristic values
into a sequence of heuristic-vectors used by TSH.

The basic idea of TSH is to transform the standard heuristic information into
a time-variant sequence of integer vectors, which allow for a sufficiently exact
approximation. Figure 4.44 illustrates this transformation process by choosing
TSP as an example with n = 8 cities. The upper part of the figure visualizes for
an arbitrary row i, the weighted standard heuristic values ηβ

ij ∈ IR for moving
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from city i to city j. These heuristic values are transformed into a sequence of
r = 3 integer heuristic-vectors of size c = 4 as shown in the lower part of the
figure. Each entry in such a heuristic-vector is a city index j. The higher the
heuristic value of a city the higher the frequency of the respective city index in
the heuristic-vectors. For example, cities 0 and 5 possess the highest heuristic
values and therefore appear most often in the heuristic-vectors, whereas cities 1
and 7 with the lowest heuristic values do not appear at all. It is required that
the distribution of the original standard heuristic is approximately equal to the
distribution of city indices in the heuristic-vectors:

ηβ
ij∑n−1

l=0 ηβ
il

≈ Fij

r · c
, (4.16)

with Fij denoting the absolute frequency of city j over all heuristic-vectors for row
i. City indices are distributed as evenly as possible over all heuristic-vectors, the
order of the city indices within an individual heuristic-vector is arbitrary. In order
to constrain the runtime of the algorithm, the length of the heuristic-vectors c <<
n should be kept small. However, to achieve a sufficiently good approximation
of the standard heuristic information, the city indices are scattered over multiple
heuristic-vectors, but only one at a time is actually used for constructing solutions.
This designated vector is called the active heuristic-vector. During the runtime of
the P-ACO algorithm heuristic-vectors are repeatedly activated and deactivated,
which is referred to as a shift of the active heuristic-vector.

For a given row i, Algorithm 4.4 lists the steps executed to transform the stan-
dard heuristic information into a sequence of r heuristic-vectors. In the following
these vectors are assumed to be arranged in a so-called r × c heuristic-matrix
[h(i)

uv] with h(i)
uv ∈ {0, . . . , n − 1}. It is supposed that the heuristic-matrix is cal-

culated and stored on the FPGA before a run of the P-ACO algorithm starts.
Therefore, heuristics which require an dynamic computation of the heuristic val-
ues cannot be handled by this method (see Section 2.3.2). The transformation
starts off by weighting the standard heuristic values with β > 0. In accordance
with standard ACO, this parameter determines the impact of the heuristic on an
ant decision. Afterwards δi is calculated as the average over all weighted heuristic
values. This value is then used to compute the absolute frequency Fij of item j
in the heuristic-matrix for row number i. Finally, all items with Fij > 0 are in-
serted into this matrix according to their absolute frequencies. Scanning all items
j ∈ {0, . . . , n− 1} and traversing the heuristic-matrix in a column-wise order, it
is achieved that item numbers are evenly distributed over all heuristic-vectors.

As mentioned before, during optimization only one of the r heuristic-vectors
h(i)

u with 0 ≤ u < r is actually used by the ants to construct solutions. This vector

is referred to as the active heuristic-vector h
(i)
u∗ and all other r − 1 vectors are



116 CHAPTER 4. ACO ON RECONFIGURABLE ARCHITECTURES

inactive. After a specific number ps of solution generations, the active heuristic-
vector is shifted, i.e. it is replaced by some other h(i)

u with u ∈ {0, . . . , r−1}\{u∗}.
Parameter ps ≥ 1 is called the shift period. Two different policies of shifting the
active heuristic-vector are considered:

Random shift: The next active heuristic-vector u∗ is chosen randomly from
{0, . . . , r − 1} with uniform distribution.

Cyclic shift: The active heuristic-vector rotates through the sequence of avail-
able heuristic-vectors, i.e. u∗ := (u∗ + 1) mod r.

Algorithm 4.4 Calculation of heuristic-matrix for row i

1: /* initialization */
2: for j := 0 to n− 1 do
3: η̂ij := ηβ

ij

4: Fij := 0
5: end for
6: δi = 1

r·c
∑n−1

j=0 η̂ij

7: /* compute absolute frequencies of items in heuristic-vectors */
8: for l := 0 to r · c− 1 do
9: determine j∗ with η̂ij∗ = maxj=0,...,n−1 η̂ij

10: η̂ij∗ := η̂ij∗ − δi

11: Fij∗ := Fij∗ + 1
12: end for
13: /* fill heuristic-matrix */
14: j := 0
15: for v := 0 to c− 1 do /* column-wise traversal */
16: for u := 0 to r − 1 do
17: found := false
18: while found = false do
19: if Fij = 0 then
20: j := j + 1
21: else
22: Fij := Fij − 1
23: found := true
24: end if
25: end while
26: hi

u,v := j /* insert item j into heuristic-matrix */
27: end for
28: end for
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In the hardware P-ACO algorithm, the necessary calculations to transform
row i of the queue matrix Q into the respective pheromone values τij are done
according to Equation 4.10. Likewise it is possible to transform any heuristic-
vector h

(i)
u∗ into the corresponding heuristic value η′ij describing the heuristical

impact of item j when making a decision in row i:

∀ j ∈ {0, . . . , n− 1} : η′ij := ηmin + γij ·∆H , (4.17)

where ηmin > 0 denotes a base heuristic value assigned to every item j and γij

describes the number of occurrences of item j in the active heuristic-vector, i.e.
γij = |{v : h

(i)
u∗v = j, v = 0, ..., c− 1}| and ∆H > 0 is the weight assigned to items

in the heuristic-vectors.
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Figure 4.45: Items in the current population row i and the respective heuristic-

vector h
(i)
u∗ are transmitted. Matching results are stored into match buffers. All

components are shown with their maximum number of items they can store.

The proposed method for heuristic guidance can be integrated into the P-ACO
hardware implementation by extending the match buffer concept introduced in
Section 4.4.3. Let population-vector (qi0, . . . , qi,k−1) be the currently processed

row in the population, and h
(i)
u∗ = (h

(i)
u∗0, . . . , h

(i)
u∗,c−1) the current heuristic-vector

(see Figure 4.45). All k + c items in both vectors are sent to the selection set S
and matching results are then stored into three different types of match buffers.
For simplicity it is assumed that as in Section 4.4.2 matching results are matched
items. The P-Buffer stores MP ≤ k items, which are in the population-vector as
well as in set S. The respective MH ≤ c items which occur in the heuristic-vector
and in selection set S are copied into a separate location called the H-Buffer.
Furthermore, since the pheromone and heuristic values are multiplied to compute
selection probabilities, an additional buffer – called PH-Buffer – is required. The
PH-Buffer stores the items contained in the heuristic-vector as well as in the
population-vector and in set S. Therefore, items in the heuristic-vector are sent
to selection set S and in parallel to the P-Buffer. Let ∆P be the weight associated
with items in the P-Buffer, and ∆H the weight of items in the H-Buffer. Then
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∆PH = ∆P ·∆H is the weight for an item j which is stored φij = ζij · γij times in
the PH-Buffer. After all queries the PH-Buffer contains MPH ≤ k · c items.

Using this extended buffer concept, ants make random decisions according to
the following probability distribution pij:

∀j ∈ S : pij =
τij · η′ij∑

l∈S
τil · η′il

=
1 + ζij ·∆P + γij ·∆H + φij ·∆PH

N + MP ·∆P + MH ·∆H + MPH ·∆PH

(4.18)

Note that the initial values are set to τmin = ηmin = 1. Exponentiations by
weight β are calculated offline prior to building the heuristic-matrix. Pheromone
and heuristic values are weighted by choosing the ∆ parameters accordingly. The
required arithmetic operations better suit the resources provided by the FPGA
architecture. To perform an ant decision, an integer random number rn is drawn
from the range [0, N + MP · ∆P + MH · ∆H + MPH · ∆PH − 1]. This random
number determines the selected item j∗:

j∗ :=


sr : rn < oP

b
(P )
jP

: oP ≤ rn < oH

b
(H)
jH

: oH ≤ rn < oPH

b
(PH)
jPH

: else

(4.19)

Here oP = N , oH = oP + MP ·∆P , and oPH = oH + MH ·∆H denote the offsets
associated with the P/H/PH-buffers respectively. In the case that an item is
selected from one of the buffers then jx = b rn−ox

∆x
c with x ∈ {P, H, PH} retrieves

the index of the selected buffer item. An efficient parallel implementation of
this new heuristic concept on an FPGA allows to make a decision in O(k + c)
time, where k and c can be regarded as small constants. Also in the case of
exploitation, according to the pseudo-random proportional transition rule (see
Section 2.3.2), the search for the maximum over the yet available items in set S
can be computed in O(k+c) time. In comparison, a sequential processor that uses
the ACO approach requires O(n) time per ant to make a decision. In addition,
the functional parallelism embodied in processing m ants in parallel on an FPGA
allows m solutions to be formed in O((k + c) · n) time, compared to O(m · n2)
time on a sequential processor using the standard ACO approach.

Figure 4.46 illustrates the integration of TSH into the existing implementa-
tion of P-ACO on FPGA. The circuit is extended by an additional Heuristic
Module comprising for all rows i ∈ {0, . . . , n − 1}, the heuristic-matrices, which
are as the population supposed to be stored in internal block RAM. Heuristic-
vectors are shown in different layers with the active heuristic-vectors on top. The
TSH-Controller is responsible for shifting the heuristic-vectors after a predefined
number of solution constructions according to a certain shift policy. To allow for
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an easy integration into the existing hardware implementation, it is very useful
that heuristic data is treated in the same fashion as population data. The so-
lution generators need to be extended by two further types of match buffers to
also process the heuristic data received. The Population, Buffer, and Evaluation
Module, however, remain unchanged.
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Figure 4.46: Integration of TSH into the P-ACO architecture on FPGA.

4.4.5.2 Experimental Results

Various experiments are carried out to study the performance of the proposed
TSH approach. The experiments are run on Pentium 4 CPUs clocked at 1.5 GHz.
TSH is not implemented on an FPGA but simulated in software with the goal to
gauge the effect of algorithm-specific parameters on optimization performance.

In the first experiment, the influence of parameters r and c, which determine
the size of the heuristic-matrix, is studied (see Figure 4.47). The P-ACO algo-
rithm with Time-Scattered Heuristic (P-ACO-TSH) is applied to the symmetric
TSP instance eil101 (101 cities) from the TSPLIB benchmark library. The
lower part of the figure shows the deviation of the distribution of items in the
heuristic-matrix (obtained by applying Algorithm 4.4) from the distribution of
the standard heuristic values ηβ

ij. This deviation is determined by calculating the
average quadratic distance between these two distributions. The results show that
deviation decreases rapidly with the size of the heuristic-matrix ar. The upper
part of Figure 4.47 shows the tour length for different aspect ratios R = c/r (aver-
age over 20 runs). The result for P-ACO with no heuristic guidance (P-ACO-NH)
is also shown. Suitable parameter settings for P-ACO have been determined in
a range of preliminary experiments. The number of ants per iteration is chosen
as m = 8 together with a population size of k = 4 solutions including one elitist
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solution, minimum values τmin = ηmin = 1, update values ∆P = fP · n/(k + 1)
and ∆H = fH · n/c with fP = fH = 10, weight β = 4, shift period ps = 8 with
random shift policy, and a runtime limit of 1000 seconds for every combination of
r and c. For small values of ar and aspect ratios R ≤ 1 (i.e. r ≥ c), P-ACO-TSH
performs worse than P-ACO-NH. Obviously, in these cases the approximation of
the original heuristic information is not good enough and misleads the decisions
of the ants. However, as the mean quadratic deviation decreases, the algorithm
benefits from the additional heuristic guidance. The solution qualities for R ≤ 1
and c ≥ 3 are better than those obtained for P-ACO-NH. Runs with high aspect
ratios R > 1 perform better for small matrix sizes, since the ants are provided
with more heuristic knowledge during individual decisions than in runs with low
aspect ratios. For combinations with R > 1 solution qualities become worse with
increasing matrix size ar and are even worse than P-ACO-NH for ar > 218. This
behavior is due to a higher execution time per ant decision which is proportional
to c. The overall best solution quality is obtained for parameters r = 48 and
c = 3, i.e. ar = 144 and R = 0.0625.
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The next experiment examines the shift policy (either random or cyclic) and
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the shift period, which is scaled from ps = 1 (shift after any solution generation)
to ps = 220 (no shift during the complete run). With constant values for r = 48
and c = 3, the tour lengths are calculated as the average over 20 repetitions
with different random seeds and termination after 100000 iterations, all other
parameter settings remain as in the previous experiment. Solution qualities for
both policies worsen with increasing shift periods (see Figure 4.48). Apparently,
shifting the heuristic-vectors very often better approximates the original heuristic
information and provides the ants with more accurate heuristic knowledge. In
the majority of shift periods considered, shifting randomly performs better than
the cyclic shift policy, which causes the heuristic-vectors to always rotate in the
same order. Presumably, this fixed order causes some kind of disadvantageous
correlation between active heuristic-vector and the current ant decision. The
computational results suggest the choice of random policy with shift periods from
the interval ps ∈ [4, 128], where the best solution quality is obtained for ps = 4.
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Figure 4.48: Comparison of shift policies cyclic vs. random for different shift
periods ps.

Another experiment is performed to determine the influence of weight β for P-
ACO-TSH. Therefore, β is scaled from 1 to 1024 (see Figure 4.49), and heuristic-
vectors are shifted after every ps = 8 solution generations with random shift
policy. All other parameter settings are chosen as in the previous experiment. For
every β, the respective mean entropies of the heuristic-matrices are calculated for
a selection of TSP instances including four symmetric instances gr48 (48 cities),
eil101 (101 cities), d198 (198 cities), rd400 (400 cities) and four asymmetric
instances ry48p (48 cities), ft70 (70 cities), kro124p (100 cities) and ftv170 (171
cities). The heuristic entropy Hη = −∑i=n

i=1 pi · log pi, with pi denoting the relative
frequency of item i, measures the uniformity of the distribution of items within
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the heuristic-matrices. The maximum entropy value is reached for β = 0, i.e. all
items in a matrix have the maximum diversity. For values β ≥ 1024 the entropy
converges to its minimum Hη

min = 0 for all TSP instances considered. This means
all items in a matrix are identical. The vertical lines in Figure 4.49 represent the
respective best β values found after executing P-ACO-TSH for 100000 iterations.
The corresponding mean entropies are drawn as horizontal lines. All best mean
entropies are located in the range Hη∗ ∈ [18.2% · Hη

max, 69.4% · Hη
max]. Entropy

maxima are associated with small TSP instances gr48 and ft70. Eliminating
these instances constrains the best mean entropies to a smaller range Hη∗ ∈
[18.2% ·Hη

max, 36.7% ·Hη
max]. Hence the P-ACO-TSH performs best, if heuristic

values ηij are weighted by β > 1 such that favorable items appear with a raised
frequency. However, by choosing an appropriate value for β, the entropy of
the heuristic-matrices should be restricted to a small range around 27% · Hη

max.
This entropy range corresponds to a weight β ≈ 5, which is in accordance with
desirable β-parameters in the standard ACO algorithm (see Section 2.3.2).
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In the final experiment, P-ACO is implemented with two kinds of heuristic
guidance: the time-scattered and the standard heuristic. The latter is also tested
in combination with candidate lists, which are a common technique to reduce the
runtime for TSP [Reinelt, 1994]. The candidate list heuristic can be seen as an
alternative to TSH, although it is not suitable for a hardware realization: For
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every city i, the nearest neighbors are calculated and stored in a candidate list
Li of fixed size Cl. Using candidate lists, an ant located in city i can choose
the next city j only from the candidate list. Only if none of these cities can be
visited anymore (S ∩ Li = ∅) then j is randomly chosen from S with uniform
distribution. Typically, the size of candidate lists is set to Cl = 20 [Johnson and
McGeoch, 1995, Stützle and Dorigo, 1999].
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Figure 4.50: Time per iteration needed by the three tested heuristic approaches.

The parameter settings chosen to be equal for all three heuristic approaches
are: k = 4, including one elitist solution, m = 8, τmin = 1, fP = 10 and β = 5.
For P-ACO-TSH apply the following additional parameters: q0 = 0.9, ηmin = 1,
fH = 10, r = 48, c = 3, ps = 4 and random shift policy. The standard heuristic
approach (P-ACO-SH) is started with q0 = 0.3 and α = 1, the candidate list
approach (P-ACO-CL) with q0 = 0.8, α = 1 and Cl = 20. Note that the q0

parameters are different, preliminary experiments have shown that the P-ACO-
TSH and the P-ACO-CL approach benefit from a high degree of exploitation. All
three approaches are studied on the same set of TSPLIB instances as used in the
previous experiment with problem sizes ranging from n = 48 to n = 400 cities.
Figure 4.50 shows for the heuristic variants under test, the average computation
time needed to complete an iteration. The instances are sorted by their problem
sizes, which are plotted on the x-axis. The results for n = 48 are calculated
as the average over the values obtained for TSBLIB instances gr48 and ry48p.
Figure 4.50 illustrates that consistently, the time per iteration for P-ACO-TSH is
smaller than for P-ACO-CL, and that throughout P-ACO-SH requires the highest
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computation time per iteration. Therefore, the maximum total computation time
per instance (equal to all three approaches) is chosen such that P-ACO-SH can
run for 100000 iterations. For all TSPLIB instances considered, these values (TT)
are listed in Table 4.3. Accordingly, the other two approaches (P-ACO-TSH and
P-ACO-CL) can execute more iterations within the same time given. The results
are shown as the average tour length over 20 repetitions with different random
seeds.

Table 4.3: Comparison of TSH, standard heuristic and standard heuristic with
candidate lists. Columns show the TSP instance, the total computation time
(TT), the average tour length reached (AVG), and the standard error (S-ERR).

P-ACO-TSH P-ACO-SH P-ACO-CL
TSP TT[s] AVG S-ERR AVG S-ERR AVG S-ERR
gr48 562.0 5099.45 7.15 5075.85 4.26 5075.45 4.18
eil101 2432.4 645.40 0.87 649.99 1.06 647.37 0.89
d198 9215.4 15942.83 18.19 15927.80 15.38 15970.00 11.33
rd400 39483.4 16553.78 124.86 15557.17 16.77 15483.90 14.91
ry48p 562.0 14547.70 20.24 14554.95 28.26 14518.45 18.46
ft70 1176.1 39071.65 58.76 39150.45 51.58 39189.65 49.97
kro124p 2377.9 36836.50 88.51 37057.75 119.80 37227.30 102.17
ftv170 6884.3 2836.05 9.38 2858.10 14.54 2866.70 15.97

Table 4.3 shows that in 50% of all TSP test instances, P-ACO-TSH receives
the best average tour lengths. TSH performs well compared to the standard
heuristic and the candidate list enhanced version in all cases but rd400. The
reason for the relatively poor performance of P-ACO-TSH on this instance is
probably due to the fact that r and ps are chosen as constants over all instance
sizes n. While the parameter values applied work very well for n ≈ 100, for smaller
(n ≤ 48) as well as larger (n ≥ 198) instances, they lead to inferior performance.
Preliminary tests have shown that tuning r and ps to the instance size improves
the solution quality significantly and results in a similar performance as the other
two heuristic variants.

P-ACO-TSH is constructed specifically with a hardware implementation in
mind, which, judging from earlier results obtained in Section 4.4.4.2, runs notedly
faster than the software implementation on a sequential CPU. Therefore, P-ACO-
TSH has the potential to far outperform the sequential software implementation
of P-ACO-SH as well as P-ACO-CL.
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4.5 Comparison of Different Approaches

This section compares the previously introduced ACO approaches with each
other. Common and differentiating algorithmic properties of the RMesh ACO
(cf. Section 4.2), C-ACO, P-ACO and standard ACO are reflected. Furthermore,
the asymptotic runtime and resource requirements are compared.

4.5.1 Algorithmic Properties

C-ACO as well as P-ACO replace the normal floating-point representation of
pheromone values by integer numbers ranging in an interval between a certain
minimum and maximum. This is very important for the economic usage of hard-
ware resources as the maximum bandwidth for pheromone values or the size of
match buffers can be exactly tailored during compilation. Another effect is that,
in contrast to standard ACO and RMesh ACO, limiting pheromone values by a
lower bound prevents an early (possibly unfavorable) convergence. Even though
both algorithms, C-ACO and P-ACO, are able to rapidly attain good solution
qualities, a complete convergence can hardly be guaranteed unless the global
optimum has actually been found. The RMesh ACO represents pheromone val-
ues by floating-point numbers, but ant decisions are made based on low-bits and
high-bits. Different from C-ACO and P-ACO, the aim of this transformation into
discretized values is to accelerate the selection by fast bit-summation algorithms
specialized on the dynamically reconfigurable bus.

C-ACO and P-ACO share the replacement of global evaporation by certain
other techniques. C-ACO substitutes global evaporation for many local evapo-
ration steps whenever items are selected, whereas P-ACO makes use of a combi-
nation of positive and negative population updates. Both techniques cause the
effectual total pheromone sum per row to remain constant (except for the initial
k iterations of P-ACO). The RMesh ACO, however, working on powerful process-
ing elements provided by the computation model, applies the same conventional
global evaporation methodology as standard ACO.

P-ACO is distinguished by its special way of storing pheromone information.
Whereas RMesh ACO, C-ACO, and standard ACO keep a pheromone matrix
to memorize and communicate preceding ant decisions, P-ACO maintains a po-
pulation of recently constructed good solutions. Accordingly, P-ACO does not
remind the history of past decisions by the development of pheromone values but
rather by recent good solutions as the resulting consequence of earlier decisions.
RMesh ACO and standard ACO control the influence of past ant decisions via
evaporation rate ρ. As global evaporation is not implemented in the proposed
alternative approaches, forgetting previous decisions is steered differently. In C-
ACO, the choice of τmin, τmax, and the amount of pheromone decremented per
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selection can be tuned accordingly. P-ACO controls the influence of old decisions
by parameters τmin, ∆P , and population size k.

RMesh ACO, C-ACO and P-ACO follow different concepts of parallelization.
Whereas RMesh ACO and C-ACO pipe ants in a systolic fashion through a stat-
ically allocated pheromone matrix (or vice versa in the case of C-ACO), P-ACO
is based on the match buffer concept piping population items through parallel
solution generators. In the broader sense, this strategy can also be considered as
a form of piped pheromones. The P-ACO match buffer concept, however, is a
special characteristic of P-ACO that allows to accelerated the selection process
with no need for n parallel prefix sum circuits (as required by C-ACO).

4.5.2 Asymptotic Runtime and Resource Requirements

Table 4.4 compares the asymptotic runtime requirements of the parallel RMesh
ACO, the parallel FPGA implementations of C-ACO and P-ACO, and the se-
quential software implementation of standard ACO. The attainable speedup is
due to the pipelining capabilities and parallelism embodied in the hardware al-
gorithms. Note that the time needed for arithmetic functions like additions and
multiplications strongly depends on the actual hardware platform used and is
therefore disregarded in Table 4.4. It is further supposed that in hardware the
asymptotic time per evaluation step does not exceed the time per ant decision.
This is certainly feasible for optimization problems like QAP, SMTTP, or TSP.
Complexity figures in Table 4.4 refer to the algorithms without heuristic support.
Furthermore, the amount of available hardware resources is assumed not to im-
pose any restrictions. Methods for adjusting circuit dimensions to the limits of
hardware resources are presented in Section 5.1.

Table 4.4: Comparison of asymptotic runtime requirements. Total time (TT)
needed for the construction of z solutions is given for the fixed decision sequence
(FDS) and cyclic decision sequence (CDS).

RMesh ACO C-ACO P-ACO Standard ACO

Time per decision O(log∗ n) O(log n) O(k) O(n)

Time per solution O(n · log∗ n) O(n · log n) O(n · k) O(n2)

Period per solution O(log∗ n) O(log n) O(n · k/m) O(n2)

TT for z solutions (FDS) O((z + n) · log∗ n) O((z + n) · log n)

TT for z solutions (CDS) O(z · log∗ n) O(z · log n)
O(z · n · k/m) O(z · n2)

Speedup (CDS) O(n2/log∗ n) O(n2/log n) O(n · m/k) —

Exploiting the capabilities of the dynamically reconfigurable bus system, the
RMesh ACO can make a decision in O(log∗ n), which can be considered as con-



4.5. COMPARISON OF DIFFERENT APPROACHES 127

stant with respect to all problem sizes n with practical relevance. As outlined in
the Section 4.3.4.3, the execution speed of the C-ACO algorithm is mainly de-
termined by the calculation of prefix sums, which requires O(log n). As P-ACO
can build-up a probability distribution using the match buffer concept, a decision
can be made in O(k). As mentioned before, experimental studies suggest that
population size k can also be regarded as a small constant, which is independent
of problem size n. In comparison, a sequential processor that uses the standard
ACO approach requires O(n) time per ant decision.

For all algorithms, each ant decision has to wait for the completion of the
preceding ant decision. Thus the time needed for constructing a complete solution
is the product of n and the time per ant decision. In RMesh ACO and C-ACO,
ants can be piped through a statically allocated pheromone matrix such that a
complete solution can be created with an average period equal to the time per ant
decision. Considering P-ACO, the functional parallelism embodied in processing
m ants in parallel on an FPGA allows m solutions to be formed in O(n · k)
time such that an average period of O(n · k/m) per solution is attained. The
sequential standard ACO, however, cannot support a pipelined flow of ants and
therefore needs a quadratic period per solution construction. Assuming that the
algorithms are terminated after a total of z solutions generated, the total runtime
is the product of z and the average period per solution (assuming CDS for RMesh
ACO and C-ACO). In the last row of Table 4.4, the asymptotic speedup of the
parallel ACO variants over the sequential standard ACO algorithm are given. The
speedup differences between RMesh ACO and C-ACO trace back to the specific
methods for the calculation of prefix sums. The speedup for P-ACO depends
on the number of parallel solution generators m and population size k. All three
parallel variants achieve an asymptotic speedup of at least factor n (if k is a small
constant).

Subsequently, the asymptotic resource requirements of the hardware-variants
of ACO are compared. The RMesh-ACO occupies a grid of O(n2) processing
elements (PEs). The size of a single PE in the abstract computation model is
not further specified. However, sufficient resources must be available to compute
the floating-point encoded pheromone information in each PE. The asymptotic
amount of resources needed by C-ACO with piped ants are signified by the size of
the quadratic pheromone matrix. Each pheromone value is encoded with a band-
width of log(τmin + n · τinit) bits. Assuming τmin and τinit to be independently
chosen from problem size n, a total of O(n2 · log n) resources are used. Regarding
C-ACO with piped pheromones, the resource requirements of O(M · n · log n)
are distinguished by the size of the ant array M . As outlined in Section 4.4.4.1,
P-ACO requires resources in the order of O(m · n · log n) growing linearly in the
number of solution generators. The length of each Solution Generator itself is
proportional to problem size n, whereas the height is mainly determined by the
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bandwidth O(log n) for encoding item numbers. Population size k is considered
as a constant independent of problem size n. Therefore the population does not
influence the asymptotic amount of resources needed. Note that the resource
complexities stated above assume the remaining parts of the circuitry (e.g. con-
trol, comparison, evaluation) not to exceed the size of the constructive part of the
algorithm. The evaluation functions of QAP, SMTTP, and TSP do definitely sat-
isfy this assumption. It can be summarized that asymptotically, P-ACO requires
less resources than C-ACO if m is smaller than n or M , respectively.

4.6 Summary

In this chapter, two hardware-oriented ACO variants, C-ACO and P-ACO, have
been presented, which have shown to be well-suited for the implementation in
fine-grained logic provided by FPGAs. In experimental studies, both variants
have shown to be competitive substitutes to the standard ACO algorithm.

Research with both FPGA-oriented variants of ACO inspired various new
algorithmic techniques with respect to:

Encoding of pheromone information: Experimental studies suggest that the
alternative encoding of pheromone values in integer or in the form of popu-
lation items does not deteriorate optimization performance in comparison
to standard ACO. A new place-item-item encoding has been proposed for
C-ACO, which supports pipelined solution construction such that conven-
tionally item-item encoded problems can also be covered by the parallel
FPGA implementation.

Modified selection procedures: In contrast to standard ACO, P-ACO uses a
modified selection procedure. Applying the match buffer concept to P-ACO
the selection procedure has been accelerated such that an ant decision can
be executed in practically constant time.

Alternative heuristic support: The INTVAL, POTVAL, and τ -heuristics for
C-ACO as well as the Time-Scattered Heuristic for P-ACO demonstrated,
that it is possible to adequately approximate the original floating-point
heuristic by integer values, which is better suited for fine-grained logic. All
heuristic variants allow for fast calculations coupled with modest resource
requirements. The Time-Scattered Heuristic further permits a straight for-
ward extension to the P-ACO match buffer concept thereby maintaining
the expedited P-ACO selection procedure.

Alternative decision sequencing: Empirical studies have shown that the stan-
dard fixed decision sequence is not necessarily the best choice. Randomly
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sequencing ant decision certainly improves optimization performance but
prohibits a pipelined flow of ants through the pheromone matrix. The rec-
ommended alternative cyclic decision sequence performs equally well and
supports the systolic solution construction.

Systolic solution construction: Two variants of systolic solution construc-
tion, piped ants and piped pheromone, have been presented, both of them
well-suited for the parallel execution of C-ACO.

Comparison of new solutions: The systolic flow of constructed solutions has
motivated the non-generational mode of comparing solutions piped through
a solution buffer. Appropriate settings for the number of predecessors and
successors have been identified. Opposing this new approach to the con-
ventional generational comparison mode, the non-generational variant has
exhibited a competitive or even better optimization performance.

Concurrent pheromone update: Four different variants of parallel pheromone
update have been compared in combination with both types of pipelining.
Even though the concurrent matrix update intervenes with the parallel so-
lution construction, a significant impact on optimization performance could
not be detected. In the case of P-ACO, the update of the pheromone matrix
is replaced by a corresponding population update.

Substitutes to global evaporation: Global evaporation, commonly applied in
standard ACO, would afford a high number of multiplication circuits and
thus tremendous chip resources on the FPGA. C-ACO substitutes global
evaporation for a sequence of local evaporation steps during ant decisions,
whereas in P-ACO, the negative population update corresponds to locally
evaporating the associated pheromone values. For both variants of ACO,
experimental studies suggest that waiving global evaporation does not crit-
ically affect optimization performance.

It has been shown that the parallel C-ACO implementation can achieve an
asymptotic speedup of O(n2/log n) over the sequential software implementation of
standard ACO. The corresponding asymptotic speedup for P-ACO is O(n ·m/k).
In experimental studies comparing the FPGA implementation of P-ACO with
the software implementation P-ACO on a CPU, speedup values between approx-
imately 2 and 10 could be measured for various instances of SMTTP. Experimen-
tal FPGA implementations of P-ACO for SMTTP suggest that the amount of
logic resources available on modern chip devices is sufficient to accommodate the
circuitry for large applications with practical relevance.

Although C-ACO and P-ACO have been examined with the FPGA implemen-
tation in mind, these two ACO variants have been compared with standard ACO
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in sequential software simulations. In these experiments, C-ACO and P-ACO
have exhibited a competitive or even superior optimization performance. There-
fore, these two hardware-oriented variants may also be attractive alternatives in
software. Also the software implementation of some of the proposed algorithmic
modifications, e.g., the match-buffer concept, the Time-Scattered Heuristic, the
non-generational comparison mode, the cyclic decision sequence, or the place-
item-item matrix encoding may offer attractive substitutes to the conventionally
applied techniques.



Chapter 5

Concepts of Using Runtime
Reconfiguration

The hardware-oriented variants of ACO introduced in the previous section demon-
strate how the operations typically executed in software on sequential machines
can be suitably modified for an accelerated execution on FPGAs. The achiev-
able speedup is due to different data types, adapted algorithmic procedures, and
certainly due to a high degree of concurrency. Reconfigurable architectures, how-
ever, offer the potential for further improvements beyond the typical acceleration
induced by parallelism and pipelining. As outlined in Section 3.4, applying recon-
figuration at runtime can lead to faster execution speed, reduced space require-
ments, less power consumption, and a higher degree of flexibility in comparison
to conventional hard-wired logic.

In the following, various concepts are proposed to enhance the ACO hardware
algorithms by the usage of runtime reconfiguration. One way of utilizing runtime
reconfiguration, sharing a common population among multiple solution genera-
tors, has already been presented for the P-ACO circuit (cf. Section 4.4.3.5). The
usual approach to apply runtime reconfiguration is to identify parts of the circuit
which are temporarily not required and to load these parts as they are needed
by the algorithm. Considering C-ACO, the whole circuit is permanently used for
the parallel construction and evaluation of new solutions (except for the phase
of initial solution constructions after start-up). Only the S-arrays of the P-ACO
circuit offer a possibility of sharing chip resources by partial reconfiguration as
outlined later.

For the ACO implementation on FPGA, three different applications of runtime
reconfiguration are proposed beyond the traditional technique of purely sharing
logic and routing resources:

• The circuit is too large to entirely fit onto the available resources. The
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hardware design needs to be partitioned and scheduled.

• The optimization problem is subject to dynamic changes during the run-
time of the algorithm. The circuit is required to efficiently adapt to these
changes.

• Runtime reconfiguration is applied to accelerate the convergence and exe-
cution speed of the algorithm.

5.1 Partitioning and Scheduling

In the case of very large problem instances (or comparatively small chips), it
may happen that the dimensions of the ACO circuit exceed the available amount
of resources on a single FPGA device. There exist mainly two alternatives to
cope with this problem: either spatial partitioning over multiple FPGA devices
on a multi-FPGA system or temporal partitioning combined with an appropriate
execution schedule. Various tools and techniques for the automated partitioning
[Hauck, 1995, Acock and Dimond, 1997, Vahid, 1997, Brasen and Saucier, 1998,
Khalid, 1999, Hidalgo et al., 2003] and routing [Mak and Wong, 1997, Ejnioui and
Ranganathan, 1999] of multi-FPGA systems are available. Therefore the aspect
of spatial partitioning shall not further be considered. The emphasis is put on
the temporal partitioning of ACO algorithms, i.e. the circuit is sub-divided into
several sequentially executed partitions.

5.1.1 Counter-based ACO

With respect to C-ACO, standard techniques for temporal partitioning can be
applied. It is supposed that the cells of the pheromone matrix (in the case of
piped ants) or the ant array (in the case of piped pheromones) are placed in
rows and columns forming a rectangular circuitry, which can be forced by specific
constraint definitions.

Dividing the pheromone matrix horizontally yields ph partitions τH,i with i ∈
{0, . . . , ph−1} as visualized in Figure 5.1a. Accordingly, a horizontal partitioning
of the ant array produces ph sub-arrays AH,i. Considering C-ACO with piped
ants, only one of the ph partitions is configured at a time (see Figure 5.1b).
After one partition τH,i has processed a sequence of m ants, partition τH,i+1

is configured processing the same sequence of ants again. This procedure is
repeated until the last partition has processed all ants and a total of m solutions
has been constructed. Correspondingly, the partitions AH,i of the ant array can
be configured sequentially each of them processing an entire pheromone matrix
as shown in Figure 5.1c.
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Figure 5.1: Horizontal division of ant array or pheromone matrix into ph = 4
partitions. Configuration schedules for parallel execution with piped of ants (PA)
or piped pheromone (PP).
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Figure 5.2: Vertical division of ant array and pheromone matrix into pv parti-
tions. Configuration schedule for parallel execution for both pipelining variants:
piped ants (PA) and piped pheromone (PP).

The circuitry can also be divided vertically into pv partitions (see Figure
5.2a). The partitions of the pheromone matrix are denoted by τV,i with i ∈
{0, . . . , pv − 1}. Accordingly, pv partitions AV,i of the ant array are created.
Depending on the type of pipelining, either partitioned ants are processed on
the currently configured partition of the pheromone matrix or vice versa (see
Figure 5.2b). All n ants are evenly distributed over the pheromone matrix, one
ant per row. After processing the complete sequence of pv partitions, the prefix
sums describing the selection probabilities have been determined. The selected
items are identified during the next sequence of processed partitions. Afterwards,
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pipelined data is cyclically shifted one row forward to continue with the next
decision. This kind of scheduling ant decisions is equivalent to the cyclic decision
sequence (CDS) introduced in Section 4.3.6.3.

Overall, partitioning the circuit permits mapping large problems instances
onto the available resources, which would otherwise not suffice to accommodate
the complete circuit. Applying one of both types of partitioning, horizontal or
vertical, potentially needs about ph or pv times less logic on the chip device than
the mapping of the entire circuit. However, the circuit of a partition needs to
provide more storage to communicate between different partitions and to allow for
a proper execution. Furthermore, scheduling a partitioned circuit requires a more
intricate control logic. Compared to the entirely mapped algorithm, temporal
partitioning reduces the degree of pipelining resulting in a reduced throughput
and an increased computation time. Moreover, the increased number of memory
accesses may cause an overhead further reducing execution speed. Especially
when using external memory devices instead of embedded memory blocks, long
communication delays have to be expected. In this case, techniques to reduce the
amount of transmitted data or to overlap communication with computation need
to be investigated.

5.1.2 Population-based ACO

Based on earlier publications by the author of this thesis [Diessel et al., 2002,
Scheuermann et al., 2004b], this section presents various approaches for parti-
tioning and compacting the P-ACO circuit. The dimensions of the circuit mainly
depend on the size of the problem instance implemented. Specifically, the height
of the P-ACO circuit layout increases only logarithmically with n whereas the
width grows linearly, resulting in an increasingly flat rectangle shape as a basic
structure. Then, fitting the algorithm can be accomplished by folding, which is
standard technique for this kind of problem.

For a given problem size n, the available resources might constrain the num-
ber of solution generators that can be implemented on the FPGA device. It is
proposed to implement only m′ < m Solution Generators operating in c cycles,
where m = c ·m′ (see Figure 5.3). In every cycle, m′ solutions are generated in
parallel. After each cycle the newly created solutions are compared with each
other, and the best solution of the current cycle is compared with the best solu-
tion of all preceding cycles. Comparison takes tcmp time, and can be done while
the next solution is being generated. Thus the time to finish a complete iteration
is tit = max{c · tg + tcmp, c · tcmp + tg}+ tu with tg denoting the time for generating
a complete solution and tu the time per population update (see Section 4.4.4.2).

Another method to make better use of the available space takes into account
that the size of selection set S decreases over time. At certain points in time it is
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possible to move the currently active selection sets to solution generators contain-
ing S-arrays with a smaller number of S-cells. Two examples of this modification
are given in Figure 5.4.
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Figure 5.3: Schedule of a complete iteration consisting of c = 3 cycles. After
the last cycle the population is updated. Here only one solution generator is
considered.

The two/four S-Array configurations in figures 5.4a/b save 25/37.5% space at
the cost of having the simulated ants be in different stages of completion due to
their respective starting delays. In both configurations, the left side shows the
S-arrays after a new ant has started, the right side the moment just before the
selection sets are shifted down and a new ant starts.

(a) Two S-arrays (b) Four S-arrays

Figure 5.4: Examples of S-Array configurations with decreasing array sizes.
Shaded area represents the active portion of the array holding set S.

Common to all partitioning and scheduling concepts presented so far is that
the size of the circuit is reduced either by sequentially executing only a small
partition of the circuit or by adequately shifting data. This means that following
a certain schedule, the actual reconfiguration is merely restricted to the manipu-
lation of data stored in working registers. Certainly, reconfigurable architectures
providing various kinds of memory resources distributed over the computational
array facilitate the implementation of partitioned circuits. However, applying
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runtime reconfiguration also to configuration memory makes even better use of
the capabilities of reconfigurable architectures. Therefore, the next proposal also
includes reconfiguration of logic and routing structures at runtime.

As mentioned before, the size of the selection set is steadily reduced during
the process of solution construction, and the logic of the S-Array is designed to
compact the active S-cells to the right hand side. This means that on average,
only 50% of the S-Array is actually used. It is proposed to divide every S-Array
in the middle into two equally sized sub-arrays, one of them being static, the
other reconfigurable during runtime (see Figure 5.5). Furthermore, a different
type of mirrored S-Array is needed shifting active S-cells to the left hand side.
Mirrored S-arrays are also divided into two sub-arrays. All m S-arrays are ar-
ranged pairwise, such that the left column contains the mirrored arrays and the
right column comprises the normal arrays. Every pair is configured in a way that
the reconfigurable sub-arrays overlap.

right column
left column

S−Array 0
S−Array 2
S−Array 4

S−Array 1
S−Array 3
S−Array 5

Figure 5.5: Example of m = 6 S-arrays arranged in two columns. Shared
sub-arrays (shaded) are reconfigured at runtime.

The parallel solution construction is scheduled as follows: The m/2 arrays in
the right column start generating solutions. After n/2 decisions the shared sub-
arrays contain only deactivated S-cells. This area can now be partially reconfig-
ured into a left-shifting sub-array. After reconfiguration is finished, the mirrored
S-arrays commence and the normal S-arrays continue construction solutions. Af-
ter n/2 further ant decisions the shared area is reconfigured into right-shifting
sub-arrays and the process starts over again. Disregarding reconfiguration delays,
the average throughput of solutions generated by the circuit is equal to the non-
runtime reconfigurable implementation. The real increase in computation time
depends of the delay induced by partial reconfiguration. However, by sharing
reconfigurable sub-arrays the requirements of logic resources can be reduced by
25%. Furthermore, as the reconfigurable area is aligned in a column, the proposed
design is well-suited for Xilinx Virtex architectures supporting only column-wise
reconfigurations (see Section 3.4.1).
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5.2 Dynamic Changes of the Optimization Prob-

lem

All previously regarded optimization problems can be considered as static in as
far as the problem-specific parameters do not change during the algorithm run-
time. In this section, however, it is supposed that some parameters are subject to
dynamic changes, which occur during the optimization process and are not known
prior to starting the algorithm. In the following, concepts of dynamic reconfigu-
ration are applied to TSP. By suitable modifications, however, these concepts can
also be transferred to other dynamically changing optimization problems. Two
possible cases of dynamic changes are distinguished:

• The size of the problem instance changes over time by the deletion or in-
sertion of cities.

• Other problem parameters change during the algorithm runtime.

5.2.1 Dynamic Changes of the Problem Size

In the first case, the problem size changes during the optimization process. It
is supposed that the algorithm has already generated tours through the set of n
cites when a change of the problem size occurs. Some cities shall not be visited
anymore and are deleted from the problem instance while other new cities to
be visited are inserted into the problem instance. The ACO algorithm is now
required to adapt to these changes and to find good tours through the new set of
cities.

One way to react to these changes would be to restart the algorithm from
scratch giving the altered problem instance as input. This would be equal to
discarding all previously made calculations and all solutions found for the old
problem instance. Accordingly, the hardware implementation would need to be
completely redesigned, synthesized, and implemented on the FPGA, which would
afford an unacceptable amount of time.

If the change to the problem instance, however, is not too severe and these
changes do not occur too often, it may be beneficial to re-use the knowledge
gained by the optimization on the old problem instance. With respect to the
ACO algorithm, this means to appropriately modify the pheromone matrix as
well as the previously found elitist solution and to continue the optimization
process.

These modifications are accomplished in three steps:

1. Adapting the distribution of pheromones
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2. Adjusting the size of the pheromone matrix

3. Repairing the elitist solution.

Various strategies for adapting the distribution of pheromones and for re-
pairing elitist solutions in ACO algorithms are examined in [Guntsch, 2004]. As
these two steps do not require the capabilities of runtime reconfiguration, the
subsequently proposed concept deals with adjusting the size of the pheromone
matrix to dynamic changes of problem size n. Whenever a city l is deleted from
the problem instance, the corresponding row l and column l of the pheromone
matrix can be removed. Assuming the ACO algorithm to be implemented with a
statically allocated pheromone matrix with piped ants, this would mean to mark
the respective cells in row l and column l as deleted (see Figure 5.6a). Thereafter
the remaining circuit can be compacted to the top-left by shifting pheromone
values in rows i > l one row up and all pheromones values in columns j > l
one column to the left thereby overwriting data stored in row and column l. A
compaction towards the bottom-right corner can be accomplished likewise. The
released resources along the borders of the pheromone matrix are available to
other applications and can be partially reconfigured at runtime (see Figure 5.6b).
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pheromone matrix
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re
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(b) After deletion and compaction.

Figure 5.6: Example of TSP with city l being deleted from the problem in-
stance. Row l and column l are deleted, and the remaining pheromone matrix is
compacted.

Accordingly, additional resources are needed if a new city n + 1 is inserted
into the instance. These resources can be provided by partially reconfiguring one
row and one column along the border of the circuit as shown in Figure 5.7.

Note that shifting and adapting pheromone values temporarily interrupts the
optimization process. Thus fast pheromone modification algorithms and quick
shifting structures are required. Depending on the capabilities of the target ar-
chitecture, the actual reconfiguration of released or required resources can be
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(b) After reconfiguration

Figure 5.7: Example of TSP with city n + 1 being appended to the problem
instance.

executed without interference with the currently running algorithm. It should
therefore be possible to overlap the comparatively slow partial reconfiguration
with useful computations.

Deleting and inserting cities causes a corresponding size adaption of the phe-
romone matrix, but also the bandwidths of certain numbers may change. For in-
stance, item numbers (city indices) change logarithmically with the problem size,
and pheromone values or update counters can take different maximum values.
Thus, the initial circuit should be designed for the maximum possible problem
size since adapting the circuit to a larger than the reserved bandwidth would
possibly result in a reconfiguration or redesign of the entire circuit.

It should also be noted how the modifications to the pheromone matrix are
sequenced. In the case of deleted cities, the distribution of pheromone values
would first be adapted and shifted prior to reconfiguring the released resources.
Considering the insertion of cities, the pheromone matrix would first be expanded
by partial reconfiguration before modifying the pheromone values.

5.2.2 Dynamic Changes of Problem Parameters

Previously regarded dynamic changes concerned the size of the problem instance,
i.e. the insertion or deletion of cities, but the algorithm also needs to react
to changes of other problem parameters. In the case of TSP, for instance, the
distance dij between two cities i and j may change due to a construction site or
a traffic jam on the shortest route connecting these two cities. Accordingly, the
traveling salesperson must follow a deviation such that the distance between the
two cities is increased. This distance directly affects the heuristic information
ηij = 1/dij. It is supposed that ηij is integrated into the calculation of selection
probabilities by multiplying heuristic values with pheromone values (e.g. using
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the INTVAL heuristic).

If distance changes do not occur too often reconfigurable architectures like
FPGAs allow to realize these multiplications by constant coefficient multiplier
circuits as introduced in Section 3.4.2. These multipliers are synthesized for
constant heuristic values, they afford less logic resources, run at faster speed and
use less power than conventional multipliers with two variable operands. With
every change of distance dij the multiplier in cell (i, j) is altered by partially
reconfiguring the new value ηij as a constant coefficient as demonstrated in Figure
5.8. Like other partially evaluated circuits, constant coefficient multipliers need
to account for the maximum possible bandwidth (see Section 5.2.1). Hence,
every cell of the pheromone matrix circuitry should reserve sufficient area for the
largest possible constant coefficient (see [MacKay and Singh, 1999]) to prevent a
potential redesign of the entire circuit.

FPGA

pheromone matrix

j

i

Figure 5.8: Example of a circuit of a statically allocated pheromone matrix
with a cell (i, j) affected by a dynamic change of a problem parameter. This cell
is subject to a partial reconfiguration at runtime.

Note that constant coefficient multiplications with heuristic values are only
one example of accelerating the execution of ACO by means of partial evaluation
(see Section 3.4.2). The concept of partial evaluation can be applied in all lo-
cations of the ACO circuit working on constant or infrequently changing values.
Especially the circuits for the calculation of solution qualities are appropriate can-
didates for the usage of partial evaluation. These circuits are specialized on, e.g.,
constant flows between facilities (QAP) or constant weights of items (knapsack
problem).

Reconfiguration at runtime offers the possibility to adapt the hardware to in-
frequent changes of these constants. If parameter changes occur rather frequently,
however, it may be advisable to use conventional circuits and to modify register
contents since runtime reconfiguration often requires prohibitive long time (cf.
Section 3.4). The identification of critical reconfiguration delays or frequencies of
parameter changes may be a direction for future work.
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5.3 Accelerating Convergence and Runtime

As described in Section 4.2, dynamic reconfiguration can be applied to the RMesh
implementation of ACO whenever a pheromone value τij exceeds a high threshold
value γ [Janson et al., 2002, 2003]. This local convergence would cause the ants
to almost always select item j in row number i. The authors therefore propose to
permanently assign item j as a constant value to place number i in the solution
vector and the respective row and column is deleted. This concept, however, is not
restricted to the RMesh, Figure 5.9 shows the application of size reduction steps
to the ACO implementation on FPGA. After every size reduction, the resources of
one row and one column are released. These resources are partially reconfigured
to be re-used by other applications. As size reductions are repeatedly conducted
with every detection of a local convergence, the initially occupied chip area can
be released successively. Depending on the respective stopping condition, size
reduction steps can be applied until eventually the entire circuit is freed.
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Figure 5.9: Example of ACO on FPGA with local convergence in τij resulting
in deletion of row i and column j. Eventually, repeated size reduction steps can
release all logic resources.

Software simulations on QAP presented in [Janson et al., 2002, 2003] show
that size reductions lead to an accelerated convergence and that the choice of
threshold value γ controls a trade-off between execution speed and optimization
performance: On the one hand, the reduced problem size results in a decreased
runtime. On the other hand, the attainable solution quality is worsened in com-
parison to ACO without size reduction. Simulations on sparse QAP instances,
however, behave somewhat different: Convergence is accelerated combined with
a reduced runtime and even improved attainable solution qualities.

The RMesh model used in these simulations does not consider any reconfigu-
ration delays. Regarding FPGAs, these reconfiguration delays can be very critical
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and possibly compensate the advantages of the successively reduced problem size.
Further examinations can therefore determine the conditions (e.g. maximum re-
configuration delay) for a successful application of the size reduction concept.

5.4 Summary

In this chapter, various concepts have been presented for applying runtime recon-
figuration to the ACO implementation on FPGAs. It has been stated that the
ACO hardware variants offer only a few possibilities for using the standard tech-
nique of loading and configuring circuit parts as they are needed by the algorithm.
However, three different scenarios for the application of runtime reconfiguration
have been identified: Temporal partitioning and scheduling, dynamic changes
to the optimization problem, and the acceleration of convergence and execution
speed.

Temporal partitioning and scheduling offers a way of mapping large problem
instances onto the available resources, which would otherwise not be sufficient
to accommodate the complete circuit. Under some circumstances, this technique
may require more storage, need a more elaborated control logic, and lead to
an increased computation time. In the case of unused circuit parts, however,
compaction and scheduling can help saving chip resources with potentially less
impact on execution speed (as proposed for P-ACO).

Runtime reconfiguration can also be used to adapt the ACO circuit to dynamic
changes of the optimization problem, thereby avoiding an entire re-design and re-
implementation, which would afford an unacceptable amount of time. It has
been described how to react to dynamic changes of the problem size and of other
problem parameters. Runtime reconfiguration can be applied to adjust the size
of the pheromone matrix and to alter parts of the circuit by means of partial
evaluation (e.g. using constant coefficient multipliers).

Finally, it has been shown how the concept of size reduction steps, originally
proposed for the RMesh ACO, can be transferred to the ACO implementation on
FPGAs. Successively, these size reductions release chip resources, which can be
reconfigured at runtime to place other circuits on the chip area.

The major drawback of runtime reconfiguration are the extensively long times
currently needed to load the configuration registers. Although there exist several
approaches to reduce reconfiguration delays, it is very important to appropriately
schedule circuit reconfigurations such that interruptions to the implemented ACO
algorithm can be minimized (see Section 3.4.3). The extent and the duration
of circuit reconfigurations can also be reduced by designing the layout for the
maximum possible bandwidths, although choosing these upper bounds too high
would restrict the maximum problem size that can be implemented.



Chapter 6

Conclusion

Concluding this thesis, the summaries and results of the preceding chapters are
reviewed, and directions for further study are given.

6.1 Review of Summaries and Results

The scope of this thesis has been to examine the potential of runtime recon-
figurable architectures for the efficient execution and acceleration of ACO algo-
rithms. FPGAs as the effectively only commercially available runtime reconfig-
urable fabrics have been chosen as target platform. As fine-grained architectures
FPGAs provide a very versatile and flexible programmability, but the imple-
mentation of certain data types and arithmetic operations typically needed by
the standard ACO algorithm would afford a large amount of logic and routing
resources. Therefore, alternative hardware-oriented variants of ACO, namely C-
ACO and P-ACO, have been proposed, which have shown to be well-suited for
the implementation on FPGA.

For both ACO variants, new algorithmic techniques have been developed and
examined in a range of experimental studies. These algorithmic techniques refer
to:

• encoding of pheromone information,

• modified selection procedures,

• alternative heuristic support,

• alternative decision sequencing,

• systolic solution construction,

• comparison of new solutions,
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• concurrent pheromone update, and

• substitutes to global evaporation.

The algorithmic modifications allow to speed-up the execution by exploiting the
parallelism and pipelining features of hardware algorithms. Furthermore, they
suitably support the implementation on fine-grained logic devices like FPGAs.
The results obtained in a series of empirical studies indicate that the proposed
modifications achieve a competitive or even superior optimization performance.

The two ACO variants can attain asymptotic speedup values of at least factor
n (where n is the problem size) over the sequential software implementation of
standard ACO. P-ACO has been implemented in hardware on an FPGA and in
software on a sequential CPU. Tested on various instances of SMTTP, speedup
values between approximately 2 and 10 could be attained (note that these are
the speedup values measured, which may differ from the asymptotic speedup).
Scaling the circuit for different problem sizes n and number of ants m, it has
been shown that the amount of logic resources available on a modern FPGA chip
is sufficient to accommodate the P-ACO algorithm for large applications with
practical relevance.

Experimental studies suggest that both variants can be considered as compet-
itive substitutes to the standard ACO algorithm. As these experiments have been
performed in sequential software simulations, the two hardware-oriented variants
may also be of interest as alternative sequential ACO algorithms in software.
Furthermore, the software implementation of certain algorithmic modifications
(e.g. the match-buffer concept or the Time-Scattered Heuristic) offer an improved
asymptotic runtime; other modifications like the non-generational comparison
mode, the cyclic decision sequence, or the place-item-item matrix encoding have
achieved competitive or even better average solution qualities and may therefore
offer attractive alternatives to the conventionally applied techniques.

Various concepts for the application of runtime reconfiguration have been
proposed. These concepts cover: temporal partitioning and scheduling, dynamic
changes to the optimization problem as well as accelerating convergence and
execution speed.

If the available resources on a chip are not sufficient then temporal parti-
tioning, circuit compaction, and scheduling may help reducing the circuit size.
These techniques can produce an increased demand of memory resources and a
reduced throughput along with longer computation times. With respect to the
P-ACO circuit, however, it has been explained, how compaction and scheduling
can be used to reduce the amount of required chip resources with potentially
less impact on execution speed. Furthermore, it has been outlined, how runtime
reconfiguration can be applied to appropriately react to dynamic changes to the
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optimization problem. Runtime reconfiguration allows to dynamically adapt the
circuit dimensions whenever the problem size is changed. Partial evaluation can
be applied to design small and fast circuits, which are reconfigured at runtime
in order to react to infrequent changes of certain problem parameters. Runtime
reconfiguration can also be used to shrink the size of the circuitry whenever the
problem size is reduced in the case of a locally converged pheromone matrix.

6.2 Directions for Further Study

So far all experimental studies with C-ACO have been performed in software
simulations, which is entirely sufficient to compare the different algorithmic tech-
niques proposed. However, implementing C-ACO in hardware would allow to
measure the actual speedup attainable. Moreover, the FPGA implementations of
both ACO algorithms, P-ACO and C-ACO could be compared with each other.
These implementations may also be extended by local optimizers or by the alter-
native heuristics that have been introduced.

Furthermore, it might be worthwhile to compare the hardware implementa-
tions of ACO with several kinds of parallel software variants (cf. Section 2.5.2).
Creating a hybrid hardware-software implementation of ACO, it would be possi-
ble to accelerate computationally expensive parts of the algorithm in hardware,
while other conditional branches or mainly sequential instructions are executed
on a CPU. Tools for the assisted or automatic hardware-software partitioning are
proposed, e.g., in [Gupta and De Micheli, 1993, Balarin et al., 1997].

In this thesis, the description of the hardware-oriented ACO algorithms has
been restricted to optimization problems with solutions represented by permuta-
tions of item numbers. Most ACO applications in literature have been proposed
for this class of optimization problems, although several other non-permutation
problems have also been covered (see Section 2.4.1). With respect to the hard-
ware implementation, non-permutation problems may allow to investigate other
representations of pheromone information or different pipelining strategies.

In Chapter 5, various concepts of applying runtime reconfiguration to ACO
have been described. Regarding current FPGA technology, dynamically changing
parts of a circuit demands long reconfiguration times, which may degrade the
efficiency of the proposed concepts. Implementing and testing these concepts
in reconfigurable hardware would help identifying critical reconfiguration delays.
At present, runtime reconfiguration of FPGAs is still a maturing field, and some
devices offer a very limited dynamic access to configuration registers (cf. Section
3.4.1). Therefore, the examinations of the potential of runtime reconfiguration
should not be constrained to current FPGA technology but should also consider
less restrictive computational models.
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With respect to the changes of the problem size, which may occur in dy-
namic optimization problems, new pheromone modification strategies need to be
developed. These strategies should efficiently use the fine-grained resources on
field-programmable devices. The parallel implementation based on local infor-
mation may considerably accelerate the execution compared to the conventional
software-based techniques.

Design, implementation, and verification of hardware ACO algorithms is still a
very time-consuming procedure, which may far exceed the time needed for the de-
velopment of ACO algorithms in software. Therefore, the creation of a hardware
library of ACO modules coupled with an intuitive user interface would support
the automatic (or semi-automatic) generation of ACO circuits and speed-up the
development process. Such a library-based system could be realized as an intel-
lectual property (IP) core. Alternatively, the ACO algorithm could be described
in a higher-level programming language, which is then compiled including the
binding of modules from a pre-compiled hardware library (such a library-based
system is proposed, e.g., for Genetic Algorithms [Bland and Megson, 1998b,c]).

Automated circuit design is also the aim of many researchers in the field of
Evolvable Hardware (EHW) (see [Gordon and Bentley, 2002] for an overview).
Different from traditional design methodologies, circuits are generated by means
of evolutionary techniques, mainly Evolutionary Algorithms. In [Coello Coello
et al., 2000], it is shown that EHW can also be generated by means of ant-based
optimization. Accordingly, it may be possible to apply hardware-implemented
ACO algorithms to the automated circuit generation. Integrating both, the opti-
mization algorithm and the evolved circuitry, on a runtime reconfigurable device
would bring the self-(re-)configuring and self-adaptive chip one step closer.
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A parallel MPEG-4 encoder for FPGA based multiprocessor SoC. In [Rissa
et al., 2005], 2005.

T. Lei, M. Zhu, and J. Wang. The hardware implementation of a genetic algorithm
model with FPGA. In [Leong and Luk, 2002], pages 374–377, 2002.

E. Lemoine and D. Merceron. Run time reconfiguration of FPGA for scanning
genomic databases. In [Athanas and Pocek, 1995], pages 90–98, 1995.

J. K. Lenstra, A. H. G. Rinnoy Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

J. Leonard and W. H. Mangione-Smith. A case study of partially evaluated
hardware circuits: Key-specific DES. In [Luk et al., 1997a], pages 151–160,
1997.

P. Leong and W. Luk, editors. Proceedings of the 2002 IEEE International Con-
ference on Field-Programmable Technology (FPT). The Chinese University of
Hong Kong, IEEE Computer Society, 2002.

P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y.
Wong, and K. H. Lee. Pilchard – a reconfigurable computing platform with
memory slot interface. In [Pocek and Arnold, 2001], pages 170–179, 2001.

P. H. W. Leong and K. H. Leung. A microcoded elliptic curve processor using
FPGA technology. IEEE Transactions on VLSI Systems, 10(5):550–559, 2002.
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2000], pages 505–514, 2000.

K. L. Pocek and J. M. Arnold, editors. Proceedings of the 1997 IEEE Symposium
on FPGAs for Custom Computing Machines, Napa Valley, California, USA.
IEEE Computer Society, 1997.



184 BIBLIOGRAPHY

K. L. Pocek and J. M. Arnold, editors. Proceedings of the 1998 IEEE Symposium
on FPGAs for Custom Computing Machines, Napa Valley, California, USA.
IEEE Computer Society, 1998.

K. L. Pocek and J. M. Arnold, editors. Proceedings of the 1999 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, FCCM 1999, Napa
Valley, California, USA. IEEE Computer Society, 1999.

K. L. Pocek and J. M. Arnold, editors. Proceedings of the 2001 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, FCCM 2001, Napa
Valley, California, USA. IEEE Computer Society, 2001.

K. L. Pocek and J. M. Arnold, editors. Proceedings of the 2003 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, FCCM 2003, Napa
Valley, California, USA. IEEE Computer Society, 2003.

K. L. Pocek and J. M. Arnold, editors. Proceedings of the 2004 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, FCCM 2003, Napa
Valley, California, USA. IEEE Computer Society, 2004.

I. Pournara, C.-S. Bouganis, and G. A. Constantinides. FPGA-accelerated
bayesian learning for reconstruction of gene regulatory networks. In [Rissa
et al., 2005], 2005.

N. Pramstaller and J. Wolkerstorfer. A universal and efficient AES co-processor
for field programmable logic arrays. In [Becker et al., 2004], pages 565–574,
2004.

D. V. Pryor, M. R. Thistle, and N. Shirazi. Text searching on Splash 2. In [Buell
and Pocek, 1993], pages 172–177, 1993.

K. Puttegowda, D. I. Lehn, J. H. Park, P. M. Athanas, and M. T. Jones. Context
switching in a run-time reconfigurable system. The Journal of Supercomputing,
26(3):239–257, 2003.

J. M. Rabaey. Silicon platforms for the next generation wireless systems - what
role does reconfigurable hardware play? In [Hartenstein and Grünbacher,
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