581 research outputs found

    IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF

    Get PDF
    IMGT/3Dstructure-DB is the three-dimensional (3D) structure database of IMGT®, the international ImMunoGenetics information system® that is acknowledged as the global reference in immunogenetics and immunoinformatics. IMGT/3Dstructure-DB contains 3D structures of immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility complex (MHC) proteins, antigen receptor/antigen complexes (IG/Ag, TR/peptide/MHC) of vertebrates; 3D structures of related proteins of the immune system (RPI) of vertebrates and invertebrates, belonging to the immunoglobulin and MHC superfamilies (IgSF and MhcSF, respectively) and found in complexes with IG, TR or MHC. IMGT/3Dstructure-DB data are annotated according to the IMGT criteria, using IMGT/DomainGapAlign, and based on the IMGT-ONTOLOGY concepts and axioms. IMGT/3Dstructure-DB provides IMGT gene and allele identification (CLASSIFICATION), region and domain delimitations (DESCRIPTION), amino acid positions according to the IMGT unique numbering (NUMEROTATION) that are used in IMGT/3Dstructure-DB cards, results of contact analysis and renumbered flat files. In its Web version, the IMGT/DomainGapAlign tool analyses amino acid sequences, per domain. Coupled to the IMGT/Collier-de-Perles tool, it provides an invaluable help for antibody engineering and humanization design based on complementarity determining region (CDR) grafting as it precisely defines the standardized framework regions (FR-IMGT) and CDR-IMGT. IMGT/3Dstructure-DB and IMGT/DomainGapAlign are freely available at http://www.imgt.org

    IMGT, the international ImMunoGeneTics information system®

    Get PDF
    The international ImMunoGeneTics information system® (IMGT) (http://imgt.cines.fr), created in 1989, by the Laboratoire d'ImmunoGénétique Moléculaire LIGM (Université Montpellier II and CNRS) at Montpellier, France, is a high-quality integrated knowledge resource specializing in the immunoglobulins (IGs), T cell receptors (TRs), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune systems (RPI) that belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF). IMGT includes several sequence databases (IMGT/LIGM-DB, IMGT/PRIMER-DB, IMGT/PROTEIN-DB and IMGT/MHC-DB), one genome database (IMGT/GENE-DB) and one three-dimensional (3D) structure database (IMGT/3Dstructure-DB), Web resources comprising 8000 HTML pages (IMGT Marie-Paule page), and interactive tools. IMGT data are expertly annotated according to the rules of the IMGT Scientific chart, based on the IMGT-ONTOLOGY concepts. IMGT tools are particularly useful for the analysis of the IG and TR repertoires in normal physiological and pathological situations. IMGT is used in medical research (autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research, biotechnology related to antibody engineering (phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (clonalities, detection and follow up of residual diseases) and therapeutical approaches (graft, immunotherapy and vaccinology). IMGT is freely available at http://imgt.cines.fr

    IPD - the Immuno Polymorphism Database

    Get PDF
    The Immuno Polymorphism Database (IPD) (http://www.ebi.ac.uk/ipd/) is a set of specialist databases related to the study of polymorphic genes in the immune system. IPD currently consists of four databases: IPD-KIR, contains the allelic sequences of Killer-cell Immunoglobulin-like Receptors; IPD-MHC, a database of sequences of the Major Histocompatibility Complex of different species; IPD-HPA, alloantigens expressed only on platelets; and IPD-ESTAB, which provides access to the European Searchable Tumour Cell-Line Database, a cell bank of immunologically characterized melanoma cell lines. The IPD project works with specialist groups or nomenclature committees who provide and curate individual sections before they are submitted to IPD for online publication. The IPD project stores all the data in a set of related databases. Those sections with similar data, such as IPD-KIR and IPD-MHC share the same database structure. The sharing of a common database structure makes it easier to implement common tools for data submission and retrieval. The data are currently available online from the website and ftp directory; files will also be made available in different formats to download from the website and ftp server. The data will also be included in SRS, BLAST and FASTA search engines at the European Bioinformatics Institute

    IMGT, the international ImMunoGeneTics information system(®): a standardized approach for immunogenetics and immunoinformatics

    Get PDF
    IMGT, the international ImMunoGeneTics information system(®), was created in 1989 by the Laboratoire d'ImmunoGénétique Moléculaire (LIGM) (Université Montpellier II and CNRS) at Montpellier, France. IMGT is a high quality integrated knowledge resource specialized in immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune system (RPI) of any species which belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF). IMGT consists of five databases, ten on-line tools and more than 8,000 HTML pages of Web resources. IMGT provides a common access to standardized data from genome, genetics, proteome and three-dimensional structures. The accuracy and the consistency of IMGT data are based on IMGT-ONTOLOGY, a semantic specification of terms to be used in immunogenetics and immunoinformatics. IMGT-ONTOLOGY comprises six main concepts: IDENTIFICATION, CLASSIFICATION, DESCRIPTION, NUMEROTATION, ORIENTATION and OBTENTION. Based on these concepts, the controlled vocabulary and the annotation rules necessary for the immunogenetics data identification, classification, description and numbering and for the management of IMGT knowledge are defined in the IMGT Scientific chart. IMGT is the international reference in immunogenetics and immunoinformatics for medical research (repertoire analysis of the IG antibody sites and of the TR recognition sites in autoimmune and infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research (IG and TR repertoires in farm and wild life species), genome diversity and genome evolution studies of the adaptive immune responses, biotechnology related to antibody engineering (single chain Fragment variable (scFv), phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (detection and follow up of residual diseases) and therapeutical approaches (grafts, immunotherapy, vaccinology). IMGT is freely available at

    IMGT-ONTOLOGY 2012

    Get PDF
    Immunogenetics is the science that studies the genetics of the immune system and immune responses. Owing to the complexity and diversity of the immune repertoire, immunogenetics represents one of the greatest challenges for data interpretation: a large biological expertise, a considerable effort of standardization and the elaboration of an efficient system for the management of the related knowledge were required. IMGT®, the international ImMunoGeneTics information system® (http://www.imgt.org) has reached that goal through the building of a unique ontology, IMGT-ONTOLOGY, which represents the first ontology for the formal representation of knowledge in immunogenetics and immunoinformatics. IMGT-ONTOLOGY manages the immunogenetics knowledge through diverse facets that rely on the seven axioms of the Formal IMGT-ONTOLOGY or IMGT-Kaleidoscope: “IDENTIFICATION,” “DESCRIPTION,” “CLASSIFICATION,” “NUMEROTATION,” “LOCALIZATION,” “ORIENTATION,” and “OBTENTION.” The concepts of identification, description, classification, and numerotation generated from the axioms led to the elaboration of the IMGT® standards that constitute the IMGT Scientific chart: IMGT® standardized keywords (concepts of identification), IMGT® standardized labels (concepts of description), IMGT® standardized gene and allele nomenclature (concepts of classification) and IMGT unique numbering and IMGT Collier de Perles (concepts of numerotation). IMGT-ONTOLOGY has become the global reference in immunogenetics and immunoinformatics for the knowledge representation of immunoglobulins (IG) or antibodies, T cell receptors (TR), and major histocompatibility (MH) proteins of humans and other vertebrates, proteins of the immunoglobulin superfamily (IgSF) and MH superfamily (MhSF), related proteins of the immune system (RPI) of vertebrates and invertebrates, therapeutic monoclonal antibodies (mAbs), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA)

    From IMGT-ONTOLOGY to IMGT/LIGMotif: the IMGT® standardized approach for immunoglobulin and T cell receptor gene identification and description in large genomic sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The antigen receptors, immunoglobulins (IG) and T cell receptors (TR), are specific molecular components of the adaptive immune response of vertebrates. Their genes are organized in the genome in several loci (7 in humans) that comprise different gene types: variable (V), diversity (D), joining (J) and constant (C) genes. Synthesis of the IG and TR proteins requires rearrangements of V and J, or V, D and J genes at the DNA level, followed by the splicing at the RNA level of the rearranged V-J and V-D-J genes to C genes. Owing to the particularities of IG and TR gene structures related to these molecular mechanisms, conventional bioinformatic software and tools are not adapted to the identification and description of IG and TR genes in large genomic sequences. In order to answer that need, IMGT<sup>®</sup>, the international ImMunoGeneTics information system<sup>®</sup>, has developed IMGT/LIGMotif, a tool for IG and TR gene annotation. This tool is based on standardized rules defined in IMGT-ONTOLOGY, the first ontology in immunogenetics and immunoinformatics.</p> <p>Results</p> <p>IMGT/LIGMotif currently annotates human and mouse IG and TR loci in large genomic sequences. The annotation includes gene identification and orientation on DNA strand, description of the V, D and J genes by assigning IMGT<sup>® </sup>labels, gene functionality, and finally, gene delimitation and cluster assembly. IMGT/LIGMotif analyses sequences up to 2.5 megabase pairs and can analyse them in batch files.</p> <p>Conclusions</p> <p>IMGT/LIGMotif is currently used by the IMGT<sup>® </sup>biocurators to annotate, in a first step, IG and TR genomic sequences of human and mouse in new haplotypes and those of closely related species, nonhuman primates and rat, respectively. In a next step, and following enrichment of its reference databases, IMGT/LIGMotif will be used to annotate IG and TR of more distantly related vertebrate species. IMGT/LIGMotif is available at <url>http://www.imgt.org/ligmotif/</url>.</p

    IMGT/GeneInfo: T cell receptor gamma TRG and delta TRD genes in database give access to all TR potential V(D)J recombinations

    Get PDF
    BACKGROUND: Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract. DESCRIPTION: IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(D)J genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at . CONCLUSION: IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(D)J gene rearrangements and their applications in immune response analysis

    Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation.

    Get PDF
    HLA typing in solid organ transplantation (SOT) is necessary for determining HLA-matching status between donor-recipient pairs and assessing patients\u27 anti-HLA antibody profiles. Histocompatibility has traditionally been evaluated based on serologically defined HLA antigens. The evolution of HLA typing and antibody identification technologies, however, has revealed many limitations with using serologic equivalents for assessing compatibility in SOT. The significant improvements to HLA typing introduced by next-generation sequencing (NGS) require an assessment of the impact of this technology on SOT. We have assessed the role of high-resolution 2-field HLA typing (HR-2F) in SOT by retrospectively evaluating NGS-typed pre- and post-SOT cases. HR-2F typing was highly instructive or necessary in 41% (156/385) of the cases. Several pre- and posttransplant scenarios were identified as being better served by HR-2F typing. Five different categories are presented with specific case examples. The experience of another center (Temple University Hospital) is also included, whereby 21% of the cases required HR-2F typing by Sanger sequencing, as supported by other legacy methods, to properly address posttransplant anti-HLA antibody issues
    corecore