68,492 research outputs found
IL-15 augments TCR-induced CD4⁺ T cell expansion in vitro by inhibiting the suppressive function of CD25High CD4⁺ T cells
Due to its critical role in NK cell differentiation and CD8(+) T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4(+) T cells. The increased levels of IL-15 found in several CD4(+) T cell-driven (auto-) immune diseases prompted us to examine how IL-15 influences murine CD4(+) T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4(+) and CD8+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4(+) T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15R alpha was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15R beta, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4(+) T cell suppression by a gradually expanding CD25(High)CD4(+) T cell subset that expresses Foxp3 and originates from CD4(+)CD25(+) Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology
CpG and Interleukin-15 Synergize to Enhance IFN-γ Production by Activated CD8+ T Cells
Interleukin-15 (IL-15) regulates the development and maintenance of memory CD8+ T cells. Paradoxically, we previously reported that IL-15 could enhance CD8+ T-cell responses to IL-12, a proinflammatory cytokine required for optimal priming of effector CD8+ T cells. To expand the physiological relevance of these findings, we tested IL-15 for its ability to enhance T-cell responses to bacterial CpG. Expectedly, CpG enhanced the production of IFN-γ by CD8+ T cells polyclonally activated with anti-CD3. However, addition of IL-15 to CpG-stimulated cultures led to a striking increase in IFN-γ production. The effect of CpG and IL-15 was also evident with CD8+ T cells recovered from mice infected with the parasite Trypanosoma cruzi (T. cruzi) and restimulated with antigen. The observed synergy between CpG and IL-15 occurred in an IL-12-dependent manner, and this effect could even be demonstrated in cocultures of activated CD8+ T cells and CD4+CD25+ regulatory T cells. Although IFN-γ was not essential for CpG-induced IL-12, the ability of CpG and IL-15 to act on CD8+ T cells required expression of the IFN-γ-inducible transcription factor T-bet. These data have important implications for development of vaccines and design of therapies to boost CD8+ T-cell responses to infectious agents and tumors
Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice
Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment
Recommended from our members
Administration of Interleukin-15 Peptide Improves Cardiac Function in a Mouse Model of Myocardial Infarction.
Interleukin-15 is a pleotropic factor, capable of modulating metabolism, survival, proliferation, and differentiation in many different cell types. The rationale behind this study relates to previous work demonstrating that IL-15 is a major factor present in stem cell extracts, which protects cardiomyocytes subjected to hypoxic stress in vitro. The objective of this current study was to assess whether administration of IL-15 peptide will also show protective effects in vivo. The data indicate that administration of IL-15 reduces cell death, increases vascularity, decreases scar size, and significantly improves left ventricular ejection fraction in a mouse model of myocardial infarction
IL-15 sustains IL-7R-independent ILC2 and ILC3 development
The signals that maintain tissue-resident innate lymphoid cells (ILC) in different microenvironments are incompletely understood. Here we show that IL-7 receptor (IL-7R) is not strictly required for the development of any ILC subset, as residual cells persist in the small intestinal lamina propria (siLP) of adult and neonatal Il7ra(−/−) mice. Il7ra(−/−) ILC2 primarily express an ST2(−) phenotype, but are not inflammatory ILC2. CCR6(+) ILC3, which express higher Bcl-2 than other ILC3, are the most abundant subset in Il7ra(−/−) siLP. All ILC subsets are functionally competent in vitro, and are sufficient to provide enhanced protection to infection with C. rodentium. IL-15 equally sustains wild-type and Il7ra(−/−) ILC survival in vitro and compensates for IL-7R deficiency, as residual ILCs are depleted in mice lacking both molecules. Collectively, these data demonstrate that siLP ILCs are not completely IL-7R dependent, but can persist partially through IL-15 signalling
New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity.
Interleukin-15 (IL-15) is a potent cytokine that increases CD8+ T and NK cell numbers and function in experimental models. However, obstacles remain in using IL-15 therapeutically, specifically its low potency and short in vivo half-life. To help overcome this, a new IL-15 superagonist complex comprised of an IL-15N72D mutation and IL-15RαSu/Fc fusion (IL-15SA, also known as ALT-803) was developed. IL-15SA exhibits a significantly longer serum half-life and increased in vivo activity against various tumors. Herein, we evaluated the effects of IL-15SA in recipients of allogeneic hematopoietic stem cell transplantation. Weekly administration of IL-15SA to transplant recipients significantly increased the number of CD8+ T cells (specifically CD44+ memory/activated phenotype) and NK cells. Intracellular IFN-γ and TNF-α secretion by CD8+ T cells increased in the IL-15SA-treated group. IL-15SA also upregulated NKG2D expression on CD8+ T cells. Moreover, IL-15SA enhanced proliferation and cytokine secretion of adoptively transferred CFSE-labeled T cells in syngeneic and allogeneic models by specifically stimulating the slowly proliferative and nonproliferative cells into actively proliferating cells.We then evaluated IL-15SA\u27s effects on anti-tumor activity against murine mastocytoma (P815) and murine B cell lymphoma (A20). IL-15SA enhanced graft-versus-tumor (GVT) activity in these tumors following T cell infusion. Interestingly, IL-15 SA administration provided GVT activity against A20 lymphoma cells in the murine donor leukocyte infusion (DLI) model without increasing graft versus host disease. In conclusion, IL-15SA could be a highly potent T- cell lymphoid growth factor and novel immunotherapeutic agent to complement stem cell transplantation and adoptive immunotherapy
Antibiotics with Interleukin-15 inhibition reduces joint inflammation and bone erosions but not cartilage destruction in Staphylococcus aureus-induced arthritis
Background: Staphylococcus aureus-induced arthritis causes rapid joint destruction, often leading to disabling joint damage despite antibiotics. We have previously shown that IL-15 inhibition without antibiotics is beneficial in S. aureus-induced arthritis. We therefore hypothesized that inhibition of IL-15, in combination with antibiotics, might represent a useful therapy that would both reduce inflammation and joint destruction, but preserve the host's ability to clear the infection.
Methods: Female wildtype C57BL/6 mice were intravenously inoculated with the TSST-1-producing LS-1 strain of S. aureus with 0.8x108 S. aureus LS-1/mouse. Three days later the treatment was started consisting of cloxacillin followed by flucloxacillin, together with either anti-IL-15 antibodies (aIL-15ab) or control antibodies. Outcomes included survival, weight change, bacterial clearance, and joint damage.
Results: The addition of aIL-15ab to antibiotics in S. aureus-induced arthritis reduced synovitis and bone erosions compared to controls. The number of bone-resorbing osteoclasts in the joints was reduced, whereas cartilage destruction was not significantly altered. Importantly, the combination therapy did not adversely affect the clinical outcome of S. aureus-induced arthritis, such as survival, weight change or compromise the host's ability to clear the infection.
Conclusions: As the clinical outcome of S. aureus-induced arthritis was not affected, the addition of aIL-15ab to antibiotics ought to be safe. Taken together, the combination of aIL-15ab and antibiotics is a beneficial, but not optimal, treatment of S. aureus-induced arthritis as it reduces synovitis and bone erosions but has a limited effect on cartilage destruction
Recovery of interleukin-17 production from interleukin-15-stimulated CD4+ mononuclear cells in HIV-1-infected patients with sustained viral suppression
Interleukin-17 (IL-17) is a pro-inflammatory cytokine that is mainly produced by CD4 + T cells. The role of Th17 during the human immunodeficiency virus (HIV)-1 infection is still unclear, but HIV-1 infection can cause a preferential depletion of Th17 cells. It has been shown that IL-15 elicits IL-17 production from human peripheral blood mononuclear cells. We studied the effect of IL-15 stimulation in vitro on IL-17 production from CD4 + mononuclear cells of HIV-infected patients. We observed that IL-15 triggers, in a dose-dependent manner, IL-17 secretion. This effect was blocked by anti-IL-15 monoclonal antibody (P = 0.01). Interestingly, IL-17 production was significantly lower in patients with detectable plasma viremia when compared with successfully treated HIV-infected patients (P = 0.02) and healthy controls, respectively (P < 0.001). We also noticed a significant difference in IL-17 production between naive HIV-infected patients and patients with virological failure on combined antiretroviral therapy (cART) (P = 0.02). Our results suggest that IL-15 can induce IL-17 production from peripheral CD4 + mononuclear cells of HIV-infected patients. Persistent HIV plasma viremia could cause a severe perturbation of IL-17 production from CD4 + mononuclear cells. IL-17 production in HIV-infected patients could be recovered through a sustained suppression of the viral replication in the peripheral blood through cART
Construction and characterization of H5N1-recombinant fowlpox viruses co-expressing host cytokines
Possessing a large double stranded DNA genome up to 300 kb, fowlpox virus (FWPV) has been developed to express avian influenza virus (AIV) antigens since the late 1980s. A more advanced approach would be to coexpress host cytokines from such recombinants. This thesis describes the strategy to construct H5N1-recombinant FWPV (rFWPV) coexpressing chicken Interleukin 12 (IL-12) or Interleukin 15 (IL-15), and discusses the immunogenicity of the recombinants following inoculation into specific-pathogen-free (SPF) chickens.
Previously cloned and sequenced cDNAs encoding full-length H5 and N1 of influenza strain A/Chicken/Malaysia/5858/2004 genes were amplified by PCR and inserted into plasmid pEFL29, under the control of a copy of the vaccinia virus p7.5 early/late promoter. The expression cassettes were recombined into the genome of the FP9 strain of FWPV at the fpv002 locus. Recombinant viruses were produced by transfection of the plasmid into chicken embryo fibroblasts (CEFs) after infection with FP9, and isolated by six fold plaque purification on CEFs using X-Gal selection. Chicken IL-12 or IL-15 genes, under control of a synthetic/hybrid poxvirus promoter, were inserted into a ‘transient dominant selection’ recombination plasmid, pPC1.X. The cytokine expression cassettes were then recombined, at the fpPC1 (fpv030) locus, into rFWPV already carrying AIV genes. Following three rounds of passage in CEFs in the presence of mycophenolic acid (MPA), recombinant viruses carrying the gpt gene were isolated. These unstable recombinants were plaque-purified in the absence of MPA until they lost the gpt gene spontaneously, verified by their failure to replicate in the presence of MPA. Recombinant proteins were successfully detected using western blotting and indirect immunofluorescence assay (IFAT).
Parental and rFWPV (105 PFU) were inoculated subcutaneously into one-day-old SPF chickens. Sera from chickens immunized with rFWPV/H5 and rFWPV/H5/IL-15 demonstrated viral neutralizing activities, based on the haemagglutation inhibition (HI) test, in which reached a peak at Week 3. A competitive enzyme-linked immunosorbent (ELISA) assay detected N1-specific antibodies induced by rFWPV/N1 and rFWPV/N1/IL-12 at Weeks 4 and 5. Non-specific cellular immune responses were assessed by flow cytometric analysis to enumerate CD4+ and CD8+ T-lymphocytes in peripheral blood. Results of Experiment 2 showed chickens vaccinated with rFWPV/H5, rFWPV/H5/IL-15, rFWPV/N1 and rFWPV/N1/IL-12 demonstrated a higher increase in CD8+ than CD4+ T cell population, relative to control and chickens vaccinated with parental FWPV. Weekly weighing showed that chickens vaccinated with rFWPV/H5/IL-15 had the highest body weight compared to other groups, while the rFWPV/N1/IL-12 group showed the significantly lowest body weight.
In summary, this study showed diverse immunogenicity of H5N1-rFWPV coexpressing IL-12 or IL-15. It also demonstrated a weight sparing effect of co-expressing IL-15 in rFWPV vaccines. The results provide the basis for future homologous challenge studies, using live H5N1 virus to evaluate the protective efficacy of the rFWPV vaccines
IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development
Studies in murine cell lines and in mouse models suggest that IL-15 promotes myogenesis and may protect against the inflammation-mediated skeletal muscle atrophy which occurs in sarcopenia and cachexia. The effects of IL-15 on human skeletal muscle growth and development remain largely uncharacterised. Myogenic cultures were isolated from the skeletal muscle of young and elderly subjects. Myoblasts were differentiated for 8 d, with or without the addition of recombinant cytokines (rIL-15, rTNFα) and an IL-15 receptor neutralising antibody. Although myotubes were 19% thinner in cultures derived from elderly subjects, rIL-15 increased the thickness of myotubes (MTT) from both age groups to a similar extent. Neutralisation of the high-affinity IL-15 receptor binding subunit, IL-15rα in elderly myotubes confirmed that autocrine concentrations of IL-15 also support myogenesis. Co-incubation of differentiating myoblasts with rIL-15 and rTNFα, limited the reduction in MTT and nuclear fusion index (NFI) associated with rTNFα stimulation alone. IL-15rα neutralisation and rTNFα decreased MTT and NFI further. This, coupled with our observation that myotubes secrete IL-15 in response to TNFα stimulation supports the notion that IL-15 serves to mitigate inflammatory skeletal muscle loss. IL-15 may be an effective therapeutic target for the attenuation of inflammation-mediated skeletal muscle atrophy
- …
