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ABSTRACT 

 

Possessing a large double stranded DNA genome up to 300 kb, fowlpox virus (FWPV) 

has been developed to express avian influenza virus (AIV) antigens since the late 1980s. 

A more advanced approach would be to coexpress host cytokines from such 

recombinants. This thesis describes the strategy to construct H5N1-recombinant FWPV 

(rFWPV) coexpressing chicken Interleukin 12 (IL-12) or Interleukin 15 (IL-15), and 

discusses the immunogenicity of the recombinants following inoculation into specific-

pathogen-free (SPF) chickens. 

 

Previously cloned and sequenced cDNAs encoding full-length H5 and N1 of influenza 

strain A/Chicken/Malaysia/5858/2004 genes were amplified by PCR and inserted into 

plasmid pEFL29, under the control of a copy of the vaccinia virus p7.5 early/late 

promoter. The expression cassettes were recombined into the genome of the FP9 strain of 

FWPV at the fpv002 locus. Recombinant viruses were produced by transfection of the 

plasmid into chicken embryo fibroblasts (CEFs) after infection with FP9, and isolated by 

six fold plaque purification on CEFs using X-Gal selection. Chicken IL-12 or IL-15 

genes, under control of a synthetic/hybrid poxvirus promoter, were inserted into a 

‘transient dominant selection’ recombination plasmid, pPC1.X. The cytokine expression 

cassettes were then recombined, at the fpPC1 (fpv030) locus, into rFWPV already 

carrying AIV genes. Following three rounds of passage in CEFs in the presence of 

mycophenolic acid (MPA), recombinant viruses carrying the gpt gene were isolated. 

These unstable recombinants were plaque-purified in the absence of MPA until they lost 

the gpt gene spontaneously, verified by their failure to replicate in the presence of MPA. 

Recombinant proteins were successfully detected using western blotting and indirect 

immunofluorescence assay (IFAT).  

 

Parental and rFWPV (10
5
 PFU) were inoculated subcutaneously into one-day-old SPF 

chickens. Sera from chickens immunized with rFWPV/H5 and rFWPV/H5/IL-15 

demonstrated viral neutralizing activities, based on the haemagglutation inhibition (HI) 

test, in which reached a peak at Week 3. A competitive enzyme-linked immunosorbent 

(ELISA) assay detected N1-specific antibodies induced by rFWPV/N1 and 

rFWPV/N1/IL-12 at Weeks 4 and 5. Non-specific cellular immune responses were 

assessed by flow cytometric analysis to enumerate CD4+ and CD8+ T-lymphocytes in 

peripheral blood. Results of Experiment 2 showed chickens vaccinated with rFWPV/H5, 

rFWPV/H5/IL-15, rFWPV/N1 and rFWPV/N1/IL-12 demonstrated a higher increase in 

CD8+ than CD4+ T cell population, relative to control and chickens vaccinated with 

parental FWPV. Weekly weighing showed that chickens vaccinated with rFWPV/H5/IL-

15 had the highest body weight compared to other groups, while the rFWPV/N1/IL-12 

group showed the significantly lowest body weight.  

 

In summary, this study showed diverse immunogenicity of H5N1-rFWPV coexpressing 

IL-12 or IL-15. It also demonstrated a weight sparing effect of co-expressing IL-15 in 

rFWPV vaccines. The results provide the basis for future homologous challenge studies, 

using live H5N1 virus to evaluate the protective efficacy of the rFWPV vaccines.  
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CHAPTER 1 

Introduction 

 

1.1 Influenza 

Influenza, which is caused by single-stranded, negative-sense RNA viruses of the family 

Orthomyxoviridae is an infectious disease of birds and mammals, including humans. 

Although the first relatively well-recorded influenza pandemic occurred in 1580, the most 

notorious was the 1918 influenza pandemic, which killed an estimated 40 million people 

worldwide, with approximately 675,000 in United States alone (Potter, 2001; 

Taubenberger, 2006).  

 

1.1.1 Influenza classification 

Influenza viruses exist in 3 major genotypes: A, B and C. Influenza B and C, which are 

predominantly human pathogens, have not caused pandemics. In contrast, influenza A 

(infecting humans, horses, swine, birds, whales, seals, cats, leopards, tigers, civets and 

dogs (Suarez and Schultz-Cherry, 2000a; van den Berg et al., 2008)) causes annual 

endemics, epidemics every few years and pandemics at irregular intervals of decades. 

Influenza A viruses are divided into subtypes based on antigenic differences between 

their surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA), both of which 

are important determinants for neutralizing antibodies. To date, 16 HA subtypes and 9 

NA subtypes have been identified (Fouchier et al., 2005). All avian influenza viruses are 

of type A. Historically, all influenza A virus subtypes, except H13 (Webster et al., 1992), 

occur asymptomatically in wild birds of the Orders Anseriformes (ducks, geese, and 
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swans) and Charadriformes (i. e., gulls, terns, surfbirds, and sandpipers). Shedding of the 

virus in the faeces of these host species, particularly by wild waterfowl, contaminates the 

environment thus permitting consistent cycles of infection (reviewed by van den Berg et 

al., 2008). 

 

1.1.2  Molecular biology 

The influenza A virus genome consists of eight negative strand RNA segments, the 

complements of which encode eleven different proteins. The HA segment (number 4) 

encodes the full-length HA protein (HA0, in which giving two fragments, HA1 and HA2, 

upon cleavage by proteases at the polybasic region), membrane attachment/fusion 

glycoprotein, which is synthesized on membrane-bound ribosomes. The protein binds 

specifically to sialic acid receptors that are linked to galactose, generally by an α2,3-

linkage in avian and equine hosts, or α2,6-linkage in human host, thus allowing influenza 

virion to attach to the cell (Subbarao et al., 2000; Neumann et al., 2010). Upon successful 

attachment, the virion is endocytosed into the cell. Acidified-endosome activates the 

fusion domain of the HA protein hence releases the viral RNA into cytoplasm. NA, 

which is a surface glycoprotein and enzymatically active, promotes the penetration of 

avian influenza virus into target cells during the onset of infection, and the release of 

budded virus particles from the cell membrane by cleaving sialic acid residues from 

carbohydrate moieties on surfaces-bound receptors of infected cells, at the final stage of 

viral replication (Ohuchi et al., 2006). The neuraminidase activity also helps to prevent 

virus from self-aggregating or remaining to cell membranes (Li et al., 1993).   
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In any glycoprotein, the sugar moieties (glycans) linked to the polypeptide (by an 

enzymatic process termed glycosylation) play vital biological roles in the folding of the 

glycoproteins during biosynthesis and in stabilizing the protein conformation in the active 

form (Vliegenthart and Montreuil, 1995). Core glycosylation, which occurs in the lumen 

of the endoplasmic reticulum (ER), is essential to the creation of a functional HA protein 

(Roberts et al., 1993). Recent studies also implicate N-glycans flanking the receptor-

binding site of HA as potent regulators of influenza virus replication (Wagner et al., 

2000). Apart from the trimming and processing of HA glycans, other post translational 

modifications of HA, including its proteolytic cleavage into subunits, have also been 

studied extensively (Roberts et al., 1993).  

 

The M2 membrane protein acts as an ion channel, which is important for maintaining the 

internal pH of the virion, offering optimal conditions for uncoating of the virus after cell 

entry (Betakova, 2007). The surface proteins HA, NA and M2 are embedded in the viral 

envelope. The other proteins, PA, PB1, PB2 and NP, form ribonucleoprotein (vRNP) 

complexes responsible for transcription of the viral genome. The complexes are 

connected with the viral envelope by the matrix protein, M1, which is required to induce 

the nuclear export of vRNP (Bui et al., 2000; Suarez and Schultz-Cherry, 2000a). Studies 

of fifty five sequences of nine or more amino acids of the polymerases (PB2, PB1, and 

PA), NP, and M1 proteins of avian and human influenza A virus isolates, show that the 

proteins are at least 80% conserved, despite the evolutionary variability (Heiny et al., 

2007). PB1-F2 protein, derived from a second open reading frame (ORF) of PB1, can 

induce apoptosis by interacting with the inner mitochondrial membrane adenine 
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nucleotide translocator 3, ANT3, and the outer mitochondrial membrane voltage-

dependent anion channel 1, VDAC1 (Chen et al., 2001, Zamarin et al., 2005). It interacts 

directly with a viral polymerase PB1 protein, and localizes to both the cytoplasm and the 

nucleus of infected cells, suggesting a pivotal function in AIV replication (Mazur et al., 

2008) 

 

The NS segment encodes NS1 and NEP proteins, using different open reading frames, 

from the same RNA segment.  While NEP proteins mediate the nuclear export of vRNPs 

(Neumann et al., 2000; Suarez and Schultz-Cherry, 2000a), NS1 protein antagonises the 

host cell antiviral interferon (IFN) system in multiple ways. It also regulates temporal 

viral RNA (vRNA) synthesis (Falcon et al., 2004; Min et al., 2007), inhibits pre-mRNA 

splicing (Lu et al., 1994), suppresses RNA interference (Li et al., 2004) and activates 

phosphatidylinositol 3-kinase (PI3K) to mediate anti-apoptotic response (Hale et al., 

2006; Ehrhardt et al., 2007; Shin et al., 2007). 

 

1.2  Avian influenza virus 

1.2.1 Pathogenicity 

Avian influenza viruses infecting poultry can be further divided into two distinct groups 

(pathotypes) based on their ability to cause disease (pathogenicity). The endemic form, 

low pathogenicity avian influenza (LPAI), causes mild symptoms and low mortality 

rates; the highly pathogenic avian influenza (HPAI), defined as ‘fowl plague’ in 1878, 

was initially recognized in Italy as causing flock mortality as high as 100% in chickens 

(Capua and Alexander, 2004; Lupiani et al., 2009). Avian influenza virus (AIV) 
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pathogenicity level is indexed by measuring the intravenous virus pathogenicity index 

(IVPI). The IVPI is the mean score per bird per observation over a 10-day period after 

AIV infection. During this period, an index of 0.00 is denoted to living birds without any 

clinical sign, while an index of 3.00 is denoted if all birds died within 24 hours. 

 

HPAI viruses are only of H5 and H7 subtypes but not all viruses of these subtypes cause 

HPAI. The deduced amino acid sequence at the HPAI cleavage site of the precursor 

haemagglutinin (HA0) contains multiple basic amino acids, arginine (R) and lysine (K) 

(Wood et al., 1994). The cleavage site allows ubiquitous proteases (furin and PC6) 

present in many body tissues, which may be induced by a subtilisin endoprotease, to 

activate the haemagglutinin (Horimoto et al., 1994). This will enable virus replication 

throughout the host, causing lethal damage to vital organs and tissues. Proteolytic 

activation is therefore crucial for effective virus spread and for virus pathogenicity (Rott, 

1979; Rott, 1992; Stieneke-Grober et al., 1992). In cell culture, a polybasic motif of –

R/K-X-K/R-R (X represents a nonbasic residue) is sufficient for a complete 

haemagglutinin cleavage but, if a carbohydrate chain is nearby, a X-X-R-X-R/K-R motif 

is needed (Vey et al., 1992; Wood et al., 1993, Horimoto et al., 1994; Senne et al., 1996; 

Ito et al., 2001). Alterations to the consensus sequence may lead to loss of pathogenicity 

for chickens.  

 

In contrast, LPAI have a single arginine at the cleavage site which limits cleavage to that 

by host proteases such as trypsin and trypsin-like enzymes, restricting the replication of 

the virus to sites in the host where such enzymes are found, such as in the respiratory and 



 25 

intestinal tracts (Capua and Alexander, 2004). Recent evidence (Li et al., 1990; Rohm et 

al., 1995; Banks et al., 2000) clearly supports the hypothesis that HPAI may arise 

unpredictably from LPAI, in poultry or in the wild birds in which LPAI are endemic, by 

mutation at the cleavage site, probably by polymerase slippage in H5, or in other 

subtypes by recombination with other viral or non-viral RNAs (Garcia et al., 1996; 

Perdue et al., 1998). 

 

1.2.2 Determinants of host range and pathogenicity 

Pathogenicity determinants are found in several proteins independently or in 

combination. In addition to the widely-accepted HA and NA proteins of AIV as 

important AIV pathogenic determinants (Section 1.1.2), PB2, NS1 and PB1-F2 proteins 

have been recently identified to possess similar character. 

 

1.2.2.1 PB2 

In 1993, Subbarao and colleagues recognized a single amino acid substitution at position 

627 of PB2 as a host range determinant, with lysine often found in mammalian isolates 

and glutamate being normal in avian isolates. Eight years later, Hatta et al. demonstrated 

the importance of the lysine at PB2-627 in the HPAI H5N1 strain A/Hong Kong/438/97, 

compared to the glutamate at the same position in the LPAI H5N1 strain A/Hong 

Kong/436/97, to virulence in a mouse model, indicating the first report on pathogenicity 

effect of polymerase gene PB2. During a H7N7 influenza virus outbreak in poultry in 

2003, PB2-627K was found in the virus isolated from a lethal case, that of a Dutch 

veterinarian who died with pneumonia, while PB2-627E was invariably found in non-
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fatal human cases (Fouchier et al., 2004). It was later established that a lysine to 

glutamate alteration at PB2-627 of influenza A H1N1/PR/8/34 has profound effects upon 

the surface electric charges of PB2 3/3 domain (amino acids 535-759) and lowers its 

RNA-binding ability (Kuzuhara et al., 2009). However, this mutation does not increase 

the virulence of H1N1 2009 pandemic viruses in a mouse model (Zhu et al., 2010). Apart 

from substitutions at position 627, substitution of aspartate to asparagine at position 701 

of the PB2 protein of H5N1 Hong Kong 1997 or Vietnam 2003-2008 human isolates was 

found to confer lethality in mammals (Hiromoto et al., 2000; Li et al., 2005; Le et al., 

2010). Salomon et al. (2006) also emphasize that the human H5N1 A/Vietnam/1203/04, 

containing a polybasic HA cleavage site, still requires adaptive changes in proteins of the 

polymerase complex to retain its lethal phenotype. 

 

1.2.2.2 NS1 

In 2006, Li et al. demonstrated that two goose-derived H5N1 virus isolates, which both 

possessed polybasic amino acids at their HA cleavage sites, have divergent pathogenicity 

profiles in chickens. They showed that an alanine to valine substitution at position 149 of 

the NS1 protein in A/goose/Guangdong/1/96 results in antagonism of type I IFN 

production, resulting in a high mortality rate, while the inverse substitution attenuates 

A/goose/Guangdong/2/96.  

 

In a mouse model, substitution of proline for serine at NS1-42 increased the virulence of 

H5N1 A/duck/Guangxi/12/03 (Jiao et al., 2008), and a serine to glycine substitution at 
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the same position of the RNA-binding-defective NS1 of A/WSN/33 increased its 

virulence (Donelan et al., 2003).  

 

Recently, the presence of a PDZ ligand domain (acronym combining the first letters of 

three proteins, post synaptic density protein (PSD95), Drosophila disc large tumor 

suppressor (DlgA), and zonula occludens-1 protein (zo-1)) at the C-terminal residues 

(ESEV-COOH) of the NS1 protein (Obenauer et al., 2006), has been demonstrated to 

have the ability to enhance virulence in mice (Jackson et al., 2008). In chickens, 15-

nucleotide deletions at position 263-277 (Long et al., 2008) and 612-626 (Zhu et al., 

2008) of the NS1 gene were also found to increase or attenuate the H5N1 virus 

pathogenicity, respectively.  

 

1.2.2.3 PB1-F2 

Marjuki et al. (2010) reported a three amino acid changes in PB1-F2 protein of the H5N1 

virus A/Vietnam/1203/2004 associates with lethality rate of mallard ducks. In a mouse 

model, a single amino acid substitution, PB1-F2 66 N-S, was discovered to affect the 

pathogenicity of H5N1 Hong Kong 1997 virus and resurrected H1N1 pandemic 1918 

virus (Conenello et al., 2007). This point mutation also delays induction of IFN-β, 

retinoic inducible gene-I, RIG-I, and several IFN-inducible genes (Conenello et al., 

2010). PB1-F2 66 N-S substitution from the H1N1 pandemic 2009 virus also enhances 

expression of the proinflammatory genes IFN-γ, IL-1β, monocyte chemotactic protein-1 

(MCP-1), macrophage inflammatory protein (MIP-1β) and chemokine (C-C motif) 

ligand-5 (CCL-5, also known as RANTES [Regulated upon Activation, Normal T-cell 
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Expressed, and Secreted]) of infected mice, and dysregulates peripheral leukocyte and 

neutrophil levels in ferrets. The mutation is not, however, detrimental to the survival of 

either host (Hai et al., 2010).  

 

1.2.3 Immune responses to avian influenza virus  

1.2.3.1 Innate immune responses 

IFNs are secreted from most cells of vertebrate organisms. In response to viral infection, 

the IFN system is the key mechanism to inducing an antiviral state, which involves 

signalling pathways to induce the expression of a large number (Sen, 2001) of genes, the 

so-called IFN-stimulated genes (ISGs). The absence of IFN has even been shown to 

increase lethality upon viral infection of mice (Bouloy et al., 2001; Ryman et al., 2000) 

and humans (Dupuis et al., 2003) with an otherwise intact adaptive immune system.  

 

The roles and functions of many ISGs are unknown. However a number of the key 

antiviral effectors have been studied for many years and their roles and functions are 

becoming better understood. Amongst these are protein kinase R (PKR), RIG-I and Mx. 

PKR directly recognizes and autophosphorylates viral dsRNA, contributes to autophagy 

(degradation process of cytoplasmic portions) and activates transcription factor, nuclear 

factor-kB (NFkB). PKR upregulation by IFN-β also phosphorylates host eukaryotic 

initiation factor 2α, eTF-2α, to allow non-specific translation initiation inhibition of both 

host and viral protein synthesis (Garcia et al., 2006).  
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Another ISG, RIG-I, is able to sense viral intracytoplasmic dsRNA, initiating a signalling 

cascade that results in phosphorylation and nuclear translocation of cytoplasmic IFN-

regulatory factor-3, IRF-3, to induce IFN production (Grant et al., 1995). A recent study 

established that RIG-I is probably absent from chickens (but not ducks) and, somewhat 

controversially, suggests that this may explain the relative vulnerability of these species 

to influenza viruses (Barber et al., 2010). 

 

Secreted IFN-α/β can be recognised in an autocrine or paracrine manner by the type I 

IFN-receptor, IFNAR, on producing and neighbouring cells, respectively. IFNAR 

associates with Janus kinase family, JAK-1, or tyrosine kinase-2, TYK-2, thus allowing 

regulation of Signal Transducers and Activators of Transcription (STAT) 1 or 2. 

Phosphorylated STAT1/2 forms a complex, known as ISG factor-3 (ISG3), with IRF9, 

which then translocates to the nucleus and binds to IFN-stimulated response elements, 

ISREs, to instigate ISG transcription (Haller et al., 2006). Antiviral ISGs include 2'-5' 

oligoadenylate synthetase (OAS), which synthesises short 2’-5’ oligoadenylates to 

activate another ISG, ribonuclease L (RNaseL), which in turn directly cleaves cellular 

and viral RNA.  

 

Another antiviral ISG is myxovirus resistance protein, Mx, hypothesised to block ssRNA 

and dsRNA viruses by endocytosis and vesicle transportation (Sen, 2001). In a mouse 

model, expression of Mx protein enhances resistance to influenza viruses both in vitro 

and in vivo (Suarez and Schultz-Cherry, 2000b). Microarray gene expression analysis by 

Sarmento et al. (2008) indicates high level expression of IFN-α and myxovirus resistance 
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protein-1, Mx-1, upon HPAI H5N1 strain A/chicken/Hong Kong/220/97 virus infection 

of chickens. However, induction of PKR, Mx protein and IL-6 (cytokines secreted by T 

helper lymphocytes type 2) shows an abortive protection against HPAI H5N1 (Daviet et 

al., 2009). The influence of Mx protein induction is arguable as it provides a different 

antiviral response depending on chicken breed (Ko et al., 2002).  

 

AIV NS1 protein, however, has the ability to antagonise IFN pathways in several ways, 

including: binding and sequestering dsRNA (Garcia-Sastre, 2001), interfering with the 

activation of IRF3 (Talon et al., 2000), NFkB (Wang et al., 2000), Jun N-terminal kinase 

and AP-1 transcription factors (Ludwig et al., 2002). NS1 may also form an IFN-β-

inhibition-complex with RIG-I and PKR (Guo et al., 2007; Mibayashi et al., 2007; Opitz 

et al., 2007) and obstruct activation of the 2'-5' oligoadenylate synthetase/RNAseL 

antiviral pathway (Min and Krug, 2006). IFN pathways and their inhibition by NS1 are 

illustrated in Figure 1.1. 
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Figure 1.1. Schematic showing points of antagonism of the IFN pathways by AIV NS1 protein. 

(A) NS1 forms an inhibition complex with PKR, RIG-I, IRF3 or NFkB to block IFN induction. 

(B) NS1 directly neutralises the antiviral products of the ISGs. Modified from Haller and Webber 

(2007). 
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1.2.3.2 Adaptive immune response 

Host adaptive immunity against AIV can be divided into humoral and cell-mediated 

responses. Humoral immune responses include systemic (IgM and IgY) and mucosal 

(IgA) antibody production. These antibodies bind to the virus thus preventing virus 

attachment and entry. In comparison to internal and non-structural proteins of AIV, the 

surface proteins, HA and NA, are the main antigens capable of inducing neutralizing 

antibody, thereby acting as protective determinants in chickens (Suarez and Shultz-

Cherry, 2000). However, recent findings show influenza viruses have recombined and 

mutated their HA and NA protein, indicating evolutionary variability of the viruses 

(Steinhauer and Skehel, 2002; Fiers et al., 2004).  The external domain of the M2 surface 

protein, M2e, has also been shown to induce a response that reduces influenza virus 

infectivity, morbidity and mortality in vivo, despite its failure to elicit a strong humoral 

response, in mice (Neirynck et al., 1999; Fan et al., 2004). In chickens, immunization 

with recombinant Salmonella expressing M2e peptide conjugated with a tumor necrosis 

factor ligand family member, CD154, increases IgY responses significantly. The vaccine 

also provides protection and reduces viral shedding after LPAI, but not HPAI, viral 

challenge (Layton et al., 2009).  

 

Limited characterization of the chicken mucosal immune responses upon AIV infection 

were undertaken. Nonetheless, IgA was detected in bile ducks upon infection with 

different influenza isolates (Higgins et al., 1987). 
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Cellular immunity involves: (i) activation of macrophages which can produce cytokines 

and engulf foreign particles through phagocytosis, (ii) antigen-specific cytotoxic T-

lymphocytes and (iii) natural killer (NK) cells, which can release granzymes and 

perforins to induce apoptosis upon recognition of receptors on virally infected cells 

(Cullen and Martin, 2008). Human macrophages infected with influenza A H5N1 virus 

express high levels of mRNAs encoding tumor necrosis factor-α, TNFα, RANTES, 

MIP1α/β and MCP-1 (Cheung et al., 2002).  

 

The virus also triggers secretion of IFN-γ-stimulated protein (IP-10), interleukin (IL)-6, 

and RANTES in primary human bronchial and alveolar epithelial cells (Chan et al., 

2005). In an animal model, susceptibility to a lethal H5N1 virus infection of mice that 

lacked chemokine (C-C motif) ligand-2 (CCL2), IL-6 or TNFα is equivalent to those of 

wild-type (Salomon et al., 2007). In another study in TNFα signalling cascade-disrupted 

mice, the mortality rate was not significantly reduced despite the decreased morbidity 

(Szretter et al., 2007). Host adaptive immune responses observed upon AIV infection are 

illustrated in Figure 1.2. 

 

Recent data suggest that a series of the chicken's major histocompatibility complex 

(MHC; haplotype B2, B12, B13, B19 and B21), has a different influence on resistance to 

HPAI viruses (Hunt et al., 2010). In fact, Sarmento et al. (2008) suggest the possibility 

that AIV might have evolved a mechanism(s) to inhibit MHC Class I expression.  
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Figure 1.2. Overview of host adaptive immune response upon AIV infection. (A) HA-specific 

antibodies bind to the viruses’ HA proteins thus prevent infection of cells. (B) M2e-specific 

antibodies bind to M2e on virus-infected cells and induce antibody-dependent cell-mediated 

cytotoxicity (ADCC). (C) NA-specific antibodies block enzymatic activity of viral NA thus 

prevent progeny viral release. (D) Pathogens and proteins are broken down into peptides within 

acidified endosomes and bind to MHC Class II. The complexes are subsequently transported to 

the cell surface for recognition by CD4+ T cells. (E) The role of NP-specific antibodies is poorly 

known. (F) The proteosome degrades influenza viral proteins into peptides in the cytosol of the 

infected cell. The peptides are subsequently translocated to the endoplasmic reticulum and bind to 

MHC Class I. The peptide-MHC complexes are transported to the cell surface for recognition by 

CD8+ T cells, which then induce lysis of the infected cells. Modified from Flint et al (2004) and 

Bodewes et al. (2010). 
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1.2.4 Current H5N1 panzootic and human infection 

In 1997, 1.4 millions of chickens and various numbers of other domestic birds in Hong 

Kong were affected (either died of infection or were slaughtered) by HPAI H5N1 (Capua 

and Mutinelli, 2001). The HA gene of the virus derived from A/goose/Guangdong/1/96, 

the first H5N1 virus isolated from sick geese in Guangdong province in China a year 

before. In fact, most of HA genes of HPAI H5N1 viruses belong to this lineage (reviewed 

by Neumann et al., 2010). The outbreak caused 18 cases of human infections, of which 6 

were fatal. The infections represent the first documented fatal cases of influenza 

transmitted directly from avian species to humans (Subbarao et al., 1998).  

 

There were no reported cases of H5N1 infections in poultry or human after 1997 until 

February 2003, when the H5N1 panzootic began in many S.E. Asian countries including 

Hong Kong, Japan, Laos, Malaysia, Korea, Thailand, Vietnam with still ongoing 

reappearance of human cases in China, Indonesia, Egypt and Cambodia (Peiris et al., 

2004; Zhou et al, 2007). It is believed that the outbreaks originated in Yunnan and 

Guangxi provinces in 2002, have spread the virus to Indonesia and Vietnam, and other S. 

E. Asian countries (Wang et al., 2008). HPAI H5N1 predominated in China in early 2004 

when ducks, geese and chickens were being infected in 16 provinces. Then, after a major 

outbreak in many species of wild, migratory waterfowl and wading birds at Qinghai Lake 

in 2005-2006, the virus spread widely to around 60 countries including several Europe 

states (Gall-Recule et al., 2008), Russia (Lipatov et al., 2007), India, Australia, New 

Zealand and Mongolia (Chen et al., 2006). A new sub-lineage of the virus detected in 
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2005, China's 'Fujian-like' viruses, caused epizootics in Russia (Lvov et al., 2008), Hong 

Kong, Laos, Malaysia and Thailand.  

 

Since the re-emergence of H5N1 in 2003, there have been many reported cases of human 

infection. Until 16
th

 March 2011, Indonesia has reported their 174
th

 case, Egypt 130
th

 and 

Vietnam 40
th

, with the last fatality case occurred in Indonesia on 13
th

 February 2006. A 

typical case is that of a recent H5N1 human infection, identified in February 2006, where 

a 36-year-old man died from several complications, including respiratory failure, liver 

failure, renal failure and disseminated intravascular coagulopathy (Zhou et al., 2007). 

Although human to human spread has not generally been observed, infections of H5N1 

HPAI in humans have been a major concern as humans also possess the ubiquitous 

protease, furin (Capua and Alexander, 2007). Recent reports have identified the 

significant levels of α2,3-linked sialic acid, which is the preferential binding site for 

influenza viruses in avian host, in human epithelial cells from respiratory tract (Nicholls 

et al., 2007). However, the cooler temperature of human proximal airways (32
o
C) 

compared to distal airways (37
o
C) may restrict avian influenza virus replication, which 

occurs at 40 to 42
o
C in the avian enteric tract (Scull et al., 2009), thus limiting avian-to-

human spread.  

 

1.2.5 H5N1 outbreaks in poultry in Malaysia 

The first report of the presence of HPAI H5N1 in Malaysian poultry was in August 2004. 

The outbreak occurred among a free-range chicken flock in the state of Kelantan, near the 

Thailand border (Figure 1.3). A few cases continued to re-emerge in September and 
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November 2004 (WHO, 2008). Sequence analysis of the HA gene revealed that viruses 

isolated from both scenes were clustered with Vietnam’s and Thailand’s 2003-2005 virus 

isolates. The group was phylogenetically most closely-related to viruses isolated from 

domestic and migratory birds in Hong Kong in 2002-2003 (Chen et al., 2006). The 

outbreak was suppressed until 2006, when free-range chicken flocks in Selangor and 

Perak were infected in February and March, respectively. Early detection and a stringent 

control strategy allowed Malaysia to eradicate the virus in April 2006, shortly after the 

onset (Webster et al., 2006a; WHO, 2008). According to phylogenetic study of the HA 

gene, the Malaysian 2006 virus isolates (A/Chicken/Malaysia/935/2006) formed an 

independent sublineage with viruses isolated from ducks in Fujian, China in 2005, and 

distinctly separated from the 2004 cluster (Boltz et al, 2006; Wu et al., 2008). This 

evidence suggests that instead of being due to recirculating viruses of the previous strain, 

the 2006 outbreak represented a new introduction into Malaysia.  

 

In June 2007, an H5N1 outbreak, which involved semi-free ranging chickens, reappeared 

in a village in Petaling, Selangor. In line with its response to the previous occurrence, 

Malaysian authorities implemented a policy to rapidly cull and safely dispose of all 

infected birds, and the birds within a 1 km-radius of the affected flock, and set up a 10 

km-radius quarantine zone. Three months later, the World Organization of Animal Health 

(OIE) declared Malaysian poultry free of H5N1 viruses. 
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Figure 1.3. Map of Peninsular Malaysia, denoting the locations of HPAI H5N1 outbreaks in 

Malaysian poultry.  The first outbreak was reported among a free-range chicken flock in the state 

of Kelantan, near the Thailand border in August 2004. In February and March 2006, free-range 

chicken flocks in Selangor and Perak were infected, respectively. In June 2007, the 

outbreak re-emerged in a village in Petaling, Selangor, infecting semi-free ranging 

chickens. The Veterinary Research Institute, VRI, Ipoh, Perak, is indicated by a rectangle ( ), 

Regional Diagnostic Veterinary Laboratories is represented by a star ( ), while the H5N1 

outbreaks are denoted by a circle ( ). 
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1.2.6 Avian influenza vaccines  

Essentially four different types of avian influenza vaccines have been developed for use 

in poultry, namely (i) inactivated whole influenza viruses, (ii) in vitro expressed AIV 

proteins, (iii) in vivo expressed AIV proteins and (iv) nucleic acid (DNA plasmid) 

vaccines. For the past 30 years, vaccines against HPAI have been developed based on 

inactivated whole-virus, by using strains of LPAI viruses (LPAIV) isolated from 

outbreaks in poultry or from surveillance of wild or domestic birds (Swayne et al., 2008). 

Such vaccines were proved to work, with the notable feature of offering broad cross-

protection against diverse field viruses (Swayne et al., 2000). Recently, heterologous 

inactivated vaccines (H5N2 and H5N9-based isolates) with low homology (as low as 

84%) between their HA1 amino acid sequence and the challenge strains (2003-2004 

Asian H5N1 HPAI viruses), were shown to be protective against flock morbidity and 

mortality (Swayne et al., 2006; Bublot et al., 2007). Despite the effectiveness, inactivated 

vaccines carry several disadvantages. The foremost is biosecurity during the production 

of inactivated AI vaccines, the risk of virus escape and spread being high as they are 

cultivated in embryonated chicken eggs. Secondly, the yield of total viral protein also 

may be lower than expected, resulting in difficulties in large scale vaccine preparations 

(Lipatov et al., 2004). Furthermore, it is difficult to identify infected birds compared to 

vaccinated birds by routine serological tests. The potency of the vaccine is also highly 

dependent on antigen quantity in each dose and adjuvant system (oil emulsification).  

 

In a second approach to vaccination, ample amount of AI proteins can be expressed in an 

in vitro system, using eukaryotic cell cultures, plants (Nemchinov and Natilla, 2007), 
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yeast (Saelens et al., 1999), bacteria (e.g. Davis et al., 1983; Horthongkham et al., 2007) 

or viral vectors, such as baculovirus (e.g. Crawford et al., 1999; Hu et al., 2006). The 

crude or purified proteins can be administered as vaccines. Although the production of 

this vaccine is safer compared to inactivated whole AI vaccines, it shares the same 

drawbacks of high cost, and dose and adjuvant system-dependence.  

 

Thirdly, AI gene sequences can be inserted into bacterial or viral vectors producing 

recombinant vectored-vaccines, and their in vivo expression in the host (such as chickens) 

can be driven by live administration. In poultry, a replicative fowlpox virus-based vector 

expressing H5 of AIV vaccine (Webster et al., 1991) and more recently, a recombinant 

Newcastle Disease Virus (NDV)-based vaccine (Ge et al., 2007), have been licensed. 

These viral-vectored vaccines offer many advantages over inactivated whole virus, 

including co-immunisation against the vector agent, though with several limitations 

(discussed in Section 1.3.7 and 1.3.8). 

 

Fourthly, vaccines based on DNA plasmids with cDNA inserts that code for AI proteins 

(also termed nucleic acid vaccines or DNA vaccines), have been shown to be efficacious, 

with HA gene inserts being the most immunogenic (van den Berg et al, 2008). The 

plasmids elicit immune response via their uptake and expression by antigen-presenting 

cells or myocytes (Suarez and Schultz-Cherry, 2000b). Rao and colleagues (2008) have 

shown that DNA vaccines using multivalent HA are able to protect chickens against 

HPAI H5N1 strain A/Vietnam/1203/2004.  Several advantages of this type of vaccine are 

(i) they are readily modifiable upon identification of circulating virus strain, and (ii) large 
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scale production is feasible (Hoare et al., 2005). The main problem of DNA vaccines is 

inefficient gene delivery and expression. An alternative way for its delivery is to use 

Shigella flexneri (Vecino et al., 2004) or Salmonella typhimurium (Qu et al., 2008), while 

the cellular uptake might be enhanced by using application of a short electrical pulse to 

muscle tissues (Liu et al., 2008).  

 

1.2.7. AI vaccination policy in Malaysia  

In Malaysia, as in Europe, vaccination against avian influenza among poultry is 

considered a last resort, as the virus may circulate undetected, resulting in endemicity 

(Veits et al., 2008). However, the Malaysian Government realizes the potential of 

vaccination as a complementary measure in the eradication of HPAIV.  

 

1.3 Poxvirus vectors 

The Poxviridae family is divided into two subfamilies, Chordopoxvirinae, and 

Entomopoxvirinae, which infect vertebrates and insects, respectively. The 

Chordopoxvirinae are subdivided into eight genera (Orthopoxvirus, Parapoxvirus, 

Avipoxvirus, Capripoxvirus, Leporipoxvirus, Suipoxvirus, Molluscipoxvirus and 

Yatapoxvirus) and are better characterized than Entomopoxvirinae (in which subdivided 

into three genera, Entomopoxvirus A, B and C).  

 

1.3.1 Vaccinia virus 

Vaccinia virus (VV) is a type-species of Orthopoxvirus. Most genes characterized from 

poxviruses are from VV. In addition, studies on host innate immunity response upon 
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poxviruses infection are also more ascertained on VV. Four morphologies are displayed 

by a VV, (i) intracellular mature virus (IMV), which have one or two surrounding 

membranes, (ii) intracellular enveloped virus (IEV), which derived from a second 

membrane wrapping event from the trans golgi, (iii) extracellular enveloped virus (EEV), 

and (iv) cell-associated enveloped virus (CEV), which attached to the cell surface to 

allow induction of actin tail formation to be force away from the infected cell (Smith and 

Law, 2004). 

 

1.3.2 Avipoxviruses 

According to International Committee on Taxonomy of Viruses, ICTV, Avipoxvirus is 

the only genus in Chordopoxvirinae which infect birds, not mammals. More than 232 

species of the approximately 9000 bird species reported by van Riper et al. (2007) have 

acquired natural poxvirus infections, including the endangered Southern giant petrel, 

Macronectes giganteus, a long-lived, large, pelagic bird found in the Antarctica (Shearn-

Bochsler et al., 2008).  

 

1.3.3 Fowlpox virus 

Possessing a large double stranded DNA genome up to 300 kb, Fowlpox virus (FWPV) is 

the best-studied and type species of the Avipoxvirus (Skinner et al., 2005). Using 

improved microscope and histological technique, FWPV was first detected in chicken 

cells by Bollinger in 1873. The observed large, intra-cytoplasmic inclusion bodies were 

now termed Bollinger's inclusion bodies (Bolte et al., 1999). To date, two FWPV 

sequences have been determined; a virulent US FWPV with 288 kb genome (Afonso et 



 43 

al., 2000), and an attenuated vaccine strain, FP9 with 266 kb genome (Laidlaw and 

Skinner, 2004). FWPV causes a widespread, contagious disease of poultry and other 

galliform birds, resulting in reduced egg production, decreased growth rates in broilers, 

blindness and may cause death (Afonso et al., 2000; Skinner et al., 2005). The common 

form of fowlpox is cutaneous, involving spread by biting insects. It is milder than the 

diphtheritic form, which involves droplet or dust-borne infection of the mucous 

membranes resulting in higher mortality (Afonso et al., 2000; Skinner et al., 2005).  

 

Replication of FWPV occurs exclusively in the cytoplasm of infected cells and the 

virions are nonicosahedral (Drillien et al., 1987). Productive replication of FWPV is 

restricted to avian cells. Although FWPV enters into, and induces synthesis of proteins in, 

mammalian cells, the production of infectious progeny virus is abortive (Afonso et al., 

2000; Skinner et al., 2005; Mingxiao et al., 2006). Foreign proteins expressed by 

recombinant FWPV (rFWPV) are displayed on the cell membrane in the case of viral 

surface glycoproteins (Taylor and Paoletti, 1988; Taylor et al., 1988).  

 

Field isolate strains of FWPV are likely to carry a near full-length, infectious provirus of 

reticuloendotheliosis virus (REV), which can cause REV dissemination with implications 

for FWPV virulence (Hertig et al., 1997). Proviral sequences have only ever been found 

at a single genomic location in FWPV, suggesting a single ancestral insertion (Moore et 

al., 2000). A more recent survey, however, showed FWPV can retain viability and 

produce disease in wild birds and poultry even when REV inserts are absent (Davidson et 

al., 2008). Most FWPV vaccines have lost REV coding sequences and retain only partial 
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REV-long terminal repeats, except the Australia vaccine strain FWPV-S, which carries a 

nearly full-length REV sequence, leading to its discontinued usage as a vaccine (Singh et 

al., 2000).  

 

The morphogenesis of Avipoxviruses appears to differ from that elucidated for the 

Orthopoxviruses such as VV (Boulanger et al., 1998) (Section 1.3.1), in that IMV 

particles acquire their additional external membrane to form EEV by budding at the cell 

membrane rather than by wrapping with a double intracellular membrane at the trans-

golgi network or endosomes with subsequent loss of the outer of these two membranes by 

fusion at the cell membrane. 

 

1.3.4 Fowlpox virus strain FP9 

Following embryo passage then 438 serial passages of the European virulent FWPV 

strain HP-1 in chicken embryonic fibroblast cells (CEF), the derived, attenuated strain 

HP438 (Mayr and Malicki, 1966) was passaged twice further in CEF at a low multiplicity 

of infection (MOI) and plaque-purified twice to obtain the laboratory-adapted, highly 

attenuated FWPV strain FP9 (Mockett et al., 1992). The FP9 genome was mapped and 

compared with that of Vaccinia virus (VV), the type species of Orthopoxvirus genus 

(Mockett et al., 1992), and later its complete sequence was compared with pathogenic 

FWPV strains USDA and HP-1 (Laidlaw and Skinner, 2004). Passage-specific mutations,  

which are probably involved in FP9 attenuation, affect no more than 46 open reading 

frames (ORFs), especially members of protein families such as the Ankyrin repeat (a 

stretch of well-conserved 33 amino acids with protein-binding role) proteins, rather than 
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obvious immunomodulator genes. However, the specific determinants and mechanism of 

attenuation remains unclear (Laidlaw and Skinner, 2004).  

 

FP9 encodes 247 predicted ORFs, numbered as orthologues of FWPV USDA, e.g. 

fp9.002 (left) to fp9.259 (right), and contains 10.2 kbp inverted terminal repeats (ITRs; 

Laidlaw and Skinner, 2004). FWPV USDA encodes 260 putative genes and contains 9.5 

kbp ITRs (Afonso et al., 2000). Several genes non-essential for viral replication have 

been described, such as FP-SNAP, FP-CEL1 and FP-PC1, which are all homologues of 

cellular genes (Laidlaw et al., 1998). The nature of an immunodominant 39K core protein 

encoded by fp9.168 and an orthologue of VV A4L has been described (Boulanger et al., 

1998). FP9 carries only a partial long terminal repeat of REV (Laidlaw and Skinner, 

2004).  

 

1.3.5 Immune response to fowlpox virus infection 

1.3.5.1 Immune responses to abortive fowlpox virus infections in mice 

Recently, Lousberg et al. (2010) identified the role of plasmacytoid dendritic cells, pDCs, 

as major inducers of Type I IFNα/β upon FWPV infection, in mice. This finding 

corresponds to the known behaviour of FP9, which is to activate mammalian dendritic 

cells (Brown et al., 2000; Morse et al., 2005).  

 

VV-encoded IFN modulators have been described extensively. They include the VV E3 

intracellular protein, which binds and sequesters dsRNA thus inhibiting IFN induction 

(Davies et al., 1992) as well as preventing activation of PKR and 2’, 5’-OAS; the soluble 
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B18 protein which binds extracellular IFN (Symons et al., 1995) and a soluble 43 kD 

protein (B8R), which binds IFN-γ of human, cow, rabbit and rat hosts as well as that of 

chickens (Alcami and Smith, 1995).  

 

Three FWPV genes were identified as encoding the major immunodominant proteins in 

mice. They were fpv140 (encoding the FWPV 30/35 kD orthologue of VV H3), fpv168 

(encoding the FWPV 39 kD orthologue of VV A4) and fpv191 (encoding the FWPV 

orthologue of VV p4c) (Laidlaw and Skinner, 2004). The most highly immunogenic part 

of fpv168 is the central 131-amino acid repeat region (Boulanger et al., 1998).  

 

Several studies have addressed the FP9 ability to elicit CD4+ or CD8+ T-cell responses 

against antigens in mice, including Webster et al. (Webster et al., 2006b), in which FP9 

was shown to be immunogenic for CD8+ T cells and capable of inducing protective 

efficacy, with or without prime-boost combinations with pre-erythrocytic malaria antigen 

thrombospondin-related adhesion protein and a string of CD8+ epitopes (METRAP). FP9 

also confers higher cellular immunogenicity against recombinant antigens from 

Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 

1 (a Gag-Pol-Nef fusion protein), when given as a priming or boosting dose, compared to 

Webster FPV-M FWPV strain (Cottingham et al., 2006). The prime-boost approach 

relates to initial introduction of a specific antigen to develop immune response against 

that antigen, followed by secondary presentation of that same antigen using a different 

vector in order to focus the immune response on the shared antigen rather than on vector 

proteins. Frequently in experimental approaches, DNA plasmid expressing the antigen is 
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used as a prime, whilst a viral vector, for instance FWPV, expressing the same antigen is 

used as a boost (though different viral vectors may be used instead of, or in addition to, 

the DNA prime).  

 

1.3.5.2 Immune response to fowlpox virus infection in the permissive avian host 

Understanding of avian immune responses against FWPV is paradoxically still very 

limited in comparison to understanding of mammalian host responses. A study by Singh 

and Tripathy (2003) shows ex vivo supernatants of buffy coat cells from chickens 

infected by FWPV is able to promote a lymphoproliferative response lasting for 2-4 

weeks post-infection. The supernatants contain elevated levels of an approximately 48–

50 kD protein, able to stimulate naive, non-adherent cells of the buffy coat cultures, in a 

dose dependant manner, postulated to be a stimulatory cytokine such as IFN-α, IL-15 or 

IL-2. The proliferative effect was followed by anti-FWPV antibody production. Hghihghi 

et al. (2010) further demonstrated an early stimulation of Type I IFNs, TLRs (3 and 7), 

cytokines (IL-1β and IL-8) and beta-defensin genes after TROVAC-AIV H5 infection of 

cultured CEFs. Higher expression was also observed for IFN-γ and IL-10 in spleen cells 

from vaccinated chickens, compared to controls. TROVAC-AIV H5 is a commercial, 

recombinant fowlpox vaccine against AIV with H5 gene insert from H5N9 strain 

A/Turkey/Ireland/83. 
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1.3.6 Putative immunomodulators encoded by fowlpox virus 

Several putative orthologues of cytokines and chemokines, including TGF-β (fpv080), β-

nerve growth factor (fpv076) and CC-like chemokines (fpv060, fpv061, fpv116 and 

fpv121) of FWPV, have been identified (Afonso et al., 2000; Laidlaw and Skinner, 

2004). A potential NK cell receptor, C-type lectin, found in US FWPV is predicted to 

bind MHC Class I and modulate immune activity through intracellular signalling 

pathway (fpv198). IL-18 have also been predicted in both US FWPV and FP9, using in 

silico sequence analysis (Afonso et al., 2000; Laidlaw and Skinner, 2004). IFN- γ is a 

Type II IFN which activates macrophages and upregulates MHC Class II expression on 

cell surface. Based on studies of IL-18-binding protein from the host and from other 

poxviruses (Xiang et al., 1999), it was proposed that the FWPV IL-18-binding protein 

homologue might inhibit IL-18-dependent IFN-γ production in infected cells (Afonso et 

al., 2000).  

 

Banadyga et al. (2007) identified fpv039 as a mitochondria-localised, anti-apoptotic 

protein, which shares homology to the anti-apoptotic cellular protein Bcl-2. fpv039 is 

intact in FP9 (Laidlaw and Skinner, 2004). 

 

1.3.7 Recombinant fowlpox vaccines for poultry  

Live FWPV vaccines have been used successfully in the poultry industry since the 1920s; 

many such commercial vaccines are now available but in most cases there origins and 

extent of attenuation are not publicly known. Since the late 1980s, rFWPV based on these 

attenuated FWPV have been developed to express antigens from several important avian 
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pathogens, including: avian influenza virus (AIV) (e.g. Taylor et al., 1988; Bublot et al., 

2006), Newcastle disease virus (NDV) (e.g. Boursnell et al., 1990; Sun et al., 2006) and 

Marek’s disease virus (MDV) (e.g. Nazerian et al., 1992; Lee et al., 2003). rFWPV 

recombinants expressing H5 protein of AIV were initially marketed in Mexico against 

HPAI H5N2 in 1995, and now are being used in S.E. Asia against H5N1. To date, two 

billion doses of rFWPV-AIV H5 vaccine have been provided in Mexico alone (Swayne et 

al., 2008). The H5 gene inserts for these rFWPV-AIV are from A/Turkey/Ireland/83 

(H5N9), or A/Goose/Guangdong/96 (H5N1). rFWPV, and other viral vectored-vaccines 

(such as NDV-based vaccines), hold several advantages over the conventional inactivated 

influenza vaccines. Firstly, uninfected poultry vaccinated with recombinant vectors can 

be differentiated from infected animals in so-called DIVA (Differentiating Infected from 

Vaccinated Animals) assays using commercial anti-NP ELISA tests or agar gel 

precipitation (AGP), as the former do not demonstrate antibodies to NP and M (Suarez, 

2005; Mingxiao et al., 2006). The other obvious advantage is that the production of these 

vaccines in cell culture possesses less risk of accidental influenza virus release. 

Furthermore, NDV vectors were shown to induce a broad immunity, including humoral, 

cellular and mucosal responses (Ge et al., 2007). Moreover, the vectored-vaccines also 

were proven to provide bivalent vaccination (AI and FWPV or NDV, depending on the 

vector), though this is only of value to the industry in those regions where the vector 

virus is endemic (Steel et al., 2008).  Finally, the recombinant vectored-vaccine is safer 

for humans or for the poultry and reliable as it avoids use of the adjuvant which is a 

component of an inactivated vaccine (Swayne et al., 1997; Qiao et al., 2003; Mingxiao et 

al., 2006; Qiao et al. 2006). Although the purpose of adjuvants is to increase the immune 
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response to the vaccine, the absolute safety of adjuvants can never be guaranteed. There 

still can be an accidental stimulation of various mechanisms of the immune responses by 

the adjuvants (Edelman et al., 1980, Gupta et al., 1993).  

 

FWPV and NDV-based recombinant AI vaccines are designed to be inoculated in 1-day-

old chick at the hatchery. Advantages of hatchery vaccination are: (i) biosecurity at 

hatcheries are higher compared to farms, (ii) automatic or semi-automatic administration 

systems are possible, (iii) lower numbers of hatcheries than farms, thus vaccination 

controls are focused to particular area, (iv) different vaccines can be mixed 

simultaneously, and (v) vaccinated chicks at hatcheries are protected at a younger age 

compared to those vaccinated in farms (Bublot et al., 2005; van den Berg et al., 2008).  

 

1.3.8 Limitations of viral-vectored vaccines against avian influenza virus 

Use of rFWPV vaccines, as with other viral-vectored vaccines (especially NDV-based), 

is only effective in chickens without prior vaccination and exposure to field strains of 

FWPV or the other respective viral-vectors (Swayne et al., 2000). Pre-existing immunity, 

whether humoral (which may be maternally-derived) and/or cell-mediated, may restrict 

infection by, and expression from, the vaccine vector. This might be expected to limit the 

efficacy of the vaccine (Skinner et al., 2005). Nevertheless, limited field evidence 

suggests that the presence of maternal antibodies to FWPV and AIV or NDV, does not 

interfere with the immunity induction by rFWPV (Bublot et al., 2005; Taylor et al., 

1996). 

 



 51 

Vaccination with rFWPV requires introduction to poultry via scarification (Boyle and 

Heine, 1994). This is more labour intensive for mass vaccination than is application in 

drinking water or by aerosol, but is aided by semi-automatic vaccinators and is more 

reliable (Skinner et al., 2005). Moreover, it is not an additional burden in those parts of 

the world where FWPV vaccination is already required due to endemic fowlpox. An 

alternative approach for mass application is in ovo vaccination. A field trial for 

multivalent in ovo vaccination, which included a rFWPV expressing Newcastle disease 

virus F and HN genes, demonstrated that the method was successful in the protection 

against both FWPV and Newcastle disease virus (Sharma et al., 2002). NDV-based 

vaccines can be administered via eye drop (Jeon et al., 2008) but this too is labour-

intensive. The mass vaccination technique of aerosol application is more appropriate but 

the need to use day-old chicks means that maternal immunity becomes a major problem. 

 

A recent study by Wambura et al. (2010) described the possibility of mass oral 

vaccination using thermostable live FWPV (strain TPV-1) coated on oiled rice, as the 

protective efficacy is equivalent to the conventional wing web stab route. However, the 

specified vaccine strain is used against field FWPV antigens; hence more study is needed 

to manipulate the vaccine virus genome to carry different viral antigens. 

 

Approaches to explore ways of improving the efficacy of rFWPV, for laboratory-based 

studies, would include co-expression of some host-derived immunomodulators, such as 

cytokines (discussed in the next section). However, there are concerns about this 

approach. For instance, it might conceivably lead to inappropriate responses against other 
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infectious agents. Moreover, there is still considerable sensitivity over experiments 

conducted in Australia in which recombinant Ectromelia (mousepox) virus expressing IL-

4 were shown to be more pathogenic, even breaking through genetic resistance and 

partially overcoming protective immunity (Jackson et al., 2001) This is of particular 

concern should the immunomodulator genes transfer to wild type strains via 

recombination during coinfections of wild type and vaccine viruses. Therefore, it is still 

doubtful whether licenses will be granted for commercial rFWPV vaccines co-expressing 

host immunomodulator genes (Skinner et al, 2005). 

 

1.4 Cytokines 

Cytokines are small, soluble proteins secreted especially by cells of immune system 

immediately after infection or vaccination. The proteins mediate and regulate the 

intensity and duration of responses comprised of a multitude of effects ranging from 

activation and differentiation of immune or nonimmune cells, to enhancing immune 

function (Hilton et al., 2002; Degen et al., 2004). In 1986, Mosmann and Coffman first 

divided cloned, murine helper T lymphocytes, Th, into two functional subsets based on 

their secreted immunomodulator cytokines. The terms Th1 and Th2 were used for IFN-γ 

and IL-4-secreting Th lymphocyte clones, respectively. However, the existence of a 

broad spectrum of cytokine secreting cells, including multiple other haematopoietic cells 

and even non-haematopoietic cells, has required new terminologies, Th1-like and Th2-

like, which are more suitable for in vivo immune dysregulation diseases and conditions 

(Lucey et al., 1996). Table 2 shows several Th1-like and Th2-like cytokines produced by 

primary cultures of all leukocyte types. 
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Table 1.1. Leukocyte sources of Th1-like and Th2-like cytokines 
Leukocyte 

 cell type                                  Secreted cytokine (s) 

 Th1-like Th2-like 

Lymphocyte   

    CD4+ T cell IL-2, IFN-γ, IL-12, IL-15, TNF-β IL-4, IL-5, IL-6, IL-10, IL-13, IL-17 

    CD8+ T cell IL-2, IFN-γ, IL-15 IL-4, IL-5, IL-10, IL-17 

    B cell IL-12, TNF-β IL-6, IL-10 

    NK cell IFN-γ, TNF-β  

Monocyte IL-12 IL-6, IL-10 

Macrophage IL-12, IL-18 IL-6, IL-10 

Dendritic cell IL-12, IL-18  

Neutrophil IL-12  

Mast cell  IL-4, IL-5, IL-6 

Eosinophil  IL-4, IL-5, IL-6 

Basophil  IL-4 

* Modified and updated from Lucey et al., 1996 

 

Th1 cytokines, for instance IL-2, IFN-γ and TNF, are principally involved in the 

activation of cell-mediated immunity, while Th2 cytokines (e.g. IL-4, IL-5 and IL-6) 

generally affected in B cells stimulation to regulate humoral immunity (Hilton et al., 

2002; Degen et al., 2004). In general, cell-mediated immunity is postulated to be more 

critical in viral clearance, during primary infection, as host defence against infections are 

principally mediated by Th1 cells (Ada and Jones, 1986; Bender et al., 1992; Doherty et 

al., 1997).   

 

1.4.1 Cytokines as vaccine adjuvants 

Some cytokines have been proven to perform as effective immunomodulators in animal 

models or clinical tests, for instance IL-1 to IL-8, IL-12, IL-18, type 1 IFN, colony-

stimulating factor and tumour necrosis factor, TNF (Mingxiao et al., 2006). These 

cytokines have been used extensively in mammalian models as vaccine adjuvants, 
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including in tumour immunotherapy (e.g. Dredge et al., 2002, Hance et al., 2009), DNA 

vaccines (e.g. Hartoonian et al., 2009, Wei et al., 2009), bacterial vaccines (Kajikawa et 

al., 2010), and live viral vaccines (e.g. Kittel et al., 2005).  

 

In contrast to extensive studies of mammalian cytokine genes, chicken cytokine gene 

identification, cloning and characterization has lagged considerably. Moreover, almost all 

of the cytokines that have been successfully cloned in chicken are Th1-like. Recent 

discovery and characterization of avian cytokines including IL-1β and IL-6 (Kaiser et al., 

2004), IL-2 (Sundick and Gill-Dixon, 1997; Zhou et al., 2005), IL-10 (Rothwell et al., 

2004), IL-12β (Balu and Kaiser, 2003), IL-12 (Degen et al., 2004), IL-15 (Choi et al., 

1999; Lillehoj et al., 2001), IL-18 (Schneider et al., 2000) and IL-19 (Kim et al., 2009), 

has triggered their development as vaccine co-immunostimulators and have allowed the 

study of their effectiveness. For instance, Yang et al. (2009) have demonstrated a novel 

method of incorporating bioactive chicken IL-2 and chicken granulocyte-macrophage 

colony-stimulating factor (GM-CSF) on the surface of killed influenza virus particles. In 

another report, cell-cultured NDV vaccine co-administered with chicken IL-18, which 

was expressed in either prokaryotic or eukaryotic system, was shown to augment 

proliferation of peripheral blood mononuclear cells (PBMC), CD8+ to CD4+ ratios and 

haemagglutination inhibition (HI) titres, compared to chickens vaccinated with NDV 

alone. Although the innate immune response of avians is not well-characterized, their 

immune system is closely comparable to that of mammals, with few clear differences. 

Unlike mammals, chickens do not have lymph nodes and the site for antigen presentation 

is still questionable. Chickens do have a unique organ called the bursa of Fabricius, 
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which filled with numerous polyhedral follicles composed of lymphatic tissue and critical 

for development of B cells (William et al., 2006). Chickens also have a different antibody 

repertoire (IgM, IgA and IgY) and mechanism of generating antibody diversity, 

compared to mammals (Reynaud et al., 1994). Moreover, chickens have a minimal 

essential MHC with the size and content is much reduced than that of mammals 

(Kaufman et al., 1999). 

 

1.4.2 IL-15 

Sharing structural and functional characteristics with IL-2, IL-15 is another T cell growth 

factor that plays crucial roles in cell-mediated immunity, for instance in inducing B cell 

proliferation and promoting CTL memory (Min et al., 2002; Stevceva et al., 2006). While 

IL-2 is selectively expressed in activated T cells, IL-15 mRNA is distributed widely in 

many tissues and cell types (Grabstein et al., 1994). IL-2 and IL-15 also elicit 

overlapping immune functions in activation of cytotoxic effector cells and monocytes, 

and B cell immunoglobulin (Ig) synthesis via co-stimulation. In synergy with IL-12, IL-

2R-bound IL-15 was found to enhance the production of IFN-γ by up-regulating natural 

killer (NK) cells (Carson et al., 1994). NK cells offer direct or indirect lytic activity 

against intracellular pathogens, and aid the immune system to build an adaptive immune 

system to eliminate the pathogen. Thus, in virus invasion, any defect in NK cells may 

weaken the host defence mechanism (Fawaz et al., 1999; Perera et al., 2001).  

 

Chicken IL-15 was first characterized by Choi and colleagues in 1999. They 

demonstrated that chicken IL-15 expressed in E. coli and CHO cells confers growth 
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promoting activity. It shares highest sequence homology with bovine IL-15 (31% 

identity, 43% similarity) compared to other mammals. Although the homology was 

relatively low, the putative chicken IL-15 sequence conserved four essential cysteine 

residues for the biological activity of mammalian IL-15. It was later verified that the 

chicken IL-15 gene possesses 187 amino acid ORF encoding a predicted 22 kD protein 

with two potential N-linked glycosylation sites that can stimulate spleen lymphoblast cell 

proliferation and enhance NK cell activity in vitro, activities similar to those of 

mammalian IL-15 (Lillehoj et al., 2001). 

 

1.4.2.1 Use of IL-15 as co-immunostimulatory molecule in vaccines 

In mice, recombinant Vaccinia virus (rVV) co-expressing gp160 of human 

immunodeficiency virus (HIV) and hIL-15 has been shown to provide a stronger and 

more enduring response than rVV expressing gp160 alone (Oh et al., 2003). Integration 

of human IL-15 into rVV Wyeth strain and modified VV Ankara, MVA, also resulted in 

better survival rate of athymic nude mice (Perera et al., 2007) and an enhanced in vivo 

viral clearance (Zielinski et al., 2010) upon lethal intranasal challenge with virulent VV, 

or intravenous challenge with monkeypox virus strain Zaire 79, respectively. Against 

bacterial infection, the group illustrated highly persistent protective immune responses, 

induced upon vaccination with recombinant MVA co-expressing IL-15 and five 

Mycobacterium tuberculosis antigens, in a homologous prime boost regime study against 

tuberculosis (Kolibab et al., 2010). Enhanced CD4 and CD8 T cell memory responses, 

along with reduction in lung mycobacterial load in lungs, were also observed in mice 
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infected with Bacille Calmette-Gue´rin (BCG) vaccine, supplemented with IL-7 and IL-

15 recombinant proteins, but not IL-1, IL-6 and IFN-α (Singh et al., 2010).  

 

In limited avian model studies, in ovo plasmid DNA vaccination against an intestinal 

coccidial parasite parasite, Eimeria acervulina, using gene 3-1E coexpressed with 

chicken IL-15, has been shown to induce higher serum antibody response than 

immunization with 3-1E alone. Following challenge with the homologous parasite, 

chickens vaccinated with 3-1E and IL-15 showed a significant decreased in oocyst 

shedding and had an increased body weight, compared to chickens vaccinated with 3-1E 

alone (Ding et al., 2004; Lillehoj et al., 2005). Similar results were obtained when the 

construct was given subcutaneously (Min et al., 2001) or intramuscularly (Ma et al., 

2011). The effect in poultry of co-expression of IL-15 by rFWPV has not been previously 

studied. 

 

1.4.3 IL-12 

Functional IL-12 (IL-12 p70) is a heterodimeric protein (70 kD in mass), consisting of 

two disulphide-linked subunits, p35 (or IL-12α) and p40 (or IL-12β); heterodimerization 

being important for the manifestation of IL-12 bioactivity. IL-12 is produced by 

mononuclear cells, macrophages, dendritic cells and B lymphocytes (Stevceva et al., 

2006). In mammals, IL-12 was showed to mediate diverse effects on T cells and NK 

cells, including T cell proliferation and differentiation, and induction of IFN-γ production 

by NK cells (Trinchieri et al., 2003). Expression of mRNA for IL-10, which is a crucial T 

cell regulator and potential Th1 pathway modulator, was also increased in IL-12-treated 
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mice (Lynch et al., 2003). Chicken IL-12 was first isolated and characterized by Degen 

and co-workers in 2004 (Degen et al., 2004). Although chicken IL-12 subunits showed 

restricted sequence homology (21% to 41% amino acid identity) to mammalian IL-12, 

the study indicated they share many functional similarities. For instance, in order to 

stimulate chicken cell proliferation, the chicken IL-12 p40 subunit has to be combined 

with the p35 subunit. Expression of bioactive chicken IL-12 has been achieved in 

eukaryotic systems, such as baculovirus and COS cells (Degen et al., 2004), E. coli 

(Thomas et al., 2008) and plant systems (Medrano et al., 2010).  

 

Neonatal mice demonstrate a reduction in peripheral expression of IL-12 compared to 

adult mice. Upon exposure to antigens, neonates treated with IL-12 within 24 hours of 

birth were shown to increase IFN-γ and IL-10 mRNA expression in their spleens. Higher 

IgG2a and IgG2b antibody levels were observed upon adulthood challenge of treated 

mice, compared to untreated mice, suggesting the potential use of IL-12 to enhance early 

immunity and memory antibody responses against childhood pathogens (Arulanandam et 

al., 1999).  

 

1.4.3.1 Use of IL-12 as co-immunostimulatory molecule in vaccines 

Many studies involving recombinant IL-12 have been performed in mouse models. 

Although IL-12 is predicted to direct the early host immune defence against Influenza A 

virus infection (Hama et al., 2009), reports from studies of influenza virus infection offer 

contradictory results, as administration of recombinant IL-12 to influenza virus-infected 

mice either enhanced (Tsurita et al., 2001) or delayed (Kostense et al., 1998; van der 
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Sluijs et al., 2006) the virus clearance. Van der Sluijs and co-workers (2005) also 

observed augmented virus clearance for influenza virus-infected IL-18-deficient mice. 

This result was in contrast to results observed by Gherardi et al. (2003) and Denton et al. 

(2007).  

 

Upon bacterial infection with Streptococcus pneumoniae, previous coadministration of 

murine IL-12 as adjuvant for pneumococcal polysaccharide conjugate vaccines, enhances 

IFN-γ mRNA expression, IgG2a antibody levels (Buchanan et al., 2001; Lynch et al., 

2003), IL-10 mRNA expression and opsonic activity (Lynch et al., 2003; a process by  

which opsonins make foreign molecules more susceptible to phagocytosis). Similar 

observations were made when murine IL-12 was used as adjuvant for conjugate vaccines 

against Neisseria meningitidis meningococcus (Buchanan et al., 2001), while 

coadministration of exogenous IL-12 with live, attenuated Francisella tularensis vaccine 

enhanced the protective efficacy of the latter in mice upon lethal intranasal challenge 

(Baron et al., 2007). However, there are concerns about adverse effects in human subjects 

upon co-administration of recombinant human IL-12 in pneumococcal polysaccharide 

vaccine, indicated by injection site pain, injection site reaction, fever, headache, myalgia, 

general pain, asthenia, chills and increased cough (Hedlund et al., 2001). 

 

1.5 Use of host cytokines in recombinant fowlpox vaccines 

A recombinant fowlpox vaccine co-expressing HA of AIV H5N1 and chicken IL-18 

(Mingxiao et al., 2006) has been described. The result showed that all chickens 

vaccinated with rFWPV-HA-IL-18 had higher levels of cellular immunity compared to 
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those vaccinated with rFWPV-HA alone. Similar outcomes were observed in a study to 

protect chickens against a birnavirus, infectious bursal disease virus (IBDV), using 

rFWPV co-expressing IL-18 and an IBDV structural protein (Eldaghayes, 2005). Pigs 

inoculated with a rFWPV co-expressing GP5/GP3 of porcine reproductive and 

respiratory syndrome virus (PRRSV) with swine IL-18 were also endowed with a 

stronger immune response and better protection compared to rFWPV-GP5/GP3 alone 

(Shen et al., 2007). More recently, chickens vaccinated with rFWPV co-expressing the 

VP2 protein of IBDV and IL-12 alone, or IL-12 co-administered with mineral oil, have 

demonstrated enhanced levels of IFN-γ in serum and splenocyte cultured supernatant, as 

well as serum neutralizing antibodies against IBDV, than those vaccinated with mineral 

oil alone (Su et al., 2011). 

 

1.6 Project aims 

The general aim of the project is to evaluate the potential adjuvant effects of chicken IL-

12 and IL-15, coexpressed with AI genes in rFWPV, with the hope of possible 

improvements to current H5N1-rFWPV vaccines. The cytokines were chosen mainly due 

to their ability to induce IFN-γ, which might be postulated to enhance cell-mediated 

immunity, and their novelty as immunostimulatory molecules in recombinant virus 

vaccines. Co-expression of IL-18 was not pursued as part of this project, as such studies 

were already underway within the Skinner group at Imperial College London in 

collaboration with scientists at the Institute for Animal Health, Compton.  
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This present investigation may enable several key questions pertinent to the role and 

function of avian cytokines to be answered: 

1) Do IL-15 and IL-12 confer any significantly enhanced cellular immune response in 

chickens, as has been extensively demonstrated in mice? 

2) Does co-expression of IL-12 in rFWPV-AI vaccines stimulate adverse toxicity effects 

in chickens, as was shown when it was coadministered with pneumococcal 

polysaccharide vaccine? 

3) How appropriate would the cytokines be as adjuvants in readily available rFWPV-

influenza vaccines?  

 

1.6.1 Project objectives 

In order to address the general aim, the following specific objectives were envisaged: 

 (i) to generate rFWPV expressing avian influenza H5, N1 and NP genes 

(ii) to insert into these rFWPV recombinant genes encoding chicken IL-12 or IL-15 

(iii) to vaccinate poultry using these recombinants and monitor any adverse clinical signs 

and 

(iv) to elucidate the vaccine potential of the cytokines in enhancing humoral and cellular 

responses in poultry, post-vaccination. 

 

1.7 Thesis summary 

Co-expression of avian cytokines IL-15 and IL-12, by recombinant rFWPV already 

expressing AI antigens, may add to the limited laboratory studies on cytokine effects in 

avian model.  
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Chapter 2 describes the general methodology used in this study. 

Chapter 3 describes the cloning strategy and construction method to generate the 

recombinant vaccines. 

Chapter 4 describes the results of animal studies involving vaccination with rFWPV-AI 

co-expressing IL-15. 

Chapter 5 describes the results of animal studies involving vaccination with rFWPV-AI 

co-expressing IL-12. 

Chapter 6 describes the effect on host body weight of chicken IL-15 or IL-12 co-

expressed from recombinant fowlpox viruses. 
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CHAPTER 2 

Materials and Methods 

 

2.1 Plasmid vectors 

2.1.1 pCR2.1-TOPO 

Vector pCR2.1-TOPO is a TA cloning vector, 3931 bp in length. It contains ampicillin 

and kanamycin resistance genes and a multiple cloning site (MCS) downstream of the 

Lac promoter which drives expression of, a LacZ gene. An insertion within the MCS 

interrupts the coding sequence of β-galactosidase, allowing recombinant clones to be 

identified as white colonies compared to blue colonies containing the parental plasmid 

The T7 promoter permits in vitro RNA transcription/translation and sequencing (Figure 

2.1). 

 

2.1.2 pGEM-T Easy 

Vector pGEM-T Easy (3015 bp) contains T7 and SP6 RNA polymerase promoters 

flanking the MCS within a lacZ gene. It is a TA cloning vector and encodes a β-

lactamase for selection with ampicillin (Figure 2.2).  

 

2.1.3 pCDNA3.1(-) 

Vector pCDNA3.1(-) is 5427 bp in length and contains ampicillin and neomycin as 

selectable marker. Genes inserted in the MCS can be expressed from the T7 promoter by 

co-expression of T7 polymerase (Figure 2.3).  
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Figure 2.1. A simple map of pCR2.1-TOPO with MCS, reproduced from Invitrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A simple map of vector pGEM-T-Easy with MCS, courtesy of Promega. 
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2.1.4 pEFL29 

Plasmid pEFL29 (11557 bp) is a recombination plasmid for the insertion of selectable 

expression cassettes into FWPV. FWPV sequences in the plasmid (not shown), derived 

from FP9 and containing ORFs 1, 2 and 3 (equivalent to FWPV genes fpv002, 003 and 

004), target the expression cassette to non-essential open reading frames in the inverted 

terminal repeat regions (ITRs) of FWPV. It was derived from pEFL10 by inserting the 

FWPV 4b promoter (Binns et al., 1989) upstream of the lacZ gene before incorporating 

the VACV P7.5 promoter upstream of the P4b promoter and in the opposite orientation 

(Qingzhong et al., 1994). The vector has a unique SmaI site (downstream of the p7.5 

promoter and within ORF1/fpv002) used for gene insertion. A kanamycin resistance gene 

(Kan
R
) is the bacterial selectable marker for this vector (Figure 2.4).  

 

2.1.5 pEFgpt12S 

Vector pEFgpt12S (6362 bp) contains a synthetic (S) hybrid early/late promoter upstream 

of an MCS. Kan
R
 and E. coli gpt genes are present as selectable markers for use in 

bacteria and eukaryotic cells, respectively (Figure 2.5). FWPV sequences in the plasmid 

(not shown) target the expression cassette to non-essential open reading frame fpv002. 

FWPV sequences in the plasmid (not shown), derived from FP9, target the expression 

cassette to non-essential open reading frame ORF 1 (equivalent to fpv002) in the FWPV 

ITRs. The EcoGPT cassette is embedded within the FWPV recombination sequences so 

that stable MPA
R
 rFWPV can be isolated. 
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Figure 2.3. A simple map of vector pCDNA3.1 (-) with MCS, reproduced from 

Invitrogen. 

 

 

 

Figure 2.4. Map of vector pEFL29 with a unique SmaI (CCCGGG) site. 
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2.1.6 pPC1.X 

Vector pPC1.X (5584 bp in length) was used for the construction of recombination 

plasmids that would insert expression cassettes for chicken interleukin genes into the 

FWPV genome by transdominant selection (Laidlaw et al., 1998). It contains an 

ampicillin resistance gene and an E. coli gpt gene as selectable markers for use in bacteria 

and eukaryotic cells, respectively. The E. coli gpt gene is located outside the FWPV 

recombination sequences, allowing it to be used as a selectable marker for transdominant 

selection. FWPV recombination sequences are derived from the FWPV orthologue of the 

PC1 gene (fpv030; Laidlaw and Skinner, 2004) allowing it to be used to insert genes at 

this locus even when other genes are inserted at the fpv002 locus. A large part of the gene 

was deleted by digestion with XbaI followed by religation then one of the remaining 

HindIII restriction sites was deleted, leaving a unique HindIII site towards the C-terminus 

of fpv030 to facilitate cloning of inserts (Figure 2.6).  

 

 

 

 

 

 

 

 

 



 68 

Figure 2.5. Map of vector pEFgpt12S, 6361 bp, with unique enzyme sites, EcoRI 

(GAATTC), XbaI (TCTAGA), SacII (CCGCGG) and PstI (CTGCAG). 

 

 

 

 

 

 

Figure 2.6. Map of vector pPC1.X, 5584 bp, with unique enzyme sites, SmaI (CCCGGG) 

and HindIII (AAGCTT). 
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2.2 Construction of recombinant plasmids containing influenza and cytokine 

genes 

2.2.1 Cloning of AIV genes into pEFL29 

cDNA copies of H5, N1 and NP genes of avian influenza (AI) from strain 

A/Chicken/Malaysia/5858/2004 had been cloned in pCR2.1-TOPO vector and sequenced 

in Malaysia by Nurul Hidayah Abdullah Zawawi from Universiti Putra Malaysia.  

 

2.2.2 Bioinformatics analysis 

The polybasic cleavage site of the H5 gene of the Malaysian HPAI virus strain 

A/Chicken/Malaysia/5858/2004 was identified using CLC Combined Workbench 3 

software (CLC bio). The deduced H5 amino acid sequences, with and without the 

polybasic cleavage site, were aligned with sequences in the databases using BLAST 

(http://www.ncbi.nlm.nih.gov/blast/). Restriction enzyme maps and coding sequences of 

genes or plasmid vectors of interest were generated using the same software to facilitate 

cloning strategies and primer design. Cloning strategies for AIV and cytokine genes were 

designed on the basis of restriction enzyme maps generated in bioinformatics analysis. 

For insertion into expression vectors, AIV genes were produced as PCR products (with 

appropriate sequences added to facilitate sub-cloning), while cytokine genes were 

digested from their respective plasmid vectors. 
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2.2.3 Preparative Polymerase Chain Reaction (PCR) of AIV genes for sub-cloning 

Three primer sets were generated to amplify the full coding sequences of H5, N1 and NP 

gene, with either EcoRV or SspI sites incorporated at the termini (Appendix 1). Removal 

from the H5 gene of sequence encoding the polybasic sequence and the mutation of 

nucleotide 1022 from G to C, to change an arginine to a threonine, were done using 

mutagenic primers S(2-F) and S(1-R). Primers H5-F and S(1-R) were used to generate 

the first H5 fragment, while H5-R and S(2-F) were used to generated the second H5 

fragment. The full length modified H5 gene, designated H5 S, was obtained through PCR 

overlap extension mutagenesis using 50 ng of each first round PCR product as template. 

The reaction mixture contained 10X Pfx buffer (5 µL; Sigma), Accuprime Pfx DNA 

polymerase (2 U), oligonucleotide primers (0.75 µL of each 10 µM stock) and template 

DNA (50 to 260 ng) in a final volume of 50 µL. PCR was performed using the protocol 

in Section 2.2.5, but the extension temperature was changed from 72 
o
C to 68 

o
C 

following guidance from the manufacturer of Accuprime Pfx DNA polymerase. 

Amplification of the N1 gene, using primers N1-F and N1-R, and the NP gene using 

primers NP-F and NP-R, was carried out with the same reaction mixture and protocol. 

 

2.2.4 Analytical PCR reaction mixture 

The reaction mixture for a small scale PCR checking contained 10X PCR buffer (2 µL; 

Sigma), JumpStart Taq DNA polymerase (0.5 U; Sigma), dNTPs (0.5 µL of 10 mM) and 

oligonucleotide primers (0.5 µL of each 10 µM stock), in a total volume of 20 µL.  
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2.2.5 PCR protocol 

PCR was conducted according to the following programme: 

(i) Initial denaturation at 95 
o
C for 3 minutes.  

(ii) 4 cycles of denaturation at 95 
o
C for 30 seconds, annealing at 50 

o
C for 30 

seconds and extension at 72 
o
C for 1.5 minutes. 

(iii) 26 cycles of denaturation at 95 
o
C for 30 seconds, annealing at 59 

o
C for 30 

seconds and extension at 72 
o
C for 1.5 minutes.  

(iv) Final extension was operated at 72 
o
C for 10 minutes.  

 

2.2.6 Purification of PCR products  

DNA from PCR and other enzymatic reactions was purified when necessary using the 

QIAquick PCR Purification Kit, supplied by QIAGEN. Buffer PB (5 volumes) was first 

added to 1 volume of the reaction, mixed and placed in a 2 ml collection tube. The 

sample was then applied to QIAquick column and centrifuged at 10,000 rpm for 1 

minute. Buffer PE was used to wash the column before centrifuged for 1 minute. The 

buffer in the collection tube was discarded before centrifuged again for 1 minute. DNA 

was eluted with of nuclease free water (50 l). 

 

2.2.7 Small-scale preparation of plasmid vectors  

Small-scale isolation of plasmid vector DNA, based on adsorption of DNA onto silica in 

the presence of high salt after alkaline lysis of bacteria (Vogelstein and Gillespie, 1979), 

was performed using the QIAprep Spin Minipreparation Kit, supplied by QIAGEN. A 

single bacterial colony was picked from a freshly streaked selective plate and 
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resuspended in Luria Bertani (LB; 5 mL) broth containing the appropriate antibiotic (100 

μg/mL ampicillin or 50 μg/mL kanamycin), before overnight vigorous agitation at 37 
o
C. 

Bacteria were harvested by centrifugation (13,000 rpm; 5 minutes). Buffer P1 containing 

100 μg/mL RNase A (250 μL) was added and pellets were resuspended then transferred 

into a microcentrifuge tube. The bacteria were lysed under alkaline conditions in Buffer 

P2 (250 μL). After less than 5 minutes of thorough mixing, the lysate was neutralized 

with Buffer N3 (350 μL). Cell debris, proteins, chromosomal DNA and SDS were 

precipitated under the high salt concentration in the buffer. The solution was subjected to 

centrifugation at 13,000 rpm for 10 minutes. The supernatant was decanted to a QIAprep 

spin column before subsequent centrifugation (13,000 rpm, 1 minute). Adsorbed plasmid 

DNA was then washed with Buffer PE (750 μL) and an additional centrifugation was 

applied to remove residual wash buffer, before elution of DNA with DNAse free water 

(50 μL). 

 

2.2.8 Restriction enzyme digestion 

Restriction enzymes (restriction endonucleases) recognize and cut specific sequence in 

double-stranded DNA to produce sticky or blunt ends. In this study, restriction enzyme 

digestions were used: to produce compatible ends after PCR before cloning into plasmid 

vectors, to excise inserts from vector plasmids, to check the size of plasmid vectors and 

to determine the orientation of inserts. Reactions were allowed to proceed for 3 hours or 

overnight, in appropriate 10X Buffer (NEB). The requirement for BSA and the 

temperature for incubation depended on the enzyme. In preparation for sub-cloning, 2 to 

10 μg of plasmid vectors were digested with 40 U of suitable restriction enzymes in total 
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volumes of 50 μL or 100 μL while for analytical purposes, 100 to 200 ng of plasmid 

vectors were digested with 10 to 20 U of appropriate restriction enzyme(s) in 20 μL of 

total volume. Restriction enyme digest products were analyzed by agarose gel 

electrophoresis 

 

2.2.9 Phosphatase treatment of cut vectors 

To prevent self-ligation of plasmid vector DNA linearized with single restriction 

enzymes, the 5’ phosphate groups were removed by phosphatase treatment. Unpurified 

restriction enzyme digestion mixture (10 µL), which contained the plasmid vector of 

interest, was mixed with Antarctic phosphatase (25 U) in 10X reaction buffer in a final 

volume of 100 µL. The mixture was incubated at 37 
o
C for 30 minutes then the enzyme 

was inactivated by heating at 65 
o
C for 5 minutes. Purification of the digested vector was 

performed using QIAprep Spin Minipreparation Kit, before size confirmation by gel 

elecrophoresis. 

 

2.2.10 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to analyze all PCR or restriction enzyme digestion 

samples. Agarose (1 %) was dissolved in 1X Tris-Borate-EDTA (TBE) buffer containing 

1 µg/µL ethidium bromide. Samples were mixed with equal volume of loading dye 

before loaded into gel wells. A DNA marker with bands ranging from 100 bp to 10 kb 

was always included. Gels were electrophoresed in 1X TBE at 90 V for 30 to 60 minutes 

or until the dye was about one third from the bottom of the gel. Gels were visualized 

under ultraviolet light using a GelDoc 2000 system (BioRad) for detection and recording. 
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2.2.11 Ligations 

Ligation reactions involved 20 U of T4 DNA ligase (20 U), ATP (1 µL of each 0.05 mM 

stock) and 10x NEB Buffer 4 (1 µL) in a total volume of 10-15 µL. In this study, two 

types of ligation were used. ‘Sticky-end’ ligations were set up with 1:1 ratio (usually 50 

ng each) between the plasmid vector and DNA insert. The ligation mixture was left at 16 

o
C overnight. ‘Blunt-end’ ligations required vector to insert ratios of 1:2 to 1:10, with an 

incubation temperature of 4
  o

C (overnight).  

 

2.2.12 Transformation  

Transformation of chemically competent bacteria with plasmid DNA was performed 

using the method described by Mandel and Higa (1970). Plasmid vector (1 µL) or 

ligation mixture (5 µL) was added to a bijou containing of 5-alpha F´I
q 

competent E. coli 

(25 µL; NEB) and incubated on ice for 30 minutes. The cells were heat-shocked at 42 C 

for 90 seconds and immediately placed on ice again for 2 minutes. SOC medium (1000 

µL; Invitrogen) was added and the tube was incubated at 37 C with shaking at 200 rpm 

to allow expression of antibiotic resistance. After 1 hour, the mixture (50 to 200 µL) was 

plated onto an LB agar plate containing either ampicillin or kanamycin antibiotics (50 

µg/µL). The plate was incubated at 37 
o
C overnight. Single colonies were picked into 

antibiotic-supplemented media to be grown overnight for subsequent plasmid 

minipreparation. 
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2.2.13 Selection for positive transformants 

Several approaches were taken to select for positive transformants. A method using 

restriction enzyme digestion has been described in Section 2.2.8. 

 

2.2.13.1 Culture PCR 

Colonies that were picked after transformation were grown in LB (15 mL) supplemented 

with appropriate antibiotic(s) (15 µL of 50 µg/µL) at 37 
o
C overnight. The culture (0.5 

µL) was used to provide templates for analytical PCR (Section 2.2.4).  

 

2.2.13.2 Sequencing 

Plasmid transformants which were predicted to be positive after restriction enzyme 

digestion or culture PCR were sent for sequencing. In a tube with 10 µL of total volume, 

3.2 pmole of primer with a Tm of 50 – 55 °C were mixed with 200-500 ng (per 3 kb) of 

the plasmid DNA sample. The tube was then forwarded to Clinical Sciences Centre 

(CSC), a division of the Faculty of Medicine of Imperial College London, which is 

located in the Hammersmith Hospital Campus in London, United Kingdom, to be 

analysed. The sequencing data were assembled and evaluated using CLC Combined 

Workbench 3 software described in the early part of this chapter.  
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2.2.14 Cloning of chicken cytokine genes 

Plasmid pGEMT-Easy and pCDNA3.1(-) with cytokine IL-15 and IL-12 genes 

incorporated, respectively, were supplied by Dr Pete Kaiser from  the Institute for Animal 

Health, Compton. A sub-cloning strategy was designed on the basis of the restriction 

maps of IL-12 or IL-15 and the vectors used, pEFgpt12S and pPC1.X.  

 

2.2.14.1 Cloning of chicken cytokine genes into pEFgpt12S  

Plasmid pGEMT-Easy/IL-15 (5 µg) and pEFgpt12S (5 µg) were digested using PstI and 

SacII (40 U), separately, in 10X NEB buffer 2 (5 µL) and 100X BSA (0.5 µL), in a total 

volume of 50 µL. Plasmid pCDNA3.1(-)/IL-12 (10 µg) was digested using PmeI (40 U), 

while pEFgpt12S (4 µg) was digested using XbaI (40 U), in 10X NEB buffer 4 (5 µL) 

and 100X BSA (0.5 µL) in a total volume of 50 µL. The four individual digestion 

mixtures were incubated at 37 
o
C for 3 hours. Digested IL-15 and IL-12 gene fragments 

were purified by QIAquick Gel Extraction Kit after being electrophoresed, while 

restricted pEFgpt12S was purified by QIAquick PCR Purification Kit. The purified DNA 

samples were ligated before transformed into competent E. coli strain. 

 

2.2.14.2 Cloning of chicken cytokine genes into pPC1.X 

Plasmid pEFgpt12S/IL-15 (5 µg) was digested using PstI and HindIII (40 U), while 

pPC1.X (5 µg) was digested using NsiI and HindIII (40 U), in separate reaction mixtures 

of 10X NEB buffer 2 (5 µL) and 100X BSA (0.5 µL), in a total volume of 50 µL. 

Plasmid pEFgpt12S/IL-12 (5 µg) and pPC1.X (5 µg) was also restricted independently 

using HindIII (40 U) in 10X NEB buffer 2 (5 µL) in a total volume of 50 µL. The 
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digestion mixtures were incubated at 37 
o
C for 3 hours and purified using either 

QIAquick Gel Extraction Kit after being electrophoresed, or by QIAquick PCR 

Purification Kit. Ligations and transformations were applied to the DNA samples after 

the purification procedure.  

 

2.2.14.3 End repair 

Sticky ends of pEFgpt12S generated by digestion with XbaI (0.5 µg) were ‘polished’ 

using Klenow DNA Polymerase enzyme (1 U) in a reaction mixture which contained 

dNTP mix (10 µL of each 1mM stock) and 10X NEB buffer 2 (10 µL) in a total volume 

of 100 µL. The mixture was incubated at 25
 o

C for 15 minutes before the DNA was 

purified by QIAquick PCR Purification kit. 

 

2.2.14.4 QIAquick gel extraction kit  

The QIAquick gel extraction kit was used to extract and purify DNA fragments after 

agarose gel electrophoresis using the protocol provided by the manufacturer. The cassette 

of interest digested from the plasmid vector was excised from the gel using a clean 

scalpel under short exposure of long wave UV light. The gel slice was then weighed in a 

microcentrifuge tube. Three volumes of Buffer QG were added to one volume of gel (100 

mg ~ 100 μL) and incubated at 50 °C for 10 minutes or until the gel slice dissolved 

completely. One gel volume of isopropanol was mixed with the sample and the mixture 

was applied onto a column with the provided 2 mL collection tube underneath, and 

centrifuged. Buffer QG allowed DNA to be adsorbed onto the membrane while 

isopropanol increased the yield. Buffer PE (750 μL) was then added to wash the column. 
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An additional spin was carried out after the flow-through was discarded to remove 

residual wash buffer. A clean 1.5 mL microcentrifuge tube was positioned under the 

column. Elution of DNA was with 30 to 50 μL of water. All centrifugation steps were 

performed at 13,000 rpm for 1 minute. 

 

2.3 Construction of recombinant FWPV co-expressing influenza and cytokine 

genes 

2.3.1  Virus and media 

The initial stock of wild type FP9 was from Skinner laboratory stocks. The derivation of 

FP9 via 438 serial passages of the wild-type fowlpox virus HP-1, followed by plaque 

purification, has been described (Mockett et al., 1992). All media for tissue culture works 

were warmed at 37 °C before used. The media constituents are described in Appendix 2. 

 

2.3.2 Preparation of chick embryo fibroblast (CEF) primary cell cultures 

CEFs for this project were either prepared from 9 to 10-day-old embryonated eggs using 

standard methods or provided by the Institute for Animal Health, Compton, Berkshire, 

UK. CEFs were cultured in either tissue culture dishes or different sizes of tissue culture 

flask and incubated in 10 % NBBS in DMEM media at 37 
o
C in 5 % CO2  until used. 

 

2.3.3 Fluid overlay 

Growth medium in either a well or a flask was removed before an inoculum (virus stock 

diluted in serum free DMEM) with enough volume just to cover the cells, was added.  

The virus was allowed to adsorb for 1 to 2 hours at 37 
o
C. After aspiration, an appropriate 
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volume of 2 % NBBS in DMEM was added and the cells were placed again in 37 
o
C 

incubator with 5 % CO2. When a good cytopathic effect (CPE) was observed under a 

microscope within 4 to 5 days (the cells changed from elongated to more circular shape), 

both supernatant and cells were harvested. Freeze/thawing at -80 
o
C was done three times 

to ensure intracellular virus release.  

 

2.3.4 Agarose overlay 

Growth medium was discarded then an appropriate volume of inoculum was added to the 

cells and left for 1 to 2 hours at 37 
o
C. The inoculum was then aspirated. Agarose 

medium (Appendix 2) was gently overlayed and left for 10 to 15 minutes at room 

temperature to solidify. The cells were incubated in 37 
o
C incubator with 5 % CO2 again 

until plaques could be seen by holding the dish up to the light (4 to 6 days). To ease 

viewing of plaques of viruses containing LacZ gene, X-Gal could be added at the fourth 

day post infection. 

 

2.3.5 Recombination/Transfection using lipofectin 

T12.5 flasks containing 50 to 80 % confluent CEF cells were selected for infection of 

FP9 and transfection of recombinant plasmids. The medium from each flask was first 

discarded before addition of 500 µL of FP9 in pre-warmed serum free DMEM medium. 

The flasks were incubated at 37 C in 5 % CO2 for 2 hours to allow the virus to adsorb to 

cells, with a gentle rocking every 30 minutes. Pre-warmed 2 % NBBS DMEM media (2.5 

mL) was then added to each flask and reincubated for a further 2 hours. For each 

transfection, two solutions were prepared in a separate bijou. One solution contained 
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plasmid DNA (5 µg) in serum free DMEM (50 µL), and another one contained of 

lipofectin reagent (10 µL) in serum free DMEM (50 µL). The two solutions were 

subsequently combined and incubated at room temperature for 10 to 15 minutes. In the 

meantime, flasks were rinsed twice with 3 mL serum free DMEM. The second rinse was 

left inside the flasks while awaiting the plasmid DNA-lipofectin complex. After the 

incubation period, 2 % NBBS DMEM media (1.5 mL) was added to each bijou with 

plasmid DNA-lipofectin complex and gently mixed. This solution was then added to the 

washed cells in the flasks after the second rinse had been discarded, and incubated at 37 

C in 5 % CO2 overnight before replaced with 2.5 mL of 2 % NBBS DMEM. The 

addition of mycophenolic acid (MPA) (25 μg/mL),  xanthine (250 μg/mL) and 

hypoxanthine (25 μg/mL) for gpt selection could be done at this step. The transfected 

cells were then incubated further for 4 to 5 days until CPE was observed. The cells and 

the supernatant were harvested into a bijou and freeze/thawed three times. 

 

2.3.6 Selection of viruses  

2.3.6.1 Selection of viruses containing LacZ gene 

Agar overlay solution containing X-Gal at a final concentration of 0.4 mg/mL was 

pippetted onto the agar-overlaid cells at the fourth day post-infection. Successful 

recombination/transfection of recombinant plasmids carrying a LacZ gene into FP9 was 

demonstrated by blue plaques observed from the next day. Single plaques were picked, 

diluted in 500 µL serum free DMEM and freeze/thawed three times. This protocol was 

repeated six times to obtain plaque-purified virus. 
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2.3.6.2 Selection and resolution of viruses containing gpt gene  

At the stage of recombination/transfection, the viruses were incubated in 2 % NBBS 

DMEM in the presence of MPA. Three serial viral passages were performed by infecting 

200 µL of the virus in T12.5 flask. Virus from the third passage was sequentially diluted 

(10
-3

 to 10
-6

) using serum free DMEM before being subjected to agar overlay infection in 

the presence of MPA. Single plaques were picked into 500 µL of serum free DMEM and 

freeze/thawed three times. The clones were subjected to further (three to six times) 

plaque purifications in non-selective gpt media.  

 

2.3.7   Verification of recombinant viruses 

2.3.7.1 PCR after genomic extraction 

DNA was isolated from infected tissue culture cell lysates using Wizard SV Purification 

Kits (Promega). Using an equal volume of Wizard SV Lysis Buffer, 150 µL of harvested 

lysates from at least 1x10
4
 cells to a maximum of 5x10

6
 cells were lysed. Total sample 

lysates were then transferred onto spin columns. Centrifugation occurred at 13 000 x g 

for 3 minutes and the flow-through was decanted. To wash, 650 µL of Wizard SV Wash 

Solution was added into the column and centrifuged for 1 min. The liquid was discarded 

and the column was centrifuged for another 2 minutes to dry the binding matrix. The 

DNA was then eluted with 250 µL of nuclease free water. An aliquot (3 µL) from the 

total yield was used in small scale PCR screening. 
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2.3.7.2 Western blotting 

For protein expression analysis, we utilized CEF infected with RG14 lysate supplied by 

Prof Wendy Barclay (Imperial College London), as positive control, while wild type FP9 

protein lysate and lysates of CEF, DF1 and/or QT35 served as negative controls. RG14 is 

a reference vaccine virus strain derived from A/Vietnam/1194/2004, and was developed 

by NIBSC using reverse genetics technology to transfer the H5 (modified to remove the 

polybasic cleavage site sequence) and N1 segments into a PR8 background. The 

recombinant protein lysates were prepared by infecting CEFs, with the recombinant 

viruses at a multiplicity of infection (MOI) of 3 in a 12-well plate, for 48 hours. The cell 

pellet was harvested by adding 250 μL RIPA buffer (50 mM Tris pH 8.0, 0.1 % SDS, 1 

% NP-40, 0.05 % w/v sodium deoxycholate and 150 mM NaCl) and squirting the pipette 

until total cell pellet was detached. Protease inhibitor (0.01 %) was included to minimize 

protein degradation.   

 

Standard Sodium Dodecyl Sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) 

was used to separate proteins expressed by the infected cells (Sambrook et al, 1989). A 

stacking gel (130 mM Tris-HCl pH 6.8, 0.1 % SDS, 0.1 % ammonium persulphate, 5.1 % 

acrylamide and 0.1 % TEMED) was poured on top of a resolving gel (375 mM Tris-HCl, 

0.1 % SDS, 0.1 % ammonium persulphate, 9.9 to 15 % acrylamide and 0.04 % TEMED) 

and allowed to solidify. A 10 or 15 well comb was added prior to setting. Protein samples 

from either lysed cells or supernatant (10 to 30 µL) were mixed with 1X Laemmli 

Loading Buffer (15 % β-mercaptoethanol, 15 % SDS, 1.5 % w/v bromphenol blue and 50 

% glycerol, diluted in distilled water), and heated for 1 minute at 60 to 100 °C. 
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Electrophoresis was conducted in SDS-PAGE running buffer (190 mM glycine, 20 mM 

Tris-Base and 0.1 % SDS) initially at 100 V, switching to 200 V when the samples 

reached the resolving gel. Protein size markers (BioRad Precision Plus Protein Standards) 

were run alongside. The resolved proteins and controls were transferred onto a 

nitrocellulose membrane, at 100 V for 1 hour at room temperature, in Transfer Buffer 

mix (20 % methanol, 10 % Transfer Buffer : 20 mM Tris-Base, 192 mM glycine and 0.01 

% SDS, diluted in distilled water). The membrane was subsequently immersed at 4 °C 

overnight in 5 % skimmed milk in Phosphate Buffered Saline, PBS (200 mM phosphate 

and 150 mM NaCl). The solution was then removed and the membrane was incubated 

with primary antibody, diluted with PBS containing 2 % skimmed milk, at its respective 

ratios (1:500, 1:1000 or 1:2000) for 1½ hours at room temperature, with slow rotation. 

The membrane was then washed with PBS, five times for five minutes. Secondary 

antibody, conjugated with horseradish peroxidase and diluted with PBS/2 % skimmed 

milk, was added at an appropriate dilution, and the container was placed on a rotator for 

another 1.5 hours. Excess conjugate was removed and rinsed with PBS. The membrane 

was then developed using Amersham ECL Plus Detection Reagent (GE Healthcare). The 

exposure time of the membrane to autoradiograph film varied from 5 to 20 minutes.  

 

2.3.7.3     Indirect immunofluorescence assay (IFAT) 

CEF were grown in 6-well plates containing two round coverslips (1.2 cm in diameter) in 

each well, until the monolayer reached 80 % confluency. Each well was infected with 

virus stock at 0.3 MOI, while one well was left uninfected. The infection was left to 

proceed overnight in 2 % NBBS DMEM medium. Cells were washed twice with 5 mL 
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pre-warmed 1X PBS. Each coverslip was transferred into individual wells of a 12-well 

plate. Each was incubated with specific primary antibodies diluted in PBS, for 2 hours, 

with a gentle shake every 30 minutes. After three washes with 1 mL PBS, cells were 

incubated with secondary antibodies, conjugated with FITC, for 1 hour, before being 

washed again three times. All FITC procedures were conducted in dim light. Coverslips 

were gently placed onto glass slides, air-dried and viewed under a fluorescent microscope 

(model Leica DMRA II). 

 

2.4 Characterization of immune response by in vivo experimental study  

2.4.1 Chickens  

Layer chickens of the White Leghorn breed used in all the animal experiments were 

imported from SPAFAS Australia Pty Ltd by Malaysian Vaccines and Pharmaceuticals 

Sdn Bhd (www.mvp.com.my). They were tested and declared free from specific 

pathogens (SPF) by Charles River Laboratories (www.criver.com).  

 

Chickens were kept in separate cages by group, fed twice a day using commercial 

chicken feed (brand Gold Coin) and provided with water, ad libitum. 

 

Table 2.1. Composition of chicken feed in commercial brand, Gold Coin, of Malaysia 

Composition Percentage, % 

Crude protein, minimum 21.2 

Crude fibre, maximum  5.0 

Crude fat, minimum 5.0 

Moisture, maximum 13.0 

Ash, maximum 8.0 

Calcium 0.8 – 1.2 

Phosphorus 0.6 – 1.0 
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2.4.2  Animal experimental design 

All animal experiments were conducted at Animal Experimental House of the Faculty of 

Veterinary Medicine, Universiti Putra Malaysia (UPM), Malaysia, in compliance with the 

international Guide for the Care and Use of Laboratory Animals (ILAR, 1996), under the 

approval of the local Institutional Animal Care and Use Committee (IACUC) of UPM 

(Reference No.: UPM/FPV/PS/3.2.1.551/AUP-R72).  

 

2.4.2.1 Animal experimental  1 

Fifty four 1-day-old chicks were randomly assigned into six groups, nine in each group as 

follows: 

(i)  Control (mock-vaccinated with 100 μL PBS). 

(ii)  Parental FWPV FP9 (WT FP9). 

(iii) rFWPV expressing H5 gene (rFWPV/H5). 

(iv) rFWPV coexpressing H5 and IL-15 genes (rFWPV/H5/IL-15). 

(v)  rFWPV expressing N1 gene (rFWPV/N1). 

(vi) rFWPV expressing N1 and IL-12 genes (rFWPV/N1/IL-12). 

 

The viral vaccine inoculation dose was 10
5
 PFU, diluted in PBS to a total volume of 100 

μL. Within one hour upon preparation, the viral inoculum was inoculated subcutaneously 

at the scruff of the neck of each bird, using a 27-gauge needle. Clinical signs were 

observed twice daily post inoculation (p.i.) for two weeks.  
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Blood sampling (for serum) of each chicken was done on a weekly basis. At Week 2 and 

5, whole blood (0.2 mL) of each chicken in each group of nine was sampled and 'pooled' 

into 3 groups (0.6 mL in total), for lymphocyte isolation for flow cytometry analysis 

(Section 2.4.7).  

 

All chickens were weighed at Week 1 until Week 4. The chickens were left until Week 7 

to distinguish their sexes before being euthanized. 

 

2.4.2.2 Animal experiment 2 

Thirty 1-day-old chicks were randomly assigned into six groups (five chickens in each 

group). Vaccine groups and inoculation design were similar to Section 2.4.2.1. Blood 

sampling (for serum) of each chicken was done on a weekly basis. At Week 2 and 4, 

whole blood (0.5 mL) of each chicken in each group of five was sampled for lymphocyte 

isolation for flow cytometry analysis (Section 2.4.7). The chickens were left until Week 7 

before being euthanized. 

 

2.4.3 Serum collection 

Collected whole blood (0.2 to 1 mL, according to chicken size) was left in the syringe, 

horizontally, at room temperature, for five hours (no longer than six hours) to allow 

clotting. The transparent, yellowish liquid (serum) was gently transferred into 1.5 mL 

tubes and centrifuged at 1200 rpm for 10 minutes. The supernatant was collected into 

new clean tubes and kept in -20 
o
C until further used. 

 

A 
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2.4.4 Red blood cell isolation 

Chicken whole blood, 1.5 to 2 mL, was collected into vacutainers containing EDTA as 

anti-coagulant and 500 μL PBS. The blood was transferred into 50 mL tubes containing 

30 mL cold PBS and mixed gently. The tube was centrifuged at 2000 rpm, 4 
o
C for 10 

minutes. Supernatant was inspected to be completely yellowish, without reddish 

particulates (lysed red blood cells, RBC), and slowly discarded. Cold PBS, 20 mL, was 

added to the tube which was centrifuged again at 2000 rpm, 4 
o
C for 10 minutes. The 

clearer yellowish colour of the supernatant was noted before being discarded. Cold PBS 

(20 mL) was added and this step was repeated further until the supernatant was 

colourless. Packed RBC at the bottom of the tube were pipetted gently into a clean tube, 

labelled as 100 % concentrated, and kept at 4 
o
C no longer than two days.  

 

2.4.5  Haemagglutination test 

PBS (25 μL) was aliquoted into 12 wells (one row) of U-bottomed 96-well plates. 

Inactivated, low pathogenic H5 AIV (50 μL; A/Malaysia/Duck/8443/04 H5N2), provided 

by the Veterinary Research Institute, VRI, Ipoh, Malaysia, was added into the first well. 

The virus was serially diluted (twofold) into the second well until the eleventh well. The 

remaining 25 μL was discarded. Freshly prepared RBC (50 μL, 100 % concentration) 

were diluted to 0.8 % in PBS and aliquotted into all 12 wells. The minimum virus 

concentration that caused complete agglutination of RBC was taken as the virus titre. 
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2.4.6  Haemagglutinin inhibition assay 

Using a U-bottomed 96-well plate, 25 μL PBS was aliquotted into the second to twelfth 

wells. Sample serum (50 μL) was added into the first well and half of it was serially 

diluted (twofold) until the eleventh well. The remaining 25 μL was discarded. H5N2 

virus strain A/Malaysia/Duck/8443/04, titrated to 4 HA units, was added into the diluted 

sera and gently mixed. The plate was incubated at room temperature for one hour. 

Washed chicken RBC (25 μL of 0.8 %) was added to each of the wells and incubated for 

30 minutes before viewing. HI titers were determined as the reciprocal of the highest 

serum dilution that completely inhibited haemagglutination. 

 

2.4.7 Isolation of lymphocytes  

Fresh, non-coagulated whole blood was diluted to 1 mL using cold PBS and was 

carefully layered on BD Biosciences Ficoll-Paque PLUS (2 mL) and centrifuged using a 

swing rotor, at 400 x g for 30-40 minutes at 4 °C. The lymphocyte layer was removed 

into a clean centrifuge tube and washed with 2 mL of PBS before re-centrifuging under 

the same conditions for 10 minutes. The supernatant was discarded. If RBC particulates 

were observed at the bottom of the tube, 2 mL of lysis buffer (7.56 g ammonium chloride 

and 2.42 g tris in total 1 L water) was added and the tube was kept in 4 
o
C for 30 minutes. 

Centrifugation was carried out as above and the step was repeated until no RBC were 

observed. PBS (2 mL 1X) was added to the pellet and the tube was re-centrifuged. The 

washing step was repeated twice. The lymphocytes pellet was resuspended in 0.2 to 0.5 

mL PBS for cell counting and transferred into amber tubes. The lymphocytes were kept 

at 4 
o
C and used within one day.  
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2.4.8 Preparation of paraformaldehyde solution 

Paraformaldehyde (2 % w/v) was prepared as a stock by adding 2 g of the powder to 100 

mL 1X PBS and heating at 56 
o
C in a waterbath until fully dissolved. The solution was 

allowed to cool to room temperature. The pH was adjusted to 7.4 using 0.1 M sodium 

hydroxide or 0.1 M hydrochloride acid. The solution was stored at 4 
o
C and used no later 

than two weeks. A 0.5 % working solution of paraformaldehyde was prepared by adding 

10 mL of 2 % stock into 30 mL 1X PBS. The solution was kept at 4 
o
C and was stable for 

one week. 

 

2.4.9 Staining and fixing of lymphocytes 

Mouse anti-chicken CD8a-PerCP-Cy5-conjugated (0.1 mg, working concentration was 1 

µg/mL), mouse anti-chicken CD3-PE-conjugated (0.1 mg, working concentration was 0.5 

µg/mL) and mouse anti-chicken CD4-FITC-conjugated (0.5 mg, working concentration 

was 0.5 µg/mL) monoclonal antibodies (all from Southern Biotech) were each added into 

an amber tube containing approximately 10
6 

cells. The cells were resuspended and 

incubated at 4 
o
C in a 100 rpm shaker for 3 hours, with tapping every hour. The 

antibodies were then washed three times with 1 mL cold 1X PBS, centrifuging at 250 x g 

for 10 minutes at 4 °C. Supernatants were discarded each time. Cold paraformaldehyde 

(0.3 mL of 0.5 %) was added to the stained cell pellets, which were vortexed 

immediately. The stained and fixed cells were kept at 4 
o
C in the dark no longer than 

three days. The cells were transferred into Flow tubes for analysis using a BD 

FACSCalibur flow cytometer. 
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2.4.10  ELISA assays  

ID Screen Influenza N1 Antibody Competition kits, purchased from ID VET, France, 

were used for specific detection of anti-influenza N1 antibodies in chicken sera. The kits, 

comprised of flat-bottom, 96-well microplates coated with N1 antigen (inactivated, whole 

H1N1 virus of 2009 pandemic, isolated from Brescia, Italy), 10X concentrated conjugate 

(anti-N1-peroxidase), positive and negative controls, dilution buffers, 20X wash 

concentrate, TMB as substrate solution and sulphuric acid as stop solution were stored at 

4 
o
C. Reagents were allowed to cool to room temperature and homogenized by vortexing 

before use. Dilution buffer 8 (50 μL) was loaded into each well of the microplates. 

Positive control (50 μL) was added into wells A1 and B1, with negative control into wells 

C1 and D1. Samples (50 μL each) were added to the remaining wells and the plate was 

incubated for 1.5 h at 37 
o
C.  Using an automatic ELISA plate washer, each well was 

emptied and washed three times using 300 μL of wash solution. Drying of the wells 

between washings was avoided. Conjugate (100 μL of 1X) prepared by diluting the 10X 

concentrated conjugate in dilution buffer 3, was added to each well and the plate was 

incubated for a further 30 minutes. Using an automated microplate washer (BioRad 

model 1575), each well was emptied and washed three times using 300 μL of wash 

solution. Substrate solution (100 μL) was added to each well before incubation for 10 

minutes at 21 
o
C in the dark. Stop solution (100 μL) was added before the plate was read 

using a microplate reader (BioRad model 680) at 450 nm optical density, OD. The test 

was validated if the mean value of the negative control OD was greater than 0.700 and 

the mean value of the positive control was less than 30 % of the negative control OD. 
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Once the test was validated, competition percentage of antibodies from the samples was 

calculated using the equation below: 

                OD of sample              X 100 

       OD of negative control    

 

N1 antibodies were considered to be present in the sample if the competition percentage 

of the sample was less than 60 %, and absent if the percentage was equal to or more than 

60 %. 

 

In principle, N1 antibodies if present in the serum samples formed an antibody-antigen 

complex with N1 antigen coated on the microplates. Subsequent addition of anti-N1-

peroxidase conjugate bound to the remaining free epitopes of N1 antigen, forming an 

antigen-antibody-peroxidase complex. Addition of substrate solution, TMB, after 

elimination of the excess conjugate, later resulted in colouration based on the quantitity 

of specific antibodies present in the serum; no colour changes in the presence of 

antibodies, or blue colour which turned to yellow after addition of stop solution indicated 

the absence of antibodies.      

 

2.4.11 Statistical analysis 

Differences between groups of chicken were analyzed by One-Way ANOVA (if more 

than two groups) or Paired-samples T test (if two groups were compared) using SPSS 

Version 15 software. Results were expressed as the mean ± standard error of the mean 

(SEM). P values less than 0.05 were considered statistically significant in all cases.  
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CHAPTER 3 

Construction of recombinant FWPV coexpressing influenza virus and cytokine 

genes 

 

3.1 Introduction 

All of the sub-cloning of AIV and chicken cytokine genes into FWPV recombination 

vectors as well as the generation, characterisation and initial bulk preparation of 

recombinant FWPV (rFWPV) was conducted during the first half of the project in the 

laboratory of Dr M. A. Skinner at Imperial College London. Construction and use of the 

rFWPV in London was conducted according to HSE guidelines, under the approval of the 

local Genetic Modification Safety Committee, at Category 1 (elsewhere known as 

biosafety level, BSL, 1).   

 

The cloning strategy to construct recombinant FWPV, rFWPV, coexpressing AIV genes 

and chicken cytokine genes is summarized in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93 

Figure 3.1. Overview of cloning strategy of AIV and cytokine genes. A) AIV genes (H5, with 

deleted polybasic sequence, N1 and NP) were amplified by PCR and inserted into recombination 

vector pEFL29 at a unique SmaI site. The first homologous recombination occurred at ORF 002 

of FWPV and clones were isolated by 6 fold plaque purification with X-gal screening and PCR. 

B) Cytokine genes IL-15 and IL-12 were excised from pCDNA3.1(-) and pGEMT-Easy, 

respectively, into vector pEFgpt12S carrying the S promoter. Expression cassettes were sub-

cloned into recombination vector pPC1.X. The second homologous recombination occurred into 

rFWPV already carrying AIV genes. The Ecogpt gene external to the recombination cassette in 

pPC1.X allowed trans-dominant selection of unstable intermediate viral clones subsequently 

allowed to resolve into stable AIV-rFWPV either having or not having cytokine genes. Final the 

presence of the inserted genes was verified by PCR, western blotting and IFAT.  
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3.2 Construction of recombinant FWPV expressing influenza virus genes  

3.2.1 PCR amplification of AIV genes (including primer design and removal of 

polybasic sequence) 

Three primer sets to be used to generate the full length H5, N1 and NP sequences were 

designed with either EcoRV or SspI restriction enzyme sites incorporated (Appendix 1). 

The restriction enzymes were chosen to create blunt-end PCR products. 

 

The HPAIV haemagglutinin (HA) gene of the H5 virus contains multiple basic amino 

acids, arginine and lysine, that allow cleavage by ubiquitous proteases (furin and PC6) 

(Wood et al., 1994; Horimoto et al., 1994). To maintain compatibility with recombinant, 

killed H5N1 influenza vaccines (personal communication, Dr John Wood at NIBSC, 

Potters Bar, UK), and to reduce any potential biosafety issues, the polybasic region was 

removed. The sequence of the polybasic region is S-P-Q-R-E-R-R-R-K-K-R. Based on 

the sequence of the cleavage site of a low pathogenic Mexican lineage H5N2 AIV isolate 

(Garcia et al., 1996; Ito et al., 2001; Lee et al., 2004), it was decided to delete the 

tetrabasic peptide motif and also to replace one of the remaining arginines (R) with 

threonine (T), resulting in S-P-Q-R-E-T-R. BLAST searches 

(http://www.ncbi.nlm.nih.gov/blast/) were undertaken to compare the newly deduced 

amino acid sequence of the H5 with other influenza virus sequences. The most significant 

BLAST score is a modified haemagglutinin sequence of Influenza A virus 

(A/Vietnam/1203/2004) which shares 97% amino acid identity.  
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Deletion of the R-R-K-K motif and introduction of a point mutation at nucleotide 

position 1022, changing the arginine codon (AGA) to a threonine codon (ACA) were 

made using mutagenic primers S(2-F) and S(1-R). Use of primer pair H5-F and S(1-R) 

led to successful generation of the first H5 fragment (1036 bp), while use of primers H5-

R and S(2-F) allowed generation of the second H5 fragment (684 bp). Full length 

mutated H5 gene, designated H5 S (1695 bp in length), was obtained through PCR 

overlap extension mutagenesis using 50 ng of each DNA fragment as templates (Figure 

3.2). Later sequencing confirmed the presence of the mutated sequence: 

ATGLRNSPQRETRGLFGAIAG. 

 

PCR amplification of the N1 gene using N1-F and N1-R primers created a product of 

approximately 1353 bp, which corresponds to the expected N1 size of 1350 bp. Primers 

NP-F and NP-R were used to produce the NP gene. The product ran as a band between 

1353 bp and 2027 bp, which matched the expected size (1497 bp) of the NP gene (Figure 

3.2). 
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Figure 3.2. Amplification of AIV genes using PCR, including removal of multibasic sequence 

from H5 gene. A) Full length HA H5 gene, 1707 bp, is shown in Lane 1. Fragment 1, 1036 bp, 

and Fragment 2, 684 bp, of H5 were generated using mutagenic primers (Lanes 2 and 3, 

respectively). Re-assembled full length H5 sequence, lacking the polybasic region, 1695 bp, was 

obtained using PCR overlap extension mutagenesis (Lane 4). Lanes 5 and 6 show N1 (1350 bp) 

and NP (1497 bp) gene products, respectively. M is a ladder marker. B) Diagram showing the 

positions of primers used to amplify the genes and the predicted size of PCR products. 
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3.2.2 Introduction of influenza gene expression cassettes into the FWPV genome 

In this thesis, the term ‘positive transformants’ is used to refer to bacterial clones carrying 

plasmid vectors with the desired DNA correctly inserted in the appropriate orientation. 

To select for positive transformants carrying pEFL29 with inserted AIV genes, several 

single colonies were picked from an LB plate after the transformations and grown 

overnight. Culture PCR using a flanking primer (annealing to the vector) and an internal 

primer (annealing to the inserted gene) was generally used to confirm the presence and 

orientation of the insert (Figure 3.3a, Figure 3.3b).  

 

 

 

 

 

 

 

 

Figure 3.3a. Primer locations for PCR analysis to confirm the presence of the insert and its 

orientation. Two sets of primers were used, flanking primers F1 and F2, annealing to the parental 

vector, and internal primers I1 and I2, annealing to the 5' and 3' ends, respectively, of the inserted 

gene. 

 

 

 

 

 

 

 

 



 98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3b. Typical culture PCR analysis to confirm the presence of the insert and its orientation. 

A) Two sets of primers were used, flanking primers pEFL29-F and pEFL29-R, annealing to the 

parental vector, and internal primers H5-F and H5-R, annealing to the 5' and 3' ends, respectively, 

of the inserted gene. B) Example of culture PCR products. In this figure, pEFL29 and H5 primer 

sets were used to confirm the presence of H5 gene insert in pEFL29, in four cultures of single 

colonies. The size of the expected product is 1800 bp for both sets. Products of pEFL29-F and 

H5-R primers are shown in Lanes 1, 3, 5, and 7. Products of pEFL29-R and H5-F primers were 

indicated at Lane 2, 4, 6 and 8. Lane 1 and 2 represent culture number 1, Lane 3 and 4, culture 

number 2, Lane 5 and 6, culture number 3, Lane 7 and 8, culture number 4. M is a ladder marker. 
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Cultures that yielded positive PCR products (Figure 3.3) were subjected to plasmid DNA 

isolation using QIAGEN Minipreparation Kit. The extracted plasmid DNAs were 

digested using restriction enzymes SphI or NcoI for pEFL29 predicted to have H5/NP or 

N1 gene inserts, respectively (Figure 3.4). Plasmid DNA from positive transformants was 

then sent for sequencing (Figure 3.5a,b,c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Agarose gel showing the size of plasmid pEFL29 carrying AIV genes after restriction 

enzyme digestion. pEFL/H5 was digested with SphI to give 1296 bp, 4962 bp and 7000 bp 

fragments. pEFL29/N1 was digested with NcoI to give 1743 bp and 11170 bp fragments. 

pEFL29/NP was digested with SphI to give 2740 bp and 10314 bp. M is a ladder marker. 
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GAATTCCCATC 

ATGGAGAAAATAGTGCTTCTTTTTGCAATAGTCAGTCTTGTTAAAAGTGATCAGATTTGCATTG

GTTACCATGCAAACAACTCGACAGAGCAGGTTGACACAATAATGGAAAAGAACGTTACTGTT

ACACATGCCCAAGACATACTGGAAAAGACACACAACGGGAAGCTCTGCGATCTAGATGGAGT

GAAGCCTCTGATTTTGAGAGATTGTAGTGTAGCTGGATGGCTCCTCGGAAACCCAATGTGTGA

CGAATTCATCAATGTGCCGGAATGGTCTTACATAGTGGAGAAGGCCAATCCAGTCAATGACCT

CTGTTACCCAGGGGATTTCAATGCCTATGAAGAATTGAAACACCTATTGAGCAGAATAAACCA

TTTTGAGAAAATTCAGATCATCCCCAAAAGTTCTTGGTCCAGTCATGAAGCCTCATTAGGGGT

GAGCTCAGCATGTCCATACCAGGGAAAGTCCTCCTTTTTCAGAAATGTGGTATGGCTTATCAA

AAAGAACAGTACATACCCAACAATAAAGAGGAGCTACAATAATACCAACCAAGAAGATCTTT

TGGTACTGTGGGGGATTCACCATCCTAATGATGCGGCAGAGCAGACAAAGCTCTATCAAAAC

CCAACCACCTATATTTCCGTTGGGACATCAACACTAAACCAGAGATTGGTACCAAGAATAGCT

ACTAGATCCAAAGTAAACGGGCAAAGTGGGAGGATGGAGTTCTTCTGGACAATTTTAAAACC

GAATGATGCAATCAACTTCGAGAGTAATGGAAATTTCATTGCTCCAGAATATGCATACAAAAT

TGTCAAGAAAGGGGACTCAACAATTATGAAAAGTGAATTGGAATATGGTAACTGCAACACCA

AGTGTCAAACTCCAATGGGGGCGATAAACTCTAGTATGCCATTCCACAATATACACCCTCTCG

CCATCGGGGAATGCCCCAAATATGTGAAATCAAACAGATTAGTCCTTGCGACTGGGCTCAGA

AATAGCCCTCAAAGAGAGACAAGAGGATTATTTGGAGCTATAGCAGGTTTTATAGAGGGAGG

ATGGCAGGGAATGGTAGATGGTAGGTATGGGTACCACCATAGCAATGAGCAGGGGAGTGGGT

ACGCTGCAGACAAAGAATCCACTCAAAAGGCAATAGATGGAGTCACCAATAAGGTCAACTCG

ATCATTGACAAAATGAACACTCAGTTTGAGGCCGTTGGAAGGGAATTTAACAACTTAGAAAG

GAGAATAGAGAATTTAAACAAGAAGATGGAAGACGGGTTCCTAGATGTCTGGACTTATAATG

CTGAACTTCTGGTTCTCATGGAAAATGAGAGAACTCTAGACTTTCATGACTCAAATGTCAAGA

ACCTTTACGACAAGGTCCGACTACAGCTTAGGGATAATGCAAAGGAGCTGGGTAACGGTTGTT

TCGAGTTCTATCATAAACGTGATAATGAATGTATGGAAAGTGTAAGTAACGGAACGTATGACT

ACCCGCAGTATTCAGAAGAAGCAAGACTAAAAAGAGAGGAAATAAGTGGAGTAAAATTGGA

ATCAATAGGAATTTACCAAATACTGTCAATTTATTCTACAGTGGCGAGTTCCCTAGCACTGGC

AATCATGGTAGCTGGTCTATCCTTATGGATGTGCTCCAATGGGTCGTTACAATGCAGAATTTG

CATTTAA* 

 

Figure 3.5a. Confirmed sequence of the H5 gene as inserted in vector pEFL29. Half of the unique 

SmaI cloning site is shown in bold. Half of an EcoRV site (italic), inserted to facilitate blunt-end 

ligation, is also shown. The sequence flanking the point mutation at nucleotide position 1022, 

which changes arginine (AGA) to threonine (ACA), is underlined and in bold. The sequencing 

primer positions are highlighted, while their orientations are indicated by arrows. P7.5 early/late 

promoter is not shown. 
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GAATTCCCATT 

ATGAATCCAAATAAGAAGATAATAACCATCGGATCAATCTGTATGGTAACTGGAATGGTTAG

CTTAATGTTACAAATTGGGAACTTGATCTCAATATGGGTCAGTCATTCAATTCACACAGGGAA

TCAACACAAAGCTGAACCAATCAGCAATACTAATCTTCTTACTGAGAAAGCTGTGGCTTCAGT

AAAATTAGCGGGCAATTCATCTCTTTGCCCCATTAATGGATGGGCTGTATACAGTAAGGACAA

CAGTATAAGGATCGGTTCCAAGGGGGATGTGTTTGTTATAAGAGAGCCATTCATCTCATGCTC

CCACTTGGAATGCAGAACTTTCTTTTTGACTCAGGGAGCCTTGCTGAATGACAAGCACTCCAA

TGGGACTGTCAAAGACAGAAGTCCTCACAGAACATTAATGAGTTGTCCTGTGGGTGAGGCTCC

CTCCCCATACAACTCAAGGTTTGAGTCTGTTGCTTGGTCAGCAAGTGCTTGCCATGATGGCAA

CAGTTGGTTGACAATTGGAATTTCTGGCCCAGACAATGGGGCTGTGGCTGTATTGAAATACAA

TGGCATAATAACAGACACTATCAAGAGTTGGAGGAATAACATACTGAGAACTCAAGAGTCTG

AATGTGCATGTGTAAATGGCTCTTGCTTTACTGTAATGACTGACGGACCAAGTAATGATCAGG

CATCACATAAGATCTTCAAAATGGAAAAAGGAAAAGTGGTTAAATCAGTCGAATTGGATGCT

CCCAATTATCACTATGAGGAATGCTCCTGTTATCCTGATGCCGGCGAAATCGCATGTGTGTGC

AGGGATAATTGGCATGGCTCAAATCGGCCATGGGTATCTTTCAATCAAAATTTGGAGTATCAA

ATAGGATATATATGCAGTGGAGTTTTCGGAGACAATCCACGCCCCAATGATGGAGCAGGTAG

TTGTGGTCCGGTGTCCTCTAACGGGGCATATGGGGTAAAAGGGTTTTCATTTAAATACGGCAA

TGGTGTCTGGATCGGGAGAACAAAAAGCACTAATCCCAGGAGCGGCTTTGAAATGATTTGGG

ATCCAAATGGGTGGACTGAAACGGACAGTAGCTTTTCAGTGAAACAAGATATCGTAGCAATA

ACTGATTGGTCAGGATATAGCGGGAGTTTTGTCCAGCATCCAGAACTGACAGGACTAGATTGC

ATAAGACCTTGTTTCTGGGTTGAGTTGATCAGAGGGCGGCCCAAAGAGAGCACAATTTGGACT

AGTGGGAGCAGCATATCTTTTTGTGGTGTAAATAGTGACACTGTGGGTTGGTCTTGGCCAGAC

GGTGCTGAGTTGCCATTCACCATTGACAAGTAG* 

 

Figure 3.5b. Sequencing of N1 gene in vector pEFL29. Unique SmaI site is shown in bold. SspI 

site (italic) was incorporated to facilitate blunt-end ligation. The sequencing primer positions are 

highlighted, while their orientations are indicated by arrows. P7.5 early/late promoter is not 

shown. 
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GAATTCCCATC 

ATGGCGTCTCAAGGCACCAAACGATCTTATGAACAGATGGAAACTGGTGGGGAACGCCAGAA

TGCTACTGAGATCAGGGCATCTGTTGGAAGAATGGTTAGTGGCATTGGGAGGTTCTACATACA

GATGTGCACAGAACTCAAACTCAGTGACTATGAAGGGAGGCTGATCCAGAACAGCATAACAA

TAGAGAGAATGGTACTCTCTGCATTTGATGAAAGAAGGAACAGATACCTGGAAGAACACCCC

AGTGCGGGAAAGGACCCGAAGAAAACTGGAGGTCCAATTTATCGGAGGAGAGATGGGAAAT

GGGTGAGAGAGCTAATTCTGTACGACAAAGAGGAGACCAGGAGGATTTGGCGTCAAGCGAAC

AATGGAGAGGACGCAACTGCTGGTCTCACCCACCTGATGATATGGCATTCCAATCTAAATGAT

GCCACATATCAGAGAACGAGAGCTCTCGTGCGTACTGGAATGGACCCAAGGATGTGCTCTCTG

ATGCAAGGGTCAACTCTCCCGAGGAGATCTGGAGCTGCCGGTGCAGCAGTAAAGGGGGTAGG 

GACAATGGTGATGGAGCTGATTCGGATGATAAAACGAGGAATCAACGACCGGAATTTCTGGA

GAGGCGAAAATGGAAGAAGAACAAGGATTGCATATGAGAGAATGTGCAACATCCTCAAAGG

GAAATTCCAAACAGCAGCACAAAGAGCAATGATGGATCAAGTGCGAGAGAGCAGAAATCCT

GGGAATGCTGAAATTGAAGATCTCATTTTTCTGGCACGGTCTGCACTCATCCTGAGAGGATCA

GTGGCCCATAAGTCCTGCTTGCCTGCTTGTGTGTACGGACTTGCGGTGGCCAGTGGATATGAC

TTTGAGAGAGAAGGGTACTCTCTGGTTGGAATAGATCCTTTCCGCCTGCTTCAAAACAGCCAG

GTCTTTAGTCTCATTAGACCAAATGAGAATCCAGCACATAAGAGTCAATTAGTGTGGATGGCA

TGCCACTCTGCAGCATTTGAGGACCTTAGAGTCTCAAGTTTCATCAGAGGGACAAGAGTGGTC

CCAAGAGGACAGCTATCCACCAGAGGGGTTCAAATTGCTTCAAATGAGAACATGGAGGCAAT

GGACTCCAACACTCTTGAACTGAGAAGCAGATATTGGGCTATAAGAACCAGAAGCGGAGGAA

ACACCAACCAGCAGAGGGCATCTGCAGGACAGATCAGCGTTCAGCCCACTTTCTCGGTACAG

AGAAACCTTCCCTTCGAAAGAGCGACCATTATGGCAGCATTTACAGGAAATACTGAGGGCAG

AACGTCTGACATGAGGACTGAAATCATAAGAATGATAGAAAGTGCCAGACCAGAAGATGTGT

CATTCCAGGGGCGGGGAGTCTTCGAGCTCTCGGACGAAAAGGCAACGAACCCGATCGTGCCT

TCCTTTGACATGAATAATGAAGGATCTTATTTCTTCGGAGACAATGCAGAGGAATATGACAAT

TGA* 

 

Figure 3.5c. Sequencing of NP gene in vector pEFL29. Unique SmaI site is shown in bold. EcoRV 

site (italic) was inserted to facilitate blunt-end ligation. The sequencing primer positions are 

highlighted, while their orientations are indicated by arrows. P7.5 early/late promoter is not 

shown. 
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Clones of recombinant viruses were produced by transfection of 80% confluent primary 

chicken embryo fibroblasts (CEFs), infected with FWPV, with pEFL29/inserts using 

lipofectin. The completely sequenced, highly attenuated FP9 strain of FWPV (Laidlaw 

and Skinner, 2004) was used as the recipient vector. The expression cassette was inserted 

into the viral genome by recombination at the fpv002 locus. Expression of the gene was 

driven by a copy of the Vaccinia virus p7.5 early/late promoter. A copy of the LacZ gene, 

transcribed from the fowlpox P4b late promoter in the opposite direction, served as a 

marker for selection of recombinant viruses. After isolations by six fold plaque 

purification on CEFs using X-Gal selection (blue plaque selection), recombinants were 

checked for presence of the inserted genes by PCR of extracted FWPV genomic DNA 

(Figure 3.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6. Agarose gel showing the presence of AIV genes incorporated into FWPV FP9 

genome confirmed by PCR, using internal primers, after genomic DNA extraction. Recombinant 

FP9 carrying the H5 gene gave a 1695 bp PCR product, FP9 carrying the N1 gene gave a 1350 bp 

product, while FP9carrying the NP gene gave a 1497 bp product. M is a ladder marker. 
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3.3 Construction of recombinant FWPV co-expressing influenza and cytokine 

genes 

3.3.1 Deletion of one HindIII site of pPC1.X vector  

Vector pPC1.X has two HindIII sites located 1274 bp apart from one another. The 

HindIII site located external to the PC-1 (fpv030) open reading frame (ORF) was 

removed so as to obtain a unique HindIII site for cloning inserts within the PC-1 ORF. 

This was achieved by partial digestion of pPC1.X. Firstly, as a trial, 1 μg of pPC1.X was 

digested with 1 U of HindIII, sampling at sequential time intervals (from 5 to 85 minutes) 

prior to agarose gel electrophoresis. Analysis of the products of partial digestion (Figure 

3.7) indicated that 75 minutes offered the optimal yield of singly-cut, linearised product 

so a further 2 μg of pPC1.X was digested  for 75 min using 2 U of HindIII in a total 

volume of 50 μL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Pattern of vector pPC1.X after partial digestion with HindIII at time intervals. The 

band size of interest is 5.6 kbp. M is a ladder marker. Lanes correspond to pPC1.X pattern at 

specifies time intervals (in minutes). 
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After gel electrophoresis, a 5.6 kbp band, which corresponded to the required product, 

was extracted (Figure 3.8). The product was subjected to end repair using Klenow 

polymerase before blunt-end religation to eliminate one HindIII site. Twelve colonies 

were picked after transformation of the product; plasmid DNA was isolated and doubly 

digested with HindIII and NsiI to enable selection of clones with the correct HindIII site 

knocked-out (Figure 3.9). Correct knock-outs displayed 789 bp and 4802 bp products on 

gel electrophoresis, while incorrect knock-outs gave 502 bp and 5098 bp products. Based 

on the figure, recovery of clones digested at the desired site predominated (ten out of 

twelve gave positive knock-outs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Pattern of vector pPC1.X after incomplete digestion with HindIII for 75 minutes. 

Band size of interest is 5.6 kb. M is a ladder marker.  
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Figure 3.9. Screening of vector pPC1.X for the desired HindIII knockout by restriction enzyme 

digestion using HindIII and NsiI. Lanes 1 to 12 are from partially-digested and religated pPC1.X 

clones. The desired knockout gives fragments of 789 bp and 4802 bp in size, while knockout of 

the other site results in 502 and 5098 bp products. M corresponds to a ladder marker. 
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3.3.2 Transdominant selection for recombinant FWPV carrying cytokine genes 

A procedure for eliminating the selectable marker, in this case the Ecogpt gene (E. coli 

guanine phosphoribosyltransferase), from the final recombinant virus was established by 

Falkner and Moss in 1990. It was termed ‘transient dominant selection’ (TDS). They 

showed that, under nonselective condition, ten out of ten vaccinia virus plaques became 

gpt- after only three cycles of plaque picking, and five of these were the required 

recombinants.  The procedure has been used successfully to knockout many FP9 genes 

(Boulanger et al., 1998; Laidlaw et al., 1998; S. Laidlaw and M. A. Skinner, personal 

communication) and to introduce genes for expression (Jeshtadi et al., 2005; M. A. 

Skinner, personal communication). In brief, recombinant viruses containing Ecogpt gene 

were selected in the presence of mycophenolic acid (MPA). In this study, the gene 

marker was incorporated into FP9 genome by homologous recombination with 

derivatives of vector pPC1.X contains inserted IL-15 or IL-12 expression cassettes to the 

FWPV PC1 gene corresponds to ORF 030 of the viral genome (Laidlaw et al., 1998; 

Laidlaw and Skinner, 2004). MPA inhibits inosine monophosphate dehydrogenase, 

leading to arrest of the de novo purine metabolism pathway, and thus wild type FP9 

replication. However, in recombinant FP9 containing Ecogpt, the expression of this gene 

(in the presence of exogenous xanthine and hypoxanthine) permits purine metabolism via 

the salvage pathway, allowing replication. Removal of the gpt marker is desirable, and it 

is achieved spontaneously when MPA selection is lifted, resulting in the production of 

stable viruses, half of which will carry the cytokine genes (S. Laidlaw and M. A. Skinner, 

personal communication). The TDS strategy used in this study is illustrated in Figure 

3.10.  
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Figure 3.10. Transdominant selection strategy for recombinant FWPV. A first recombination 

occurs between the flanking sequence of the FWPV PC1 (fpv030) ORF encoded by vector 

pPC1.X and those in parental FP9. MPA was used to select the unstable intermediate viruses 

containing gpt gene. Removal of MPA selection led to resolution of the recombinants with loss of 

the gpt gene by a second crossover event. The final result was viruses containing either wild type 

PC1 or mutant PC1 with a cytokine gene insert. 
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Refer to page 3.10c       Refer to Figure 3.10b  

3.3.3 Generation and selection of cytokine gene-positive transformants  

The overall strategy of cytokine gene cloning is illustrated in Figure 3.11a, 3.11b and 

3.11c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11a. Cloning of chIL-15 and chIL-12 into vector pEFgpt12S. Vector pGEMT-

Easy/ChIL-15 possessed ampicillin resistant gene, AmpR, pCDNA3.1/ChIL-12 contained 

ampicillin and neomycin resistance genes, AmpR and NeoR, respectively, while pEFgpt12S 

contains kanamycin resistance gene, KanR. IL-15 and IL-12 inserts were cloned upstream of a 

synthetic promoter (S prom) Wittek. VAC P7.5 e/l served as a promoter for the expression of a 

selectable marker, Ecogpt gene. 

PstI/SacII 

PmeI-digested 

IL-12 fragment 

into XbaI end 

repaired-

pEFGPT12S 
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Figure 3.11b. Cloning of chIL-15 with S promoter into vector pPC1.X. Vector pEFgpt12S/ChIL-

15 possessed kanamycin resistant gene, KanR, while pPC1.X contained ampicillin resistant gene, 

AmpR. IL-15 and a synthetic promoter (S prom) Wittek were cloned into vector pPC1.X which 

contained recombination sequences of FWPV PC1 gene (fpv030). VAC P7.5 e/l served as a 

promoter for the expression of a selectable marker, Ecogpt gene. 
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Figure 3.11c. Cloning of chIL-12 with S promoter into vector pPC1.X. Vector pEFgpt12S/ChIL-

12 possessed kanamycin resistant gene, KanR, while pPC1.X contained ampicillin resistant gene, 

AmpR. IL-12 and a synthetic promoter (S prom) Wittek were cloned into vector pPC1.X which 

contained recombination sequences of FWPV PC1 gene (fpv030). VAC P7.5 e/l served as a 

promoter for the expression of a selectable marker, Ecogpt gene. 

Note: The p35 and 

p40 subunit of IL-12 

were fused as p70 in 

the cloning and 

expression strategy 
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Chicken cytokine genes IL-15 and IL-12 were first individually inserted downstream of a 

synthetic/hybrid promoter (a kind gift of the late Dr Rico Wittek) in vector pEFgpt12S, 

by sticky-end or blunt-end cloning, respectively. The promoter–gene cassettes were 

subcloned into recombination vector pPC1.X (see Chapter 2). A 737 bp NsiI to XmaI 

fragment from pPC1.X/IL-12 was excised to achieve balanced lengths for the left and 

right flanks of the PC-1 homology region (data not shown). This was to ensure equivalent 

efficiencies of recombination between both flanks of the insert and the FWPV genome, 

so that progeny of the trans-dominant selection method had equal chances of bearing the 

cytokine expression cassette or not, with no bias for the parental phenotype. All positive 

transformants were confirmed by gel electrophoresis after restriction digests (Figure 

3.12) before being sent for sequencing (Figure 3.13a and 3.13b). 

 

 

 

Figure 3.12. Confirmation of insertion of cytokine genes into vectors pEFgpt12S and pPC1.X by 

restriction enzyme digestion. A) pEFgpt12S carrying IL-15 was digested with EcoRV, giving 

1407 bp and 5794 bp fragments. pEFgpt12S carrying IL-12 was digested with HindIII, giving 

1598 bp and 6312 bp fragments. B) pPC1.X carrying IL-15 and IL-12 were digested with EcoRI. 

IL-15-positive recombinant clones of pPC1.X were identified by products of 460 bp, 1810 bp and 

2825 bp; IL-12-positive clones by 418 bp, 2925 bp and 3195 bp fragments. A 737 bp fragment 

from pPC1.X/IL-12 had been removed previously. M is a ladder marker. 
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AGCTTCCCCGATAAAAATATAGTAGAATTTCATTTTGTTTTTTTCTATGCTATAAATAGGATCC

GATAAAGTGAAAAATAATTCTAATTTATTGCACGGTAAGGAAGTAGAATCATAAAGAATCGA

ATTGCGGCCGCTCCAGAATTCTAGAGCGGCCGCCACCGCGGGAATTCGATT 

ATGCTGGGGATGGCACAGCCAACACAAAACTCTGCCGGAGCACGGAGAAGGCCGGAGAGTC

AGAAAACACATGTGAAAAGTATTTGTCTCCAGTACCAACTGTATCTACTTTTGAACAGCCATT

TCTTTTGCCTTTTAAAGAATAAGACTGGACTAACCATCTTCTTCCTATGTGCTTATGTACCAAA

GACAGAAGCAAATCACTGTAAGTGGTCAGACGTTCTGAAAGATTTGGAGCTGATCAAGACAT

CTGAAGACATTGATGTCAGTTTATATACTGCAAACACATACGAGGATATAGAATGCCAGGAA

CCTGTAATGAGATGTTTTTTTTTAGAGATGAAAGTGATTCTTCACGAATGTGATATCAAAAAA

TGTAGTAGGAAGCATGATGTACGGAACATATGGAAAAATGGAAATGCAAGATTTGCAACTTA

CCAGTTGAATTCCACAACAGCAAAAAAATGCAAAGAATGTGAAGAGTATGAAGAAAAAAATT

TTACAGAATTTATACAGAGTTTTGTAAAGGTTATACAGAGGGAATGCAAAAAATACGCTAACT

AA*AATCACTAGTGAATTCGCGGCCGCCTGCATTCTTTAGATTCTTCTTTTACAGGATACAATG

TATAATTATCACTGTGTATAGACATATCTTCATCGGACTGATATCCATGATCCATAGTGGTACT

ATTTTTCATAGACATTCGTATAAACTAATTACTTAATCCATCATTTTTATTATATATTATTGTTT

GAAAGAAAAAAATACGCGATAAAATAACAATTATTATACTTGATACGAGTTTGAATTCTTATT

TTTCAACAATATCACGT 

 

Figure 3.13a. Sequencing of the IL-15 gene inserted into a derivative of vector pPC1.X. HindIII 

(AGCTT) and NsiI (CACGT) partial restriction sites used for cloning are shown in bold and 

italic. The sequencing primer positions are highlighted, while their orientations are indicated by 

arrows. Forward and reverse primers complementary to pPC1.X are not shown. S promoter 

sequences are highlighted in a darker shade. The AUG start codon is indicated by double 

underlining; the UAA stop codon by an asterisk (*). 
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AGCTTCCCCGATAAAAATATAGTAGAATTTCATTTGTTTTTTTCTATGCTATAAATAGGATCCG

ATAAAGTGAAAAATAATTCTAATTTATTGCACGGTAAGGAAGTAGAATCATAAAGAATCGAA

TTGCGGCCGCTCCAGAATTCTAGAAACGGGCCCTCTAGACTCGAGCGGCCGCC 

ATGTCTCACCTGCTATTTGCCTTACTTTCATTACTTTCCTTTGCTGCCCTTCTGGAAGCACAGTG

GAAACTTAGAGAGAATGTGTATGTCATAGAATCTGAGTGGAACGATGAGACACCAGCTAAAA

AAGTGAAGCTCACCTGTGACACATCTGATGAAGCACTGCCAGTTTACTGGAAAAAGGGAACA

GAACTGAAAGGAACTGGAAAGACTCTGACCACCGAAGTGAAGGAGTTCCCAGATGCTGGCAA

CTACACCTGCCTGTCTGCTAAGACCCACGAGATTATCAGCTACAGTTTCTTTCTCATAACTAAA

GTAGACTCCAATGGGCAAATGATACGGTCAATTCTGAAAAGCTATAAAGAGCCAAGCAAGAC

GTTCTTAAAATGTGAGGCAAAGAACTACTCTGGAATTTTCACATGTTCATGGATGACAGAAAA

TGAGAGTCCAAGTGTGAAGTTCACAATTAGGAGCCTAAAAGGCTCTCAAGGAGATGTAACCT

GCAGCAGCCCTGTGGCTCGCACTGATAAATCTGTGACTGAATACACTGCCCAGTGCCAGAAGG

AAAACTACTGTCCATTTGCCGAAGAGCACCAGCCGACTGAGATGTTCCTGGAGGTCATTGATG

AGGTGGAATATGAGAACTACACTAGTAGCTTCTTCATCAGAGATATCATAAAGCCAGACCCAC

CTCAATGTCAGTATGCAAGCACAAATGGAACTGTGACCTGGACATATCCCAAGACCTGGAGC

ACACCGAAGTCCTACTTCCCTTTGACTTTCAGGGTCAAAGTTGAAAGCACAAAGAAATACAAA

AGCAAGGTTTATGATGCTGATGAGCAGTCTATTCAGATTCCAAAGACTGGGCCAAAAGACAA

GATCTCTGTGCAGGCCAGGGATCGCTATTACAACTCATCCTGGAGTGAGTGGTCCACGCTTTG

CAGA  GGTGGCGGTGGCTCGGGCGGTGGTG 

GATCCGGTGGCGGCGGATCTCTGCCACTTCCTGCCCACAACCTGGCCAAGGGACTCAACTGCT

CCAGGGCGCTGCTGGCCGCTGCAAACGAGGCACTCCTGAAGGTGCAGAAGCAGAGGACGCTG

GGGTTTGAGTGCACCCTTGAAGAGGTCGATCTTGAAGACGTCACCAACAGTCAGAGCAACAC

AATAAAGTCCTGCACGTCTCACGATCCGGGGCCTGGAAACTGCCCCGTACTGGAAAGTTCTAC

TTTAGATATGAGCAAATGCCTGCAGGGGATCTACGAAGACCTGAAAACCTACAAGGCAGAGC

TGGGGAACCTCAAGGATCTGAGGGTGCTGACATCCATTGATGACATGATGCAAGCCCTGCAG

CCCCGCAGCCCAGCCATGCCGCAGCCCTCGCCCAGCACCACCCTTGGCTCCTTCCAGGGCCGC

ATGCGGCTCTGCGGGGTCCTGCACGCCTTCTGCCTGCGCGCAGTCACCATCGGCAGGATGCTG

GGCTACCTGAGTGCCCTCACTGCAGAGATGTAA*AAGCT 

 

Figure 3.13b. Sequencing of the fusion IL-12 (p70) gene inserted into a derivative of vector 

pPC1.X. IL-12β (p40) subunit is separated from IL-12α (p35) by 25 nucleotides, displayed in 

italic. HindIII (AGCTT) and NsiI (CACGT) partial restriction sites used for cloning are shown in 

bold and italic. The sequencing primer positions are highlighted, while their orientations are 

indicated by arrows. Forward and reverse primers complementary to pPC1.X are not shown. S 

promoter sequences are highlighted in a darker shade. The AUG start codon is indicated by 

double underlining; the UAA stop codon by an asterisk (*). 
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3.3.4 Introduction of cytokine expression cassettes into rFWPV 

The cytokine expression cassettes, driven by the S promoter obtained from the 

pEFgpt12S vector, were inserted into rFWPV already carrying avian influenza genes by 

recombination at a second non-essential site, the PC1 locus (fpv030; Laidlaw et al., 1998; 

Skinner, unpublished). Following three rounds of passage in CEFs, in the presence of 

mycophenolic acid (MPA), recombinant viruses carrying the gpt gene (driven by a copy 

of the Vaccinia virus p7.5 early/late promoter) were isolated. Dilutions of viruses from 

the third passage were plaqued onto 60 mm dishes in the absence of MPA. Ten plaques 

were picked into serum free DMEM (500 μL). Plaque-purification, using ten plaques 

each time, was repeated several times until the originally gpt+ recombinant clones had 

lost the gpt gene spontaneously. This was verified by failure of the virus (at high 

concentration) to replicate in the presence of MPA.  

 

When intermediate gpt+ recombinant viruses lose the gpt gene, they resolve either to the 

desired recombinant virus or revert back to parental virus (losing the cytokine inserts) so, 

PCR analysis of their viral DNA genomes was carried out after every stage of plaque-

purification, to assay for retention of the cytokine gene. A flanking primer set was 

applied to screen IL-12-recombinant clones.  Recombinant FP9/AIV genes showed a 984 

bp PCR product, while introduction of IL-12 into the genome generated a 1934 bp 

product (Figure 3.14). 
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Figure 3.14. Screening extracted FP9 virus genome for the incorporated IL-12 gene using PCR. 

Primers used were pPC1.X-F and pPC1.X-R. Intermediate viruses demonstrate two fragments, 

984 bp (without IL-12) and 1934 bp (IL-12 integrated). Recombinant FP9 viruses which lost the 

IL-12 insert was indicated by a single 984 bp fragment. Resolved recombinant FP9 to mutant 

carrying IL-12 was illustrated by a single 1934 bp fragment, alongside the IL-12 positive control 

product. M is a ladder marker. 
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In contrast to the IL-12 screening, the use of flanking primer sets was inappropriate for 

IL-15-clone screening, as the PCR product size for IL-15-positive clones was not 

sufficiently different to that for clones without inserts (Figure 3.15). Therefore, the 

screening of IL-15-carrying clones used primers external (pPC1.X-F) and internal (IL-15-

R) to the inserted genes (the latter resulting in PCR products of 700 bp, exclusively for 

recombinant clones). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Screening of extracted FP9 virus genome for the incorporated IL-15 gene using 

PCR. Primers used were pPC1.X-F and IL-15-R. No PCR product was observed for recombinant 

FP9 clones lacking the insert. Recombinant FP9 clones with IL-15 gene integrated showed a 700 

bp PCR fragment, correspond to the IL-15 positive control product, obtained using plasmid 

template. M is a ladder marker. 

 

 

 

 

 



 118 

Despite the rapid loss of gpt as described by Falkner and Moss (1990) (Section 3.3.2), 

only two of the putative recombinant viruses, FP9/H5/IL-15 and FP9/N1/IL-12, 

successfully resolved after five and three plaque purifications, respectively. The other 

putative recombinant viruses (FP9/H5/IL-12, FP9/N1/IL-15, FP9/NP/IL-15 and 

FP9/NP/IL-12) were still in their intermediate forms even after the sixth plaque 

purification. The reasons for this were not further explored. It is possible that the original 

insertion was aberrant, occurring via non-homologous recombination at a non-specific 

site. Consequently, the wild-type insertion site would always remain; the intermediate 

recombinant can never be resolved by the normal second round of homologous 

recombination shown in Figure 3.10. The disrupted insertion site (bearing the cytokine 

expression cassette), carried on the aberrantly inserted recombination plasmid, could 

either be lost at the same time as gpt was lost, or (as appears to be the case) might remain, 

especially if the aberrant insertion was at a non-essential site. Screening the initial 

intermediate recombinants to demonstrate bona fide insertion at the correct site before 

progressing to isolate resolvants might have precluded this problem.  

 

Time constraints precluded restarting the selection process so, as there were indications 

that the unresolved clones were stable, they were allowed to grow in the presence or 

absence of MPA (+MPA or –MPA) so that their stability could be assessed. Stocks of the 

recombinant viruses were prepared and titrated. The final virus titres are shown in Table 

3.1. 
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Table 3.1. Titration of constructed recombinant viruses 

Virus Final concentration (PFU/mL) 

WT FP9 1.50 x 10E6 

FP9/H5 1.48 x 10E6 

FP9/N1 1.45 x 10E7 

FP9/NP 3.45 x 10E6 

FP9/H5/IL-15 1.58 x 10E6 

FP9/H5/IL-12gpt +MPA 8.80 x 10E5 

FP9/H5/IL-12gpt –MPA 4.60 x 10E5 

FP9/N1/IL-15gpt +MPA 3.03 x 10E6 

FP9/N1/IL-15gpt –MPA 3.50 x 10E5 

FP9/N1/IL-12 3.46 x 10E6 

FP9/NP/IL-15gpt +MPA 2.07 x 10E6 

FP9/NP/IL-15gpt –MPA 6.20 x 10E5 

FP9/NP/IL-12gpt +MPA 6.20 x 10E6 

FP9/NP/IL-12gpt –MPA 9.70 x 10E5 

 

3.3.5 Expression of avian influenza (AIV) and cytokine gene inserts by rFWPV 

In order to analyze expression of the AIV and cytokine genes, SDS-PAGE and western 

blotting were carried out for lysates of CEFs infected with the recombinant viruses. 

Additional indirect immunofluorescence test, IFAT, was performed to ascertain AIV H5 

and N1 expressions. One polyclonal antiserum for H5, one polyclonal antiserum for N1 

and three antibodies for NP were used as probes for the proteins in western blot, while 

one polyclonal antiserum each was used for H5 and N1 in IFAT. The list of antibodies is 

in Table 3.2.  
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Table 3.2. Polyclonal or monoclonal antibodies used in this study 

Name Analysis Description Dilution Antigen Source 

ab62587  Western 

blot 

Goat 

polyclonal 

1:1000 Avian Influenza A 

haemagglutinin 5 

(synthetic peptide 

corresponding to 12 amino 

acids near the amino 

terminus) 

Abcam 

ab70077 Western 

blot, 

IFAT 

Rabbit 

polyclonal 

1:1000 Avian Influenza A 

haemagglutinin 5 

(synthetic peptide 

corresponding to 14 amino 

acids near the centre of 

H5N1 strain, 100% 

homology to 

A/China/GD01/2006)   

Abcam 

ab36566  Western 

blot 

Rabbit 

polyclonal 

1:1000 Avian Influenza A 

neuraminidase 1 (synthetic 

peptide, corresponding to 

15 amino acids at the C 

terminal) 

Abcam 

ab70759 Western 

blot, 

IFAT 

Rabbit 

polyclonal 

1:1000 Avian Influenza A 

neuraminidase of 

A/H5N1/Vietnam/1203/20

04 

Abcam 

ab25921  Western 

blot 

Rabbit 

polyclonal 

1:500 Avian Influenza 

nucleoprotein (synthetic 

peptide corresponding to 

amino acids 58-77) 

Abcam 

2F6C9  Western 

blot 

Mouse 

monoclonal 

1:2000 Avian Influenza 

nucleoprotein  

Barclay, 

Imperial 

College 

5D8  Western 

blot 

Mouse 

monoclonal 

1:500 Avian Influenza 

nucleoprotein  

Santa 

Cruz 

HC8  Western 

blot 

Mouse 

monoclonal 

1:1000 Avian interleukin 12  Kaiser, 

IAH 

β-

galactosi

dase 

Western 

blot 

Mouse 

monoclonal 

1:5000 E. coli β-galactosidase near 

the C terminal 

Promega 
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3.3.5.1 Analysis of nucleoprotein expression by rFWPV. 

Nucleoprotein (NP) accumulates in the nucleus upon AIV infection. Therefore, a strong 

buffer, RIPA (which contains three types of detergent), was used for cell lysis so as to 

lyse the nuclear membrane to release nuclear proteins. Initially 2F6C9, a monoclonal 

antibody provided by Prof Barclay, was used as a primary antibody at a dilution of 

1:1000. A band of ~56 kD (as expected based on the predicted molecular weight of native 

NP) was observed for all the samples, including the negative controls (uninfected and 

parental FP9-infected CEFs). Indeed it was faintest in the positive control (RG14 

recombinant influenza virus). No such band was observed in the Marker lanes (Figure 

3.16). The same outcome was observed when 5D8 antibody, purchased from Santa Cruz 

Biotechnology, was used at dilution of 1:500 (Figure 3.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Western blot analysis of a mouse anti-nucleoprotein monoclonal antibody, 2F6C9 

(kindly supplied by Prof Barclay). Lanes showed lysates of uninfected CEF, or CEF infected with 

different viruses. M is a protein marker. 
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Figure 3.17. Western blot analysis of a mouse anti-nucleoprotein monoclonal antibody, 5D8 

(Santa Cruz Biotechnology). Lanes showed lysates of uninfected CEF, or CEF infected with 

different viruses. M is a protein marker. 

 

As the observed band would seem to be a cross reacting chicken protein, the specificity 

of the 5D8 monoclonal antibody was investigated further. Three different avian cell lines, 

CEF, DF1 and QT-35, were cultivated for 48 hours without any infection. DF1 is an 

immortal chicken embryo fibroblast cell line developed using conventional passage 

techniques by Douglas Foster in 1998 (Schaefer-Klein et al., 1998), while QT-35 is a 

continuous cell line of Japanese quail origin. Three different types of sera, new-born 

bovine serum (GIBCO), fetal bovine serum (Autogen BioClear) and fetal bovine serum 

(BioSera), were included in the cell medium (DMEM), separately. The supplemented 

cells were compared with cells grown in DMEM without any serum. The aim of this 

experiment was to evaluate the band pattern of other uninfected avian cells treated with 

the same primary antibody, and to investigate whether a serum plays a role in blocking 

detection of the band by the antibody. All of these uninfected samples generated a ~56 
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kD protein band, although two minor bands (possibly degradation products) with sizes of 

less than 50 kD were evident with QT-35 lysates. The constant level of labelling suggests 

that the nature of the cultivation sera does not affect detection of the band by each 

antibody (Figure 3.18), suggesting that the protein is unlikely to be a serum protein and is 

more likely to be a cellular protein. As yet, the comparison has not been extended to non-

avian cell lines. 

 

 

 

 

 

 

 

 

 

 
Figure 3.18. Western blot analysis of a mouse anti-nucleoprotein monoclonal antibody, 5D8 

(Santa Cruz Biotechnology). Lanes 1 showed particular cells grown in DMEM without serum. 

Lanes 2 showed particular cells grown in DMEM with NBBS (GIBCO). Lanes 3 showed 

particular cells grown in DMEM supplemented with FBS of Autogen Bioclear. Lanes 4 showed 

particular cells grown in DMEM with FBS from BioSera. M is a protein marker. 

 

A further experiment was performed using ab25921 (diluted at final concentration of 1 

μg/mL), acquired from Abcam. Immunogen for this antibody is a synthetic peptide 

corresponding to amino acids 58-77 of AIV NP. However, the result was a relatively 

consistent band pattern, including several strong bands (at ~95 kD & ~63 kD) observed 

across the recombinants as well as positive or negative controls. No band unique to the 

recombinants was observed, though there was a band at ~60 kD common only to lanes 

carrying lysates infected with FP9 (WT or recombinant) (Figure 3.19). The ~56kD band 
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seen with 5D8 was not prominent. Once again, the pattern was not seen in the Marker 

lanes, though some faint, diffuse bands were present.  

 

These results were unexpected and are not easy to explain. In none of these cases has a 

second antibody-only control yet been performed, to ascertain whether the cross 

reactivity is due to the primary or secondary antibody. A simple explanation for these 

results might be a failure to block adequately, or to wash adequately, so that low affinity 

cross-reactions are observed. Clearly ab25921 can distinguish between FP9-infected and 

uninfected cell lysates (via the ~60 kD band; Figure 3.19), even though the antiserum is 

claimed to be specific for an NP peptide. A different cross-reactive band was seen with 

DF1, at ~120 kD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Western blot analysis of a mouse anti-nucleoprotein monoclonal antibody, ab25921 

(Abcam). Lanes showed lysates of uninfected CEF, DF1 and QT35, or CEF infected with 

different viruses. M is a protein marker. 
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3.3.5.2 Analysis of H5 expression by rFWPV. 

In order to detect H5 expression by the recombinants, ab62587 (Abcam) was used as a 

primary antibody at a final concentration of 1 μg/mL. The immunogen for this antibody 

was a synthetic peptide corresponding to 12 amino acids near the amino terminus (N-

terminus) of the AIV HA protein. While the predicted size of unglycosylated H5 protein 

is 64 kD, the positive control (RG14-infected CEF cells) displayed a distinct protein size 

of ~80 kD, the difference probably being due to glycosylation (though this was not 

checked by the use of inhibitors or glycosidases). No such expression was observed for 

any of the rFWPV (Figure 3.20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Western blot analysis of a goat anti-haemagglutinin polyclonal antibody, ab62587 

(Abcam). Lanes showed lysates of uninfected CEF, DF1 and QT35, or DF1 infected with 

different viruses. M is a protein marker. 
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A subsequent analysis was performed using Abcam's ab70077, diluted to a final 

concentration of 1 μg/mL. The immunogen for this rabbit polyclonal primary antibody 

was a synthetic peptide corresponding to 14 amino acids near the middle of AIV H5 

strain A/China/GD01/2006. A commercial kit using the chromogenic substance, 

WesternBreeze (Invitrogen) was used to replace the conventional western blot procedure. 

A faint band at ~50 kD was observed for H5 recombinant, none for uninfected cell lysate 

and negative control (Figure 3.21). Reproducibility was difficult due to limited virus 

stock. As an alternative approach, IFAT was performed using the same antibody. 

Fluorescent signals were detected only for CEF infected with H5 recombinant, no 

reactivity was observed for uninfected or negative control (WT FP9)-infected CEF 

(Figure 3.22).  

 

 

Figure 3.21. Western blot analysis using a rabbit anti-haemagglutinin polyclonal antibody, 

ab70077 (Abcam). Lanes showed lysates of uninfected CEF, CEF infected with wild type FP9 

and CEF infected with recombinant FP9/H5. M is a protein marker. Blot was presented in an 

original version (A) or an edited version, to increase the contrast (B). Blot of cell lysates was 

darker than the Marker due to the final staining procedure using a chromogenic reagent (purple).  

 

(A) (B) 
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Figure 3.22. Indirect immunofluorescence assay, IFAT, of H5 recombinant. CEF cell cultures 

were grown until 80% confluent on coverslips, and either remained uninfected (A), infected with 

wildtype FP9 (B) or infected with recombinant FP9 carrying H5 gene (C). After 19 hours, the 

cells were incubated with Abcam's ab70077 primary antibody for 2 hours, before counterstained 

with a fluorescein-labeled anti-rabbit antibody, for an hour. (i) showed CEF under visible light, 

while (ii) showed cells under UV light. Positive fluorescence was observed only in C(ii). The 

images did not represent 80 % of cell confluency due to repeated washing of the cells (without 

fixing) in IFAT procedure. 
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3.3.5.3 Analysis of N1 expression by rFWPV. 

To examine the expression of N1, we used the ab36566 primary antibody (Abcam). The 

immunogen for this antibody was a synthetic peptide, corresponding to 15 amino acids at 

the C terminus of AIV NA. The predicted size of the unglycosylated N1 protein is 49 kD, 

based on its deduced amino acid sequence. However, a faint, diffuse ~60 kD band, 

instead of 49 kD, was present in the positive control, suggesting a glycosylated product. 

Besides the band seen in the positive control, the analysis revealed no unique  protein 

band among the recombinant virus lysates. Lysates from DF1s infected with FP9 (both 

WT and recombinant), but not from uninfected DF1s, generated two strong bands of ~65 

kD and ~70 kD (presumably FWPV proteins), with no sign of the N1 band (Figure 3.23). 

A band at about 42 kD was present in all samples, infected or uninfected, CEF, DF1 or 

QT35 (in which it was stronger and accompanied by an equally strong band at 45 kD), 

but not in the Marker lanes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Western blot analysis of a rabbit anti-neuraminidase polyclonal antibody, ab36566 

(Abcam). Lanes showed lysates of uninfected CEF, DF1 and QT35, or DF1 infected with 

different viruses. M is a protein marker. 
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  M 
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Further western blot analysis was performed using WesternBreeze (Invitrogen). Abcam's 

rabbit polyclonal, ab70759, was diluted at a final concentration of 1 μg/mL. Immunogen 

for this primary antibody is a neuraminidase of influenza A/H5N1/Vietnam/1203/2004. A 

prominent band was observed at ~48 kD, which corresponding to the predicted 

unglycosylated size, 49 kD (Figure 3.24). Using the same primary antibody in IFAT, 

fluorescent signals were detected only for N1 recombinants, not for the negative controls 

(Figure 3.25). 

 

 

 

 

Figure 3.24. Western blot analysis of a rabbit anti-neuraminidase polyclonal antibody, ab70759 

(Abcam). Lanes showed lysates of uninfected CEF, CEF infected with wild type FP9 and CEF 

infected with recombinant FP9 carrying N1 gene. M is a protein marker. Blot was presented in an 

original version (A) or an edited version, to increase the contrast (B). Blot of cell lysates was 

darker than the Marker due to the final staining procedure using a chromogenic reagent (purple).  

 

 

 

 

(A) (B) 
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Figure 3.25. Indirect fluorescent antibody test of N1 recombinant. CEF cell cultures were grown 

until 80% confluent on coverslips, and either remained uninfected (A), infected with wildtype 

FP9 (B) or infected with recombinant FP9 carrying N1 gene (C). After 19 hours, the cells were 

incubated with Abcam's ab70759 primary antibody for 2 hours, before counterstained with a 

fluorescein-labeled anti-rabbit antibody, for an hour. (i) showed CEF under visible light, while 

(ii) showed cells under UV light. Positive fluorescence is observed only in C(ii). The images did 

not represent 80 % of cell confluency due to repeated washing of the cells (without fixing) in 

IFAT procedure. 
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In conclusion, expression of H5 and N1 by rFWPV has been detected using a commercial 

western blotting kit and IFAT.  However, the RG14 positive control was not available for 

these analyses. It is not clear whether the difficulties experienced in AIV protein 

detection were a function of the antigens used to produce the primary antibody, affecting 

specificity, or a technological issue relating to the sensitivity of detection method.  

 

There are several possible reasons for the inability to detect expression of H5 and N1 by 

the recombinants using conventional western blotting procedures. Firstly, the viruses 

might not actually be recombinant. This possibility was excluded by western blotting 

with an antibody against β-galactosidase protein (Promega), expressed by the LacZ 

selectable marker carried on pEFL29 (into which the AIV genes were inserted). A band 

of ~130 kD, similar to the predicted size of β-galactosidase expressed by pEFL29 (120 

kD), was detected in FP9 recombinant for H5, N1 and NP. No band was observed for 

FP9 WT nor for uninfected CEF (Figure 3.26). Confirmation of the presence of the 

respective AIV genes by PCR therefore confirms that the viruses are actually 

recombinant and have integrated the respective expression cassettes from the 

corresponding pEFL29 derivatives. Naturally it does not per se demonstrate the function 

of the expression cassettes. 
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Figure 3.26. Western blot analysis of a mouse anti-β-galactosidase monoclonal antibody 

(Promega). Lanes showed lysates of uninfected CEF or CEF infected with different viruses. M is 

a protein marker. 

 

 

 

The second possibility, and most likely, is that the actual level of expression (or, more 

precisely, the steady state level) was below the detectable limit. This would be somewhat 

surprising, given that the VACV p7.5 promoter used to express recombinant proteins  in 

pEFL29 is, though not the strongest poxvirus promoter available, tried and tested with a 

good ‘track record’ of success for many diverse proteins. Increasing the MOI of the 

recombinant viruses might possibly should boost the expression to a level that could be 

detected. 

 

Thirdly, mutations in the PCR-generated AIV gene inserts might lead to missense or 

frame-shift mutations, leading to truncation, loss of recognition, altered glycosylation or 

folding of the polypeptides. The resulting products might then have been masked by the 

cross-reacting bands seen in the western blot for N1, or might have become unstable 

leading to rapid turnover and undetectable steady-state levels. However, sequencing 

demonstrated that the genes’ start codons were in-frame, that there were no insertion or 



 133 

deletion mutations in the sequences that could disturb the reading frames and that there 

were no non-coding changes. Hence, these possible explanations could be rejected. 

 

In the case of nucleoprotein detection, the specificity of the assay remains to be 

established, with cross-reactivity towards a protein of unknown nature and source 

obscuring the position expected for NP.  Curiously the presence of NP in the positive 

control sample (RG14 in CEF) has not been unambiguously demonstrated.  

 

3.3.5.4 Analysis of chicken IL-12 expression by rFWPV. 

Monoclonal antibody HC8, specific for the chicken IL-12 p70 heterodimer (provided by 

Dr Pete Kaiser; Institute for Animal Health, Compton), was used to monitor for the 

presence of the soluble secreted chicken IL-12 protein 70 kD fusion protein in 

supernatants from infected and uninfected CEF.  A doublet of bands (the upper band 

being fainter) was observed at about 70 kD for five recombinants (two H5/IL-12, one 

N1/IL-12 and two NP/IL-12) but not for uninfected CEF nor for FP9 WT (Figure 3.27). 

There were differences between the levels of IL-12 observed for the recombinants; it is 

not yet known how reproducible this is. 
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Figure 3.27. Western blot analysis of a mouse anti-chicken IL-12 monoclonal antibody, HC8 (Dr 

Kaiser, IAH). Lanes showed supernatants of uninfected CEF or CEF infected with different 

viruses. M is a protein marker.  

 

 

 

3.3.5.5 Analysis of chicken IL-15 expression by rFWPV. 

Although one resolved (FP9/H5/IL-15) and two unresolved recombinants containing IL-

15 (FP9/N1/IL-15 and FP9/NP/IL-15) have been obtained, we have so far been unable to 

screen for expression of IL-15 protein as no antibodies are currently available. However, 

bioactive recombinant chicken IL-15 expression has
 
been described (Lillehoj et al., 

2001), where the observed protein size corresponds to the deduced size of the studied 

chicken IL-15 (22 kD).  
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3.4  Summary 

Recombinant FWPVs coexpressing AIV genes, H5 or N1, and chicken cytokine genes, 

IL-15 or IL-12, have been constructed using homologous recombination at two non-

essential sites in the genome of FWPV strain FP9. Antibodies against chicken IL-15 are 

unavailable but expression of H5, N1 and IL-12 proteins was verified using western 

blotting and IFAT. The available recombinants after the verifications are FP9/H5 

(rFWPV/H5), FP9/N1 (rFWPV/N1), FP9/H5/IL-15 (rFWPV/H5/IL-15) and FP9/N1/IL-

12 (rFWPV/N1/IL-12). These recombinants were prepared ready to be inoculated into 

chickens to evaluate host immune responses. 

 

Initial plans to include NP recombinants in animal trials were aborted due to the inability 

to specifically detect NP expression in avian cells, and failure to obtain resolved NP 

recombinants carrying either IL-15 or IL-12, during the time that recombinants were 

being constructed at Imperial College London. 
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CHAPTER 4 

Co-immunostimulatory effect of IL-15 co-expressed in H5-recombinant fowlpox 

viruses on host immune responses 

 

4.1 Introduction  

Cell-mediated immune (CMI) responses of mice against viral infections have been 

widely described. However, the functional significance of CD4+ and CD8+ T cells as 

antiviral effectors in chickens needs more elucidation. In general, T cells displaying CD4 

membrane glycoprotein at their surface, CD4+, are T helper (Th) cells, while those 

presenting CD8 marker, CD8+, function as T cytotoxic (Tc) cells. Th cells differentiate 

into memory cells or effector cells that enable or "help" the activation of B cells, Tc cells, 

macrophages and various other immune cells.  Effector Th cells are divided into Th1 and 

Th2. While Th1 produce IFN-γ, which activates macrophages for CMI responses, the 

Th2 cell response results in the activation of B cells to produce antibodies that are able to 

neutralise (direct effect) or to opsonise (indirect effect) antigens, leading to humoral 

immune responses. 

 

In in vivo studies conducted at Animal Experimental House, Faculty of Veterinary 

Medicine, UPM, Malaysia, two recombinant vaccines, rFWPV/H5 and rFWPV/H5/IL-

15, the construction of which (at Imperial College London), has been described in 

Chapter 3, were inoculated into one-day-old SPF chicks, with parental, wild type (WT) 

FWPV strain FP9 and PBS-mock inocula implemented as controls. The experiments were 

carried out according to the international Guide for the Care and Use of Laboratory 

Animals (ILAR, 1996), under the approval of the local Institutional Animal Care and Use 
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Committee (IACUC) of UPM (Reference No.: UPM/FPV/PS/3.2.1.551/AUP-R72). Use 

of the rFWPV in laboratory of UPM was in accordance to guidelines from the local 

Biosafety Department, at Category 1 (elsewhere known as biosafety level, BSL, 1). 

 

 Upon inoculation of rFWPV carrying the H5 gene, infection of host cells will result and 

H5 will be expressed, along with FWPV proteins. Antigen presenting cells such as 

macrophages are responsible for identifying and engulfing virus-infected cells. These will 

then be lysed and then digested and peptides from the digested proteins will be 

transported to the cell surface by Class II MHC proteins for display to T or B lymphocyte 

cells. Presentation of H5 to T cells activates B cells to induce specific H5 antibodies 

which can be measured by haemagglutination inhibition test.  

 

IL-15 is an immune-enhancing cytokine with profound effects on CD8 memory T cells, 

NK cells, B cells, mast cells and cytokine-chemokine networks. The ability of IL-15 to 

induce the expression of IFN-γ in both NK and T cells emphasizes its significant role in 

promoting Th1 response. Although chicken IL-15 was cloned and characterized in 1999 

(Choi et al., 1999), no subsequent study has been reported since.  It therefore seemed 

valid to investigate the effect of IL-15 co-expressed in rFWPV/H5 on host CMI response, 

in comparison to rFWPV expressing H5 gene alone, as a major aim of this study. 

Although the level of IL-15 was not assessed, populations of CD4+ and CD8+ cells was 

measured as indicator of CMI response elicited by the cytokine. 
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Wing web puncture and brushing of chicken's exposed-follicles with the vaccine have 

been universally accepted in commercial FWPV vaccination (Mockett et al., 1990; Boyle 

and Heine, 1994). However, we inoculated our vaccines (10
5
 PFU in 100 μL) 

subcutaneously at the nape of the chicks, without any booster. This approach standardizes 

the vaccine dose as well alleviates inoculation of one-day-old chicks. Qiao et al. (2009) 

have demonstrated that rFWPV carrying HA and NA genes given by this subcutaneous 

route can induce HI antibodies and protect chickens against challenge with a pathogenic 

H5N1 strain A/Goose/Guangdong/1/96 (GS/GD/96), as efficiently as if they were given 

by wing web puncture or intramuscular injection. 

 

4.2 Results 

4.2.1 Humoral immune responses following rFWPV/H5 and rFWPV/H5/IL-15 

vaccination 

To measure H5 antibody levels in host serum samples post vaccination, the 

haemagglutination inhibition (HI) test was performed using influenza virus H5N2 strain 

A/Duck/Malaysia/8443/2004 as a heterologous antigen. The nucleotide (89.0 %) and 

amino acid (91.1 %) identities between HA genes of the agglutinating antigen virus and 

the vector insert strain (A/Chicken/Malaysia/5858/2004) were determined by pair-wise 

sequence alignment using BioEdit Version 7.0.5.3 (Figure 4.1).  

 

As presented in Table 4.1, none of the nine control chickens inoculated with PBS or WT 

FP9 showed any evidence of HI antibody responses. Four chickens vaccinated with 

rFWPV/H5 started to develop HI antibody titre at 3 weeks post inoculation (p.i.), ranging 
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from a low log2 1 to log2 32. A week later, the titres had decreased in two birds (log2 32 

to 0, and log2 32 to log2 16), and increased in one bird (log2 1 to log2 8). Another bird 

elicited a constant HI titre of log2 8 at both timepoints. No antibodies were detected at 

Week 5. 

 

In the rFWPV/H5/IL-15-vaccinated group, two chickens developed antibodies as early as 

2 weeks post-vaccination (log2 1 and log2 4). At Week 3, six other birds elicited HI 

antibody titre ranging from log2 1 to log2 16. A week later, the titre in one bird remained 

constant at log2 16. Three birds demonstrated a decrease in titre to log2 4, while titres in 

another four birds dropped to undetectable levels. At Week 5, no HA-specific antibodies 

were detected for any birds.  

 

Mean HI titres, in log2, of all groups were calculated for general comparison (Table 4.2). 

The data showed that H5 antibodies are induced at the highest level at Week 3 in both 

recombinant vaccine-treated chickens. However, the antibodies were undetectable at 

Week 5 onwards. In summary, fewer chickens in rFWPV/H5 elicited H5 antibodies 

compared to rFWPV/H5/IL-15. Moreover, contrary to expectations, chickens vaccinated 

with rFWPV/H5 developed antibodies one week later than those vaccinated with 

rFWPV/H5/IL-15. 
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                 10        20        30        40        50        60            

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   MEKIVPLLAIISLVKGDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCSL  

ΔH5N1       .....L.F..V....S..........................................D.  

 

                 70        80        90       100       110       120         

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   NGVKPLILGDCSVAGWLLGNPMCDIFLNVPEWSYIVEKDKTVNGLCYPGDFNDYEELKHL  

ΔH5N1       D.......R...............E.I...........ANP..D........A.......  

 

                130       140       150       160       170       180      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   LSSTNHFEKIQIIPRNSWSNHDASSGVSAACPYNGKSSFYRNVVWLIKKQNVYPTIKRSY  

ΔH5N1       ..RI..........KS...S.E..L...S....Q.....F.........NST........  

 

                190       200       210       220       230       240      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   NNTNQEDLLVLWGIHHPNDAAEQTKLYQNPNTYVSVGTSTLNQRSVPEIATRPKVNGQSG  

ΔH5N1       ..............................T..I..........L..R....S.......  

 

                250       260       270       280       290       300      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   RMEFFWTILKPNDAINFESSGNFIAPEYAYKIVKKGDSAIMKSELEYGNCNTKCQTPMGA  

ΔH5N1       ...................N..................T.....................  

 

               310       320       330       340       350       360      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   INSSMPFHNIHPLTIGECPKYVKSDRLVLAKGLRNVPQRETR----GLFGAIAGFIEGGW  

ΔH5N1      .............A..........N.....T....S......----..............  

 

               370       380       390       400       410       420      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   QGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGITNKVNSIIDKVNTQFEAVGKEFNNLE  

ΔH5N1       ......R..........................V..........M........R......  

 

               430       440       450       460       470       480      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   RRIENLNKKMEDGFLDVWTYNAELLVLMENERTLYFHDSNVKNLYDKVRLQLRDNAKELG  

ΔH5N1       ..................................D.........................  

 

               490       500       510       520       530       540      

            ....|....|....|....|....|....|....|....|....|....|....|....| 

Duck/H5N2   NGCFEFYHKCDNECMESVRNGTYNYPQYSEEARLNREEISGVKLESMGTYQILSIYSTVA  

ΔH5N1      .........R........S....D..........K...........I.I...........  

 

               550       560        

            ....|....|....|....|....| 

Duck/H5N2   SSLALAIMVAGLSFWMCSNGSLQCR  

ΔH5N1      .............L...........  

 

 

Figure 4.1. Haemagglutinin (HA) amino acid identities between the studied, mutated H5 of   

A/Chicken/Malaysia/5858/2004, denote ΔH5N1, and H5N2 strain A/Duck/Malaysia/8443/2004, 

represented by Duck/H5N2. Duck/H5N2 is used as heterologous antigen for haemagglutination 

inhibition (HI) test. The sequences were determined by pair-wise sequence alignment using 

BioEdit Version 7.0.5.3. Nucleotide identities between both sequences are not shown. 
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Table 4.1. HI titre, log2, of serum samples obtained from chickens immunized by different 

vaccines, in one week interval, for seven weeks. 

 
Vaccines Number 

of 

chickens 

Day, post inoculation 

7 14 21 28 35 42 49 

PBS-treated 

control 

group 

1 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 

WT FP9 1 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 

rFWPV/H5 1 0 0 32 0 0 0 0 

2 0 0 32 16 0 0 0 

3 0 0 1 8 0 0 0 

4 0 0 8 8 0 0 0 

5 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 

rFWPV/H5/ 

IL-15 

1 0 1 16 4 0 0 0 

2 0 0 16 16 0 0 0 

3 0 0 16 4 0 0 0 

4 0 4 8 4 0 0 0 

5 0 0 8 0 0 0 0 

6 0 0 1 0 0 0 0 

7 0 0 8 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 16 0 0 0 0 
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Table 4.2. Mean of haemagglutination inhibition (HI) titre, log2, of sera from immunized 

chickens upon weekly bleeding. 

ND indicates undetected titre. Each value represents the means ± SEM. 

*The proportion of individual chickens which induce detectable HI antibody titre, to total 

chickens in each group. 
 

 

 

 

 

 

 

 

 

 

 

 

Group Day, post immunization 

 7 14 21 28 35 42 49 

Control ND 

(0/9)* 

ND 

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

WT FP9 ND  

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

ND 

(0/9) 

ND  

(0/9) 

ND 

(0/9) 

rFWPV/H5 ND  

(0/9) 

ND 

(0/9) 

8.11±4.60 

(4/9) 

3.56±1.94 

(3/9) 

ND 

(0/9) 

ND  

(0/9) 

ND 

(0/9) 

rFWPV/H5/IL-

15 

ND  

(0/9) 

0.56±0.44 

(2/9) 

9.89±2.16 

(8/9) 

3.11±1.74 

(4/9) 

ND 

(0/9) 

ND  

(0/9) 

ND 

(0/9) 
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4.2.2 Cell-mediated immune response following rFWPV/H5 and rFWPV/H5/IL-15 

vaccination 

Immune competence of a host can be evaluated from several parameters, including 

circulating T lymphocyte populations. Typical CD4+ and CD8+ T lymphocyte cell 

enumeration is via flow cytometric analysis, using fluorescent-conjugated monoclonal 

antibodies that recognise expressed cell surface markers. In our immunophenotypic flow 

cytometry analysis, isolated lymphocytes were triple-stained with anti-chicken CD3 (R-

Phycoerythrin(PE)-conjugated), anti-chicken CD4 (Fluorescein(FITC)-conjugated) and 

anti-chicken CD8 (Peridinin Chlorophyll Protein Complex (PerCP)-Cy5-conjugated) 

monoclonal antibodies, allowing eight cell subsets to be characterized concurrently; 

CD3-CD4-, CD3-CD4+, CD3+CD4-, CD3+CD4+, CD3-CD8-, CD3-CD8+, CD3+CD8-, 

CD3+CD8+. The estimation of CD4+ and CD8+ T cells captured by the cytometer, in 

percentages, was determined by the measurement of T cells having CD3+CD4+ or 

CD3+CD8+ receptors. We assume that mature and functional CD4+ and CD8+ T cells 

are constantly bound to T-cell receptor-CD3 complex. A typical flow cytometric pattern 

of CD4+ and CD8+ T cell that present positive signals is shown in Figure 4.2. 
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C 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Typical flow cytometric pattern of chicken CD4 and CD8 cell expression in a single 

tube of 10000 captured cell events. Cells were gated using forward and side scatter to distinguish 

physical properties of cells and cellular contaminants (A). Percentages of CD3+CD4+ (B) and 

CD3+CD8+ (C) T cells amongst chicken PBMC were calculated from the upper right quadrant. 

The upper left quadrant represents CD3+ T cells which were  CD4- (B) or CD8- (C). Anti-

chicken CD3 monoclonal antibodies were conjugated with R-Phycoerythrin (PE), CD4 with 

Fluorescein (FITC) and CD8 with Peridinin Chlorophyll Protein Complex-Cy5 (Cy5).  
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In the first animal experiment, three pools of whole blood were established for each 

group of nine birds (n=3), each pool representing three individual chickens. This practise 

was selected to facilitate the ficoll gradient-isolation of lymphocytes from fresh 

peripheral blood mononuclear cells (PBMC). A minimal blood volume (will be discussed 

in Section 7.2) was drawn from birds to reduce overall stress and prevent anaemia. CD4 

and CD8 T cell phenotypes were determined at Weeks 2 and Week 5. In the second 

animal experiment, whole blood was sampled from five individual chickens (n=5) at 

Weeks 2 and 4. 

 

To present the difference, which is either an increment or reduction of a particular cell 

population, a fraction of 100 (percentage) is calculated in equation as below:  

   Final population percentage – initial population percentage         X 100 

                             Initial population percentage  

 

In the equation, ‘initial population percentage’ refers to flow cytometry values of a 

particular T cell population at two weeks post-vaccination, while ‘final population 

percentage’ refers to values at Weeks 5 or 4, post-vaccination, for Experiments 1 or 2, 

respectively.    
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4.2.2.1    PBMC CD4+ T cell population 

In the first animal experiment, in which n=3, the levels of CD4+ in the control group 

remained relatively constant at Weeks 2 (15.64 ± 1.75 %) and 5 (16.54 ± 3.33 %), 

showing an increase of only 0.9 % points, or 5.75 %. Samples from groups vaccinated 

with WT FP9 or rFWPV/H5/IL-15 demonstrated increases in CD4+ levels of 10.99 % 

(18.75 ± 2.53 % to 20.81 ± 0.84 %; 2.06 % points) and 21.97 % (14.38 ± 0.70 % to 17.54 

± 3.48 %; 3.16 % points), respectively. However, the rFWPV/H5 vaccinated group 

showed a higher CD4+ population at Week 2 (23.67 ± 1.11 %), than at Week 5 (16.09 ± 

2.72 %), a fall of 7.58 % points, or 32.02 %. The level of the CD4+ population in the 

rFWPV/H5 group at Week 2 was significantly higher (P≤0.05) compared to the control. 

No statistically significant difference was observed for other groups at either sampling 

point (Table 4.3, Figure 4.3(A)).  

 

In the second animal experiment (in which n=5), the CD4+ cell population increased only 

in the WT FP9-vaccinated group (from 9.94 ± 1.17 % to 10.93 ± 0.89 %, an increase of 

0.99 % points or 9.96 %). The CD4+ population in the control group decreased from 

10.49 ± 1.29 % to 7.37 ± 0.91 % (by 3.12 % points, or 29.74 %), while those in the 

rFWPV/H5 and rFWPV/H5/IL-15 groups decreased from 10.37 ± 0.82 % to 9.65 ± 0.71 

% (0.72 % points, or 6.94 %) and from 13.05 ± 1.05 % to 8.44 ± 0.62 % (4.61 % points, 

or 35.32 %), respectively. The 48.3 % difference of CD4+ cell population between WT 

FP9 and control at Week 4 was the only statistically significant comparison (Table 4.3, 

Figure 4.3(B)). 
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Overall, the pattern of results is similar for pooled and individual samples, except for 

control and rFWPV/H5/IL-15. The relative levels, and direction of change, of CD4+ in 

the rFWPV/H5/IL-15 group compared to the rFWPV/H5 were different in the two 

experiments.  However, the data obtained from the individual samples in experiment 2 

may be more reliable since they represented a larger sample size (n) and lower standard 

deviations (SD). The only significant change in CD4+ T cells observed during the time 

course in either experiment was the decrease observed for the rFWPV/H5/IL-15 group in 

experiment 2.  Therefore, it could be assumed that IL-15 co-expression does not induce a 

persistent Th1 response in chickens.  

 

 

Table 4.3. CD4+ T cell immunophenotyping of lymphocytes from chickens after mock-

treatment with PBS (Control), or vaccination with WT FP9, rFWPV/H5 or rFWPV/H5/IL-15. 

 Animal experiment 

Vaccine 1 (n=3) 2 (n=5) 

 Week 2 Week 5 Week 2 Week 4 

Control 15.64 ± 1.75   16.54 ± 3.33 10.49 ± 1.29   7.37 ± 0.91 

Wild Type FP9 18.75 ± 2.53    20.81 ± 0.84   9.94 ± 1.17 10.93 ± 0.89* 

rFWPV/H5 23.67 ± 1.11* 16.09 ± 2.72 10.37 ± 0.82   9.65 ± 0.71 

rFWPV/H5/IL-15 14.38 ± 0.70   17.54 ± 3.48 13.05 ± 1.05^   8.44 ± 0.62^ 

 

Animal experiment 1 represents PBMC samples of nine chickens pooled in threes (n=3), sampled 

at Weeks 2 and 5. Animal experiment 2 represents individual PBMC samples of five chickens 

(n=5), sampled at Weeks 2 and 4. 

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

and control groups, indicated by asterisks (*), were determined by one-way ANOVA (P≤0.05). 

Significant differences within the same group at different points, indicated by a caret (^), were 

determined by paired-samples T-test (P≤0.05). 
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Figure 4.3. CD4+ T cell immunophenotyping of lymphocytes from chickens after mock-treatment 

with PBS (Control), or vaccination with WT FP9, rFWPV/H5 or rFWPV/H5/IL-15. A) PBMC 

samples of nine chickens pooled in threes (n=3), sampled at Weeks 2 and 5. B) Individual PBMC 

samples of five chickens (n=5), sampled at Weeks 2 and 4. 
Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

and control groups, indicated by asterisks (*), were determined by one-way ANOVA (P≤0.05). 

Significant differences within the same group at different points, indicated by a horizontal line, 

were determined by paired-samples T-test (P≤0.05). 

A 

B 
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4.2.2.2 PBMC CD8+ T cell population 

In experiment 1, pooled blood samples at Weeks 2 and 5 revealed relatively constant 

CD8+ populations for unimmunized control (8.54 ± 0.55 % and 8.17 ± 1.15 %, 

respectively) and WT FP9-vaccinated (12.71 ± 0.82 % and 13.28 ± 1.06 %, respectively) 

chickens, rising 4.3 % and falling 4.5 %, respectively. The population in rFWPV/H5/IL-

15 group demonstrated decreases in CD8+ levels of 7.82 % (10.49 ± 1.17 % to 9.67 ± 

2.51 %; 0.82 % points). A remarkable fall of 42.44 % (or 6.91 % points) of CD8+ cell in 

rFWPV/H5-vaccinated group from 16.28 ± 1.58 % to 9.37 ± 1.32 % is surprisingly not 

statistically significant. This is due to the small sample size (n=3), which needed a greater 

difference in the value and a smaller standard deviation (SD), to be considered as 

statistically significant (Table 4.4, Figure 4.4(A)).  

 

In the second animal experiment (n=5), the levels of CD8+ T cell in control group, 

rFWPV/H5 and rFWPV/H5/IL-15 decreased 34.61 % (or 2.89 % points; 8.35 ± 0.99 % to 

5.46 ± 0.69 %), 22.91 % (or 2.68 % points; 11.70 ± 0.61 % to 9.02 ± 0.51 %) and 45.78 

% (or 4.94 % points; 10.79 ± 0.67 % to 5.85 ± 0.87 %), respectively. The CD8+ T cell 

population increased only in WT FP9-vaccinated group (from 8.36 ± 0.73 % to 11.01 ± 

1.21 %; an increase of 31.70 % or 2.65 % points), although not statistically significant 

(Table 4.4, Figure 4.4(B)).  
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Overall, chicken IL-15 co-expression in rFWPV/H5 did not promote a higher CD8+ cell 

percentage significantly, in comparison to rFWPV carrying H5 alone. In fact, it appears 

that the CD8+ population in rFWPV/H5/IL-15-vaccinated birds diminished relative to 

those in birds vaccinated with WT FP9 (significant) or FWPV/H5 (insignificant) at Week 

4, though only in Experiment 2. 

 

 

Table 4.4. CD8+ T cell immunophenotyping of lymphocytes from chickens after mock-

treatment with PBS (Control), or vaccination with WT FP9, rFWPV/H5 or rFWPV/H5/IL-15. 
 Animal experiment 

Vaccine 1 (n=3) 2 (n=5) 

 Week 2 Week 5 Week 2 Week 4 

Control 8.54 ± 0.55 8.17 ± 1.15 8.35 ± 0.99 5.46 ± 0.69 

Wild Type FP9 12.71 ± 0.82*    13.28 ± 1.06* 8.36 ± 0.73 11.01 ± 1.21* 

rFWPV/H5 16.28 ± 1.58*   9.37 ± 1.32 11.70 ± 0.61*
,
**^ 9.02 ± 0.51^ 

rFWPV/H5/IL-15 10.49 ± 1.17   9.67 ± 2.51 10.79 ± 0.67^ 5.85 ± 0.87**^ 

 

Animal experiment 1 represents PBMC samples of nine chickens pooled in threes (n=3), sampled 

at Weeks 2 and 5. Animal experiment 2 represents individual PBMC samples of five chickens 

(n=5), sampled at Weeks 2 and 4. 

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

groups and control (*), or between vaccinated groups and WT FP9 (**) were determined by one-

way ANOVA (P≤0.05). Significant differences within the same group at different points, 

indicated by a caret (^), were determined by paired-samples T-test (P≤0.05) 
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Figure 4.4. CD8+ T cell immunophenotyping of lymphocytes from chickens after mock-treatment 

with PBS (Control), or vaccination with WT FP9, rFWPV/H5 or rFWPV/H5/IL-15. A) PBMC 

samples of nine chickens pooled in threes (n=3), sampled at Weeks 2 and 5. B) Individual PBMC 

samples of five chickens (n=5), sampled at Weeks 2 and 4. 

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

groups and control (*), or between vaccinated groups and WT FP9 (**) were determined by one-

way ANOVA (P≤0.05). Significant differences within the same group at different points, 

indicated by a horizontal line, were determined by paired-samples T-test (P≤0.05) 

A 

B 

  * * 
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4.2.2.3 CD4+/CD8+ T cell population ratio at different weeks 

Ratios of CD4+ to CD8+ T cells (CD4+/CD8+), obtained from the flow cytometric 

analyses described above, were calculated to determine the relative fluctuation of CD8 

cells in comparison to CD4 cells. A higher ratio indicates a smaller CD8 cell fraction 

present in circulating T lymphocytes. As presented in Table 4.5, the control group had the 

highest ratio of CD4+ to CD8+ at Week 2 of both experiments (1.83 ± 0.24 and 1.26 ± 

0.21), and Week 5 (2.02 ± 0.50) of the first animal experiments. This is to be expected as 

unvaccinated host does not trigger CD8 cells which respond to an antigen presented by 

Class I MHC molecule. Chickens vaccinated with rFWPV/H5 and rFWPV/H5/IL-15 had 

lower ratio at Week 2, 0.89 ± 0.08 and 1.37 ± 0.17, respectively, in comparison to WT 

FP9. However, the ratios augmented over time, suggesting less CD8 cell populations or 

more CD4 cell populations were present in both vaccine groups than WT FP9. 

Importantly, rFWPV/H5 carrying IL-15 had the highest ratio between vaccinated groups 

at later weeks. This suggests that IL-15 co-expression in rFWPV either suppresses CD8 

cell population or promotes CD4 cell population, in a delayed manner.  

 

Table 4.5. Ratios of CD4+ to CD8+ T lymphocyte cells, CD4/CD8, post vaccination with 

different vaccines, at different weeks in two animal experiments. 

Vaccine Animal experiment 

 1 2 

 Week 2 Week 5 Week 2 Week 4 

Control 

 

1.83 ± 0.24 

 

2.02 ± 0.50 

 

1.26 ± 0.21 

 

1.35 ± 0.24 

 

WT FP9 

 

1.48 ± 0.22 

 

1.58 ± 0.14 

 

1.19 ± 0.18 

 

0.99 ± 0.14 

 

rFWPV/H5 

 

1.45 ± 0.15 

 

1.72 ± 0.38 

 

0.89 ± 0.08 

 

1.07 ± 0.10 

 

rFWPV/H5/IL-15 

 

1.37 ± 0.17 

 

1.81 ± 0.59 

 

1.21 ± 0.12 

 

1.44 ± 0.24 

 

Pooled PBMC samples of nine chickens into three, n=3, were used in animal experiment 1, while 

individual PBMC samples of five chickens (n=5) in animal experiment 2. CD4+ and CD8+ cell 

population percentage was obtained from flow cytometry immunophenotyping analysis. Each 

value represents the ratios of the means ± SEM.  
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4.3  Discussion 

Studies have shown that the most important component host immune reponse that confers 

protection against AIV is the humoral response against the haemagglutinin (HA) protein 

(Swayne et al., 2008). To achieve this, several different types of vaccines have been 

developed with some implemented in the field. Although vaccines which are based on 

inactivated low pathogenic AIV of H5 subtypes have traditionally been used, a 

replicative virus-based vector expressing H5 offers several advantages to becoming a 

favourable vaccination strategy. The advantages include (i) the ability to differentiate 

between infected and vaccinated birds (DIVA) using a commercial assay, (ii) the lesser 

risk of accidental influenza virus release, (iii) the potency of providing bivalent 

protection against different pathogens (depending on the vector), and (iv) the avoidance 

of adjuvant, such as mineral oil, which is a component of an inactivated vaccine.   

 

In this study, a safe, laboratory-adapted fowlpox virus (FWPV)-based vector expressing 

the HA of AIV strain H5N1 was modified to co-express a chicken IL-15 cytokine gene to 

test if it would in any way enhance the host CMI response, which is likely to be critical in 

clearance of AIV during primary infection. Since we did not perform any protective or 

challenge study, the evaluation of immunogenicity elicited by the constructed vaccines 

should also consider the host response against typical FWPV infection. 
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4.3.1 Humoral immune response 

As shown in Table 4.2, inoculation of chickens with PBS or WT FP9 did not induce the 

production of antibody against the HA protein, a result which was expected and is 

comparable to results demonstrated by Taylor et al. and Webster et al. using different 

strains of FWPV (Taylor et al., 1988; Webster et al., 1991). Low but detectable levels of 

antibodies specific for H5 were observed as early as Week 2 in chickens vaccinated with 

rFWPV/H5 carrying IL-15. The vaccine also produced a higher antibody titre at Week 3, 

compared to rFWPV expressing H5 alone, which suggests that IL-15 could play a role in 

enhancing the host humoral immune response. This finding corresponds with several 

studies conducted in mice, including that by Perera et al. (2007) who observed a two-fold 

higher neutralizing antibody titre in human IL-15-integrated recombinant vaccines 

against Vaccinia virus (VV). The group also showed that recombinant VV strain Wyeth 

adjuvanted with human IL-15 and five influenza genes induced stronger neutralizing 

antibodies against AIV H5 (Poon et al., 2009). Further studies should be done before we 

can assume that chicken IL-15 induces a co-stimulatory effect similar to that of human 

(Armitage et al., 1995) or mouse (Gill et al., 2009) IL-15 on B cell proliferation and 

differentiation, as well as IgA antibody synthesis (Hiroi et al., 2000).  

 

The mean HI titres induced by vaccination with either rFWPV/H5 or rFWPV/H5/IL-15 

decreased after reaching the highest reading at Week 3, and no antibodies were detected 

from Week 5 onwards. The result might have been influenced by our use of a 

heterologous antigen (A/Duck/Malaysia/8443/2004 (H5N2)), sharing 91.1 % amino acid 

identity with the H5 in our recombinant vaccine in the HI assays. Taylor and co-workers 
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(Taylor et al., 1988) reported that mean HI titres of less than 10 were observed in 6-

week-old chickens vaccinated with rFWPV expressing the H5 from an H5N8 strain, 

when heterologous antigen (H5N2) was used in the HI test. When homologous antigen 

was used, a higher mean HI titre of 15 was observed. In another report, heterologous 

antigen with 83.5 % to 93.2 % amino acid identity to the studied HA gene, failed to 

produce consistent HI titres for 3-week-old chickens, post-vaccination with rFWPV 

expressing H5 of the H5N1 strain (Swayne et al., 2007). However, in recent report, 

Bublot et al. showed the highest HI titres induced by a rFWPV expressing H5 of the 

H5N1 strain were detected with heterologous H5 from the H5N8 strain or from an H5N1 

virus of a different clade (Bublot et al., 2010). Phylogenetic relationships of the HA 

genes of nine representative influenza A viruses isolated in Asia in 2004, including that 

of the strain (Chicken/Malaysia/5858/2004) used as a source of HA for this study and the 

H5N2 strain (A/Duck/Malaysia/8443/2004) used as a heterologous antigen for the HI 

test, are shown in Figure 4.5. 

 

Since the template HA used for the recombinant vaccines was derived from HPAI virus 

Chicken/Malaysia/5858/2004, high-level biosafety containment is needed to produce the 

antigen, which is a limitation in our study. The same is of course true of virus 

neutralisation assays used to measure antibodies capable of virus neutralization. Reverse-

genetic technology could be used to incorporate the HA gene into an apathogenic virus 

background (for instance PR8, as used in the case of the RG16 pre-pandemic vaccine 

candidate produced at NIBSC, UK) but this has not yet been done. Although the most 

suitable antigen might not have been used for HI testing, the results provide useful 

comparisons of HI antibody levels elicited by rFWPV/H5 and rFWPV/H5/IL-15.  
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Figure 4.5. Phylogenetic relationships of the haemagglutinin (HA) genes of nine representative 

influenza A viruses isolated in Asia in 2004, including that of the strain 

(Chicken/Malaysia/5858/2004) used as a source of HA for this study. The mutated HA sequence 

of the study strain is also included. The tree was generated by the neighbour-joining method in 

MEGA 4.0 (Kumar and Nei, 1994) with bootstrap of 1000 replications. Numbers on the 

branches indicate neighbour-joining bootstrap values. Analysis was based on nucleotide 

sequences of the HA genes. Viruses are isolates from poultry during the H5N1 outbreak in 2004, 

with Vietnam/1203/2004, Malaysia/5858/2004 and Malaysia/6309/2004 belonging to sublineage 

VTM (Vietnam/Thailand/Malaysia), which is closely related to the Guangdong sublineage of 

viruses isolated from domestic and migratory birds in Hong Kong in early 2002 and late 2003 

(Chen et al., 2006). The H5N2/Malaysia/8443/2004 sequence has not been published elsewhere. 

The scale bar represents 0.01 nucleotide per site. 
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Several studies have shown rFWPV expressing HA can provide complete or nearly 

complete protection against lethal challenge, even when achieving pre-challenge HI titres 

of as low as 3 log2 (Beard et al., 1991; Webster et al., 1991; Qiao et al., 2006; Bublot et 

al., 2010). Though not directly comparable, rFWPV FP9 expressing the F gene of NDV 

were able to induce 86 % protection with HI titres of less than 2 (Boursnell et al., 1990). 

These findings indicate that post-vaccination protection of chickens against AIV is not 

dependent entirely on HI antibodies but also on non-HI antibodies and possibly also on 

cellular mediated immunity. Although cellular immunity appears unable to protect 

chickens from infection with lethal virus, it may help in viral clearance before virus-

induced pathology reaches a critical stage, thus reducing the rate of morbidity and 

mortality of immunized chickens. It may also play a more critical role in eradication of 

LPAI viruses from the individual bird and from the flock. 

 

4.3.2 Cell-mediated immune response 

4.3.2.1 CD4+ T cells 

In comparison to its documented effects on CD8+ T cells (Oh et al., 2003; Mueller et al., 

2005; Tang et al., 2009), the effect of IL-15 expression on CD4+ T cells is not yet well 

established. Studies of phenotypic CD4+ T cells in mice suggest that IL-15 has little or 

no effect on naïve (Kanegane et al., 1996; Zhang et al., 1998; Marks-Konczalik et al., 

2000; Nishimura et al., 2000; Picker et al., 2006), memory (Tan et al., 2002; Mueller et 

al., 2005) and central memory (Picker et al., 2006) CD4+ T cells. However, there are 

contradictory reports that IL-15 enhances in vitro priming of naïve CD4+ T cells 

(Niedbala et al., 2002).  
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The flow cytometry results for Experiment 1 (Table 4.3, Figure 4.3(A)) demonstrated that 

rFWPV/H5/IL-15 did not increase CD4+ T cell population but results for Experiment 2 

(Table 4.3, Figure 4.3(B)) showed a slight increase of the CD4+ T cell population at 

Week 2 (n=5) upon rFWPV/H5/IL-15 vaccination, although not statistically significant. 

These findings are consistent with previous reports that IL-15 only has profound effects 

on the proliferation and survival of memory CD8+ T cells, not on CD4+ T cells (Zhang et 

al., 1998; Marks-Konczalik et al., 2000; Nishimura et al., 2000). It is not known whether 

antigenic or immunomodulatory proteins from FP9 can influence the IL-15 cytokine 

milieu in vaccinated chickens. Several reports showed that IL-15 can only activate CD4+ 

T cell proliferation when at high concentration (Kanegane et al., 1996; Seder, 1996). 

Niedbala et al. (2002) showed that 2 to 4 fold higher concentrations of IL-15 are required 

to achieve optimal CD4+ T cell proliferation, compared to the concentrations required to 

promote CD8+ T cell response. However, overexpression of IL-15 has also been 

observed to lower the number of Herpes Simplex Virus-2 specific CD4+ T cells (Gill and 

Ashkar, 2009).  

 

We observed no increase in CD4+ T cells in individual chickens vaccinated with WT 

FP9, a result similar to those described in other reports using chickens (Chen et al., 

2010a) and mice (Jin et al., 2004). More importantly, although pooled blood samples 

from chickens vaccinated with rFWPV/H5 in Experiment 1 showed a significant increase 

of CD4+ T cell compared to the control, CD4+ T cells from individual samples showed 

no augmentation. This contradicts the basis of vaccination, where CD4+ T cells 

population should increase in response to foreign antigens, in this case haemagglutinin 
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H5 gene of the vaccine, since they are the basis of Th cells. Furthermore, CD4+ T cells of 

mice have been shown to be induced following influenza virus infection (Swain et al., 

2006), although they are not essential to "help" cytotoxic T lymphocyte activation (Ridge 

et al., 1998). We speculate that individual chickens elicit different level of 

lymphoproliferative response towards rFWPV/H5. It should be noted that despite the 

extensive study on immune response against influenza in mammals, understanding of 

chicken T cell responses against influenza virus is very limited (Haghighi et al., 2009).  

 

4.3.2.2 CD8+ T cells 

The co-stimulatory effects of IL-15 on CD8 cells have been studied widely, especially 

with regard to proliferation and survival of memory CD8+ T cells.  IL-15 has been found 

to directly stimulate purified CD8+ memory cells in vitro (Zhang et al., 1998; Ku et al., 

2000; Becker et al., 2002; Oh et al., 2004). Transgenic mice which constitutively 

expressed a significant level of IL-15 in the serum had higher numbers of memory CD8+ 

T cells (Nishimura et al., 2000; Marks-Konczalik et al., 2000), while a correspondingly 

inverse effect was observed in IL-15-deficient mice (Kennedy et al., 2000). As presented 

in Table 4.4 and Figure 4.4, pooled and individual samples from chickens vaccinated 

with rFWPV/H5 co-expressing IL-15 showed an increase, although not significant, in 

CD8+ cell population in comparison to unvaccinated chickens. This result suggests 

chicken and mouse IL-15 share a similar capability of enhancing CD8+ T cells. The 

higher, significant increase of CD8+ T cells in rFWPV/H5 compared to rFWPV/H5/IL-

15 raises two possible explanations:  
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(i) Over-expression of IL-15 in rFWPV/H5/IL-15 decreases the population percentage of 

CD8+ T cells specific for H5 antigen expressed by the recombinant vaccine. This 

possibility is compatible with the results of Yin et al., who showed that low doses of 

plasmid encoding macaque IL-15, co-inoculated with an influenza DNA-based vaccine, 

enhanced CD4+ and CD8+ T cell population, but that high doses lead to a decrease in the 

production of both classes of T cells (Yin et al., 2009). Unfortunately, in this study, we 

did not measure the levels of IL-15, secreted by cells infected with an initial dose of 10
5
 

PFU rFWPV/H5/IL-15, in peripheral blood prior to flow analysis. Since a strong 

synthetic/hybrid promoter was used for IL-15 co-expression, over-expression is possible, 

with consequential influence on the level of immune responses generated (Boyle and 

Heine, 1993). 

(ii) FWPV infection, possibly by expression of as yet undefined immunomodulatory 

proteins encoded by this avipoxvirus, might down-regulate expression of chicken IL-15. 

Therefore, the heterologous co-expression of chicken IL-15 in cells infected with 

rFWPV/H5/IL-15 might tend to compensate for the down-regulation of levels of IL-15 

seen after vaccination with rFWPV/H5, achieving a more optimal CD4+/CD8+ ratio. 

Although human IL-15 has been shown to stimulate CD8+ T cells population and 

promote the maintenance of CD8+CD44hi memory T cells, the responsiveness of CD8+ 

T cells to IL-15 might depends on the cytokine background (Niedbala et al., 2002; Oh et 

al., 2003).  

 

A pattern of decreasing CD4+ and CD8+ T cell populations over time suggests that 

incorporation of the IL-15 gene in the rFWPV does not induce a sustained T cell response 
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in chickens. This is in agreement with an in vivo study examining T cell populations in 

the peripheral blood of rhesus macaques treated with rhesus IL-15, where the level of 

CD4+ and CD8+ memory, but not naïve, T cells peaked at Week 1 to 2 and returned to 

baseline by Weeks 3 to 4. In addition, extended treatment with IL-15 after day 10 often 

failed to maintain the peak lymphoproliferative response (Picker et al., 2006). 

  

4.3.2.3 CD4+/CD8+ T cell population ratio 

In healthy humans, the ratio of CD4+ to CD8 + cells is between 0.9 and 1.9, which is 

equivalent to 1 to 2 CD4 cells for every CD8 cell. In HIV-infected individuals, the 

CD4+/CD8+ ratio is used as an indication of immune suppression, where a lower ratio 

represents higher immune suppression. In the context of very limited knowledge on 

chicken CD4+/CD8+ ratios upon FWPV infection, Chen et al. (2010) demonstrated an 

elevated CD4+/CD8+ ratio at Weeks 2 and 5 in chickens vaccinated with a parental 

Chinese FWPV (strain S-FPV-017), a recombinant S-FPV-017 expressing the S1 gene of 

IBDV, and recombinant S-FV-017/S1 carrying recombinant chicken IL-18, compared to 

an unvaccinated group, with fluctuations at Weeks 3 and 4. We also noted that the 

CD4+/CD8+ ratios of PBS-treated, White Leghorn SPF chickens from Experiment 2 

were 1.26 ± 0.21 at Week 2 and 1.35 ± 0.24 at Week 5, which is consistent with 

observation by Chen et al. (1.26 ± 0.05 at Week 2; 1.33 ± 0.09 at Week 4) (Chen et al., 

2010a). Thus, we considered the results of Experiment 2 to be more reliable for data 

interpretation. 
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From our study (Table 4.5), we observed a lower CD4+/CD8+ ratio in birds vaccinated 

with FWPV carrying recombinant IL-15, compared to mock-vaccinated control. 

However, the ratio for both rFWPV/H5 and rFWPV/H5/IL-15 groups increases over 

time. Bridle et al. reported that commercially raised chickens with genetic selection, 

intense immunization and other environmental factors involved in commercial poultry 

operations have significantly altered T lymphocyte subpopulations, manifest as lower 

CD4+/CD8+ ratios, compared to unimmunized, laboratory-raised, outbred chickens 

(Bridle et al., 2006).  
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CHAPTER 5 

Co-immunostimulatory effect of IL-12 co-expressed in N1-recombinant fowlpox 

viruses on host immune responses 

 

5.1 Introduction 

Neuraminidase (NA) is enzymatically active to cleave α-2,3 or α-2,6-linked sialic acid 

residues from carbohydrate moieties on the surfaces of infected cells, promoting the 

release of budded virus particles from the cell membrane. In comparison to the extensive 

characterization of haemagglutinin (HA) antibodies to protect against influenza virus 

infection, the role of NA-specific antibodies as protective agents is less well understood. 

Several factors might influence the bias between the study of HA and NA as protective 

agents. Firstly, the levels of HA glycoprotein on the surface of infectious influenza 

virions are four (Webster and Pereira, 1968), six or even seven (Harris et al., 2006) times 

higher than those of NA, with a consequently skewed humoral response towards HA after 

influenza virus infection. The higher level response against HA has been demonstrated in 

mice by Johansson and colleagues (1987), who showed that responses to HA and NA are 

competitive towards each other, with that against HA dominating in the priming of B and 

T cells (Johansson et al., 1987a). Although the effect is less clear in birds and other 

mammals, susceptible species tend to respond with higher levels of serum antibodies 

against HA than NA. Secondly, the quantity of NA in licensed vaccines is not 

standardized (Gerentes et al., 1999). This might be due to the lability of NA during 

storage, and exposure to various chemical treatments during its production, or the 

difficulty in measuring the level of NA in each vaccine (Tanimoto et al., 2005). 
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Consequently, the response against HA has been viewed as a more important subject for 

study than that against NA, and has therefore been the subject of more intense scrutiny. 

However, it has been shown that humans exposed to H7N2 virus produced higher levels 

of antibodies against N2 than did those exposed to H3N2. This suggests that host immune 

responses against the NA protein of a vaccine can be influenced by existing humoral 

immunity against HA subtypes (Johansson et al., 1987b). 

 

Despite the overall paucity of studies on NA, vaccination with purified recombinant NA 

protein (Deroo et al., 1996; Martinet et al., 1997) or NA-encoding DNA (Chen et al., 

2000) has been demonstrated to protect mice against homologous, but not heterologous, 

lethal influenza virus challenge. Similar results were obtained using NA-expressing 

recombinant virus vaccines, including VV (Webster et al., 1988), adenovirus (Guo et al., 

2006) and alphavirus replicon-based virus-like particles (Sylte et al., 2007). A rFWPV 

co-expressing HA and NA of AIV has been shown to offer complete protection upon 

lethal homologous challenge in poultry (Qiao et al., 2003). No NA-only rFWPV was 

included in the study, making it difficult to evaluate the specific role of NA-specific 

antibodies. However, it has been shown that induced antibodies against HA and NA 

confer different functions in defending against influenza. Unlike HA antibodies, which 

neutralize and block the interaction between viral HA and host receptors directly, NA 

antibodies still permit infection but limit viral replication and prevent the release of 

progeny virus from infected cells, thus reducing viral spread within the host and viral 

shedding into the environment (Kilbourne et al., 1968; Deroo et al., 1996).  
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The main aim of this chapter was to characterize the immunogenicity of two recombinant 

vaccines, rFWPV/N1 and rFWPV/N1/IL-12, which were constructed at Imperial College 

London, as described in Chapter 3. The in vivo studies were conducted at the 

Experimental House, Faculty of Veterinary Medicine, UPM, Malaysia, with parental, 

‘wild type’ (WT) FWPV strain FP9 and PBS-mock inocula implemented as controls. 

 

IL-12 was chosen as a co-stimulatory molecule due to its significant role in promoting 

cellular mediated immunity (CMI) responses. In humans and mice, IL-12 induces 

tyrosine phosphorylation of Janus kinase 2 and STAT4 selectively in Th1, but not Th2 

cells (Szabo et al., 1995; Rogge et al., 1999). This is probably due to the inability of Th2 

cells to express the β-subunit of the high-affinity IL-12 receptor, IL-12R, which is 

important for IL-12 signaling to activate STAT4 and induce the expression of IFN-γ in T 

lymphocytes or NK cells (Rogge et al., 1999; Smits et al., 2001). However, in a few 

contradictory reports, IL-12 was shown to bind directly to B cells and induce the 

expression of transcripts for β1 and β2-chains of the IL-12 receptor (Vogel et al., 1996; 

Airoldi et al., 2000) and induce production of Th2 IL-4 cytokine (Skok et al., 1999). 

These stimulatory effects of IL-12 suggest its potential for use as an immunomodulator in 

vaccine development. 
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5.2 Results 

5.2.1 Humoral immune responses following rFWPV/N1 or rFWPV/N1/IL-12 

vaccination 

A commercial competitive enzyme-linked immunosorbent assay (c-ELISA) kit, ID 

Screen Influenza N1 Antibody Competition, obtained from ID.Vet (France), was used to 

detect NA-specific antibodies in the sera of vaccinated chickens. Negative and positive 

controls were provided in the kit to validate the test. 

To determine the competition percentage, the OD (optical density) value of each sample, 

which was read using a spectrophotometer at 450 nm, was used in the equation below: 

                OD of sample              X 100 

       OD of negative control    

 

 

N1 antibodies were considered to be present in the sample if the competition percentage 

of the sample was less than 60 %, and absent if the percentage was equal to or more than 

60 %. 

 

As expected, all sera from chickens inoculated with PBS (control) or WT FP9 had 

competitive percentages of more than 60 % for five weeks post-vaccination, which 

indicated the absence of N1-specific antibodies (Table 5.1). Chickens vaccinated with 

rFWPV/N1 and rFWPV/N1/IL-12 developed N1 antibodies after 28 days post 

vaccination, with competition percentages of 53.9 ± 1.9 % and 51.9 ± 1.2 %, 

respectively. The antibodies persisted until the following week, 54.3 ± 1.6 % for 

rFWPV/N1 and 55.6 ± 1.6 % for rFWPV/N1/IL-12. 
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Table 5.1. Mean competitive ELISA percentage, %, for N1 antibodies detected from chicken sera 

at interval weeks, post vaccination with different treatments. 

 

Vaccine 

 

Days, post inoculation 

 

7 14 21 28 35 

Control 63.4 ± 1.0 71.6 ± 1.8 70.5 ± 1.3 73.4 ± 2.5 74.6 ± 1.8 

WT FP9 68.2 ± 2.2 74.1 ± 1.8 72.2 ± 1.2 94.4 ± 17.9 84.8 ± 4.1 

rFWPV/N1 62.8 ± 1.1 70.2 ± 1.4 70.4 ± 2.1 53.9 ± 1.9 54.3 ± 1.6 

rFWPV/N1/IL-12 64.4 ± 1.8 66.3 ± 1.1 77.2 ± 13.3 51.9 ± 1.2 55.6 ± 1.6 

Each value represents the means ± SEM. Competitive percentages were calculated by dividing 

the sample OD with the negative control OD, and multiply by 100, where each OD value was 

read at 450 nm. N1 antibodies are considered present in the sera if the percentage is ≤60%, while 

absent if >60%. 
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5.2.2 Cell-mediated immune responses following rFWPV/N1 or rFWPV/N1/IL-12 

vaccination 

In order to understand the immunomodulatory effect of chicken IL-12 on T cell 

populations, T cell immunophenotyping was carried out and the results are presented in 

Figure 5.1. Circulating CD4+ and CD8+ T lymphocyte cells in rFPWPV/N1 and 

rFWPV/N1/IL-12-vaccinated chickens were enumerated using a triple-staining, flow 

cytometric counting analysis. To represent changes of the T cell populations, a fraction of 

100 (percentage) was calculated using the equation below: 

   Final population percentage – initial population percentage         X 100 

                             Initial population percentage  

 

In the equation, ‘initial population percentage’ refers to flow cytometry values of a 

particular T cell population at two weeks post-vaccination, while ‘final population 

percentage’ refers to values at Weeks 5 or 4, post-vaccination, for Experiments 1 or 2, 

respectively.    

 

However, to represent differences of population percentage between similar T cell subset 

of a particular vaccine groups, at a particular week, ‘initial population percentage’ was 

referred to values from the control or WT FP9, while ‘final population percentage’ was 

referred to a particular vaccine group. 
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5.2.2.1 PBMC CD4+ T cell population 

In the first animal experiment, pooled peripheral blood of chickens vaccinated with 

rFWPV/N1 or rFWPV/N1/IL-12, in which n=3, showed no significant increase in the 

level of CD4+ compared to the control group (Table 5.2, Figure 5.1 (A)). However, WT 

FP9 demonstrated a significant increase at Week 2 and 5 (described in Section 4.2.2.1). 

In term of changes in population level over time, CD4+ T cells of rFWPV/N1/IL-12 

decreased from 16.36 ± 1.97 % to 12.41 ± 1.29 % (24.14 % or 3.95 % points), but this 

was not statistically significant. The CD4+ T cell population in the control (15.64 ± 1.75 

% and 16.54 ± 3.33 %) and rFWPV/N1 (14.92 ± 1.06 % and 14.09 ± 0.82 %) groups was 

consistent at Week 2 and 5, with differences of only 5.75 % (0.9 % points) and 5.56 % 

(0.83 % points), respectively. 

 

At Week 2, individual peripheral blood samples obtained from the second experiment, in 

which n=5, rFWPV/N1 and rFWPV/N1/IL-12 groups showed an increase of 20.4 % and 

7.82 % in CD4+ T cell population, respectively, compared to the control. The levels of 

CD4+ T cells in rFWPV/N1 and rFWPV/N1/IL-12 groups showed a drastic decrease 

from 12.64 ± 0.55 % to 7.79 ± 1.19 % (38.37 % or 4.85 % points) and from 11.31 ± 0.90 

% to 6.94 ± 2.57 % (38.64% or 4.37 % points) over time, respectively. However, the WT 

FP9 group showed a 9.96 % of increase, from 9.94 ± 1.17 % to 10.93 ± 0.89 % (Table 

5.2, Figure 5.1 (B)).  

 

Overall, co-expression of IL-12 in rFWPV/N1 does not influence persistence of total 

CD4+ T cells in PBMC. Increase of CD4+ T cell populations was observed in 
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rFWPV/N1 and rFWPV/N1/IL-12, although not at a significant level. The patterns of 

results for pooled and individual samples were divergent. However, the second 

experiment in which the WT FP9-vaccinated chickens showed levels of CD4+ T cells 

relatively comparable to the control, as previously reported by others (Jin et al., 2004; 

Chen et al., 2010a), may be more reliable.  

 

 

Table 5.2. CD4+ T cell immunophenotyping of lymphocytes from chickens after mock-

treatment with PBS (Control), or vaccination with WT FP9, rFWPV/N1 or rFWPV/N1/IL-12. 

 Animal experiment 

Vaccine 1 (n=3) 2 (n=5) 

 Week 2 Week 5 Week 2 Week 4 

Control 15.64 ± 1.75   16.54 ± 3.33 10.49 ± 1.29   7.37 ± 0.91 

Wild Type FP9 18.75 ± 2.53    20.81 ± 0.84   9.94 ± 1.17 10.93 ± 0.89 

rFWPV/N1 14.92 ± 1.06 14.09 ± 0.82** 12.64 ± 0.55^   7.79 ± 1.19^ 

rFWPV/N1/IL-12 16.36 ± 1.97 12.41 ± 1.29** 11.31 ± 0.90   6.94 ± 2.57 

Animal experiment 1 represents PBMC samples of nine chickens pooled in threes (n=3), sampled 

at Weeks 2 and 5. Animal experiment 2 represents individual PBMC samples of five chickens 

(n=5), sampled at Weeks 2 and 4. 

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

and WT FP9 groups, indicated by double asterisks (**), were determined by one-way ANOVA 

(P≤0.05). Significant differences within the same group at different points, indicated by a caret 

(^), were determined by paired-samples T-test (P≤0.05). No statistically significant differences 

observed between vaccinated and control groups. 
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Figure 5.1. CD4+ T cell immunophenotyping of lymphocytes from chickens after mock-treatment 

with PBS (Control), or vaccination with WT FP9, rFWPV/N1 or rFWPV/N1/IL-12. A) PBMC 

samples of nine chickens pooled in threes (n=3), sampled at Weeks 2 and 5. B) Individual PBMC 

samples of five chickens (n=5), sampled at Weeks 2 and 4.  

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

and WT FP9 groups, indicated by double asterisks (**), were determined by one-way ANOVA 

(P≤0.05). Significant differences within the same group at different points, indicated by a 

horizontal line, were determined by paired-samples T-test (P≤0.05). 

A 

B 
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5.2.2.2 PBMC CD8+ T cell population 

In the first animal experiment, in which n=3, the CD8+ T cell population increased only 

in the WT FP9-vaccinated group (as described in Section 4.2.2.2). These levels were 

higher than those of the control (8.54 ± 0.55 % and 8.17 ± 1.15 %), rFWPV/N1 (9.49 ± 

1.93 % and 8.56 ± 1.43 %) and rFWPV/N1/IL-12 (9.91 ± 1.89 % and 8.73 ± 0.71 %) 

groups. No statistically significant increase was observed for rFWPV/N1 and 

rFWPV/N1/IL-12 groups relative to the control at either sampling point (Table 5.3, 

Figure 5.2 (A)). 

 

A different pattern was observed for T-cell populations in individual samples (in which 

n=5) from animal experiment 2 (Table 5.3, Figure 5.2 (B)). At Week 2, the level of CD8+ 

T cells in the control (8.35 ± 0.99 %) and WT FP9 (8.36 ± 0.73 %)-vaccinated chickens 

was similar, making the results of this experiment more consistent than the first 

experiment with the results of others (Jin et al., 2004; Chen et al., 2010a). At the same 

time point, rFWPV/N1 and rFWPV/N1/IL-12 showed an increase of 37.96 % (or 3.17 % 

points) and 50.18 % (or 4.19 % points), respectively, compared to the control. However, 

those CD8+ T cell levels decreased by 41.84 % or 4.82 % points for rFWPV/N1 (from 

11.52 ± 1.37 % to 6.7 ± 1.33 %), and by 38.76 % or 4.86 % points for rFWPV/N1/IL-12 

(from 12.54 ± 1.79 to 7.68 ± 2.36 %), at the following sampling point. No significant 

difference in the CD8+ T cell population was observed between groups vaccinated with 

rFWPV/N1 or rFWPV/N1/IL-12 (Table 5.3, Figure 5.2 (B)). 
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In conclusion, population percentage of CD8+ T cells was increased in response to 

rFWPV/N1 and rFWPV/N1/IL-12. However, the raised levels did not persist until Week 

4. Co-expression of IL-12 did induce a higher level of CD8+ T cells, but not statistically 

significant compared to rFWPV expressing N1 antigen alone, and only in experiment 2. 

  

 

Table 5.3. CD8+ T cell immunophenotyping of lymphocytes from chickens after mock-

treatment with PBS (Control), or vaccination with WT FP9, rFWPV/N1 or rFWPV/N1/IL-12. 

 Animal experiment 

Vaccine 1 (n=3) 2 (n=5) 

 Week 2 Week 5 Week 2 Week 4 

Control     8.54 ± 0.55   8.17 ± 1.15   8.35 ± 0.99   5.46 ± 0.69 

Wild Type FP9   12.71 ± 0.82*    13.28 ± 1.06*   8.36 ± 0.73 11.01 ± 1.21* 

rFWPV/N1 1.49 ± 1.93   8.56 ± 1.43 11.52 ± 1.37^   6.70 ± 1.33^ 

rFWPV/N1/IL-12 9.91 ± 1.89 8.73 ± 0.71** 12.54 ± 1.79   7.68 ± 2.36 

Animal experiment 1 represents PBMC samples of nine chickens pooled in threes (n=3), sampled 

at Weeks 2 and 5. Animal experiment 2 represents individual PBMC samples of five chickens 

(n=5), sampled at Weeks 2 and 4. 

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

and control groups, indicated by asterisks (*), or between vaccinated and WT FP9 groups, 

indicated by double asterisks (**), were determined by one-way ANOVA (P≤0.05). Significant 

differences within the same group at different points, indicated by a caret (^), were determined by 

paired-samples T-test (P≤0.05).  
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Figure 5.2. CD8+ T cell immunophenotyping of lymphocytes from chickens after mock-treatment 

with PBS (Control), or vaccination with WT FP9, rFWPV/N1 or rFWPV/N1/IL-12. A) PBMC 

samples of nine chickens pooled in threes (n=3), sampled at Weeks 2 and 5. B) Individual PBMC 

samples of five chickens (n=5), sampled at Weeks 2 and 4.  

Each value represents the means ± SEM (error bars). Significant differences between vaccinated 

and control groups, indicated by asterisks (*), or between vaccinated and WT FP9 groups, 

indicated by double asterisks (**), were determined by one-way ANOVA (P≤0.05). Significant 

differences within the same group at different points, indicated by a horizontal line, were 

determined by paired-samples T-test (P≤0.05). 

A 

B 
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5.2.2.3 CD4+/CD8+ T cell population ratios 

To study the relative flux of CD4+ and CD8+ T cell in a sample, ratios of CD4+ to CD8+ 

T cell percentages (CD4+/CD8+) were calculated (Table 5.4). A higher ratio represents a 

decrease in CD8+ or an increase in CD4+ T lymphocyte cells in peripheral blood 

samples.  

 

According to the results obtained, the control group had the highest ratio of CD4+ to 

CD8+ in both experiments at all sampling points; Week 2 (1.83 ± 0.24 and 1.26 ± 0.21), 

Week 4 (1.35 ± 0.24) and Week 5 (2.02 ± 0.50). In the first experiment, in which n=3, the 

CD4+/CD8+ ratio increased in the WT FP9 (from 1.48 ± 0.22 at Week 2 to 1.58 ± 0.14 at 

Week 5) and rFWPV/N1 (from 1.57 ± 0.34 to 1.71 ± 0.29) groups, while that in the 

rFWPV/N1/IL-12 group decreased from 1.65 ± 0.37 to 1.42 ± 0.19. However, in the 

second experiment (in which n=5), both groups showed a decrease; from 1.19 ± 0.18 to  

0.99 ± 0.14 for WT FP9, and from 1.20 ± 0.14 to 1.16 ± 0.29 for rFWPV/N1. The 

CD4+/CD8+ ratio of the rFWV/N1/IL-12 group showed a constant CD4+/CD8+ ratio in 

the following experiment (0.9 ± 0.15 and 0.9 ± 0.43, respectively). 
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Table 5.4. Ratios of CD4+ to CD8+ T lymphocyte cells, CD4/CD8, post vaccination with 

different vaccines, at different sample points in two animal experiments. 

Vaccine Animal experiment 

 1 (n=3) 2 (n=5) 

 Week 2 Week 5 Week 2 Week 4 

Control 

 

1.83 ± 0.24 

 

2.02 ± 0.50 

 

1.26 ± 0.21 

 

1.35 ± 0.24 

 

WT FP9 

 

1.48 ± 0.22 

 

1.58 ± 0.14 

 

1.19 ± 0.18 

 

0.99 ± 0.14 

 

rFWPV/N1 

 

1.57 ± 0.34 

 

1.71 ± 0.29 

 

1.20 ± 0.14 

 

1.16 ± 0.29 

 

rFWPV/N1/IL-12 

 

1.65 ± 0.37 

 

1.42 ± 0.19 

 

0.90 ± 0.15 

 

0.90 ± 0.43 

 

PBMC samples from nine chickens, pooled in threes (giving n=3), were used in animal 

experiment 1, while individual PBMC samples from five chickens (n=5) were used in animal 

experiment 2. CD4+ and CD8+ cell population percentages were obtained by flow cytometry 

immunophenotyping analysis. Each value represents the ratio of the means ± SEM.  
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5.3  Discussion 

NA inhibitors have been developed as antiviral drugs and have been used widely in 

humans, to combat circulating influenza virus. They are not used in poultry because of 

their cost, the speed with which resistant viruses would then develop and because 

antibiotic residues in meat and eggs are undesirable.  

 

In poultry, NA normally performs as an additional component alongside HA in whole, 

killed or inactivated AIV vaccines, since HA-mediated immunity is more effective than 

NA-mediated immunity for AIV protection. Consequently, potential infection-permissive 

immunity (i.e. NA antibodies permit infection of influenza viruses, but block the release 

of infectious virions from the apical surface of the infected cells) upon administration of 

NA as a primary component is less exploited. In this study, the immunogenicity of 

rFWPV co-expressing NA N1 and chicken IL-12 vaccines was evaluated by assessing the 

antibody and cellular response of the host. Since no protective or challenge study has yet 

been performed, it was only possible to evaluate host humoral and cellular responses after 

FWPV inoculation.   

 

5.3.1 The humoral immune response  

As expected, control or WT FP9-vaccinated chickens did not induce antibodies to NA 

antigen throughout the experiment (Table 5.1). Chickens inoculated with rFWPV/N1 or 

rFWPV/N1/IL-12 developed N1 antibodies 4 weeks post-vaccination. This response is 

somewhat late for a typical host antibody response induced by rFWPV against a foreign 

antigen. As a comparison, HA antibodies can be detected as early as one week, after 
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vaccination with rFWPV co-expressing H5 and N1 genes (Qiao et al., 2003). There are 

several possible explanations for this result. Firstly, the rFWPV might not have expressed 

N1 at levels sufficient to stimulate antibody response in the first few weeks post 

inoculation. Secondly, circulating antibodies against N1 during the initial weeks might 

have been present, but below detection limits for the c-ELISA. Liu et al. has 

demonstrated that Neuraminidase Inhibition (NI) is a more sensitive assay for NA 

detection, probably due to the different substrate systems (Liu et al., 2010). However, 

unlike c-ELISA, which is rapid and effective for high numbers of serum samples, the NI 

assay is laborious and requires propagation and handling of infectious virus, with 

consequential biosafety implications. Thirdly, the result might be specific to NA, as a 

unique feature of this particular antigen, though possibly in combination with the 

particular (FWPV) expression system. It may be that there are unusual aspects to the 

presentation of NA by APC to induce MHC Class II restricted CD4+ T cells that account 

for this observation, particularly in the context of the largely uncharacterised 

immunomodulation that is undoubtedly induced by the FWPV vector. 

 

The same expression vector (pEFL29) and promoter (VV 7.5 early/late) combination has 

been used successfully for a range of diverse proteins, including the H5 protein 

considered in the previous chapter. In this study, the scale and kinetics of N1 expression 

in vaccinated birds was not addressed but it has been shown that in skin sections from the 

inoculation site of birds vaccinated with rFWPV FP9 expressing an IBDV VP2/lacZ 

fusion protein, B cells started to aggregate in germinal centre (GC)-like structures at 8 

days post vaccination onwards (Eldaghayes, 2005). GC are sites for the growth and 



 179 

differentiation of B cells into immunoglobulin-producing plasma cells, and are thus 

important for the humoral immune response. That particular system was also poor at 

inducing VP2-specific antibodies compared to antibodies against parental FP9, with none 

detectable even 31 days post vaccination (Shaw and Davison, 2000) but this is viewed as 

a consequence of the artificial nature of the expression of the capsid protein of this 

icosahedral virus as a fusion with the large β-galactosidase protein (M. A. Skinner, 

personal communication). Other expression systems, particularly those expressing VP2 in 

the context of virus-like particles, have successfully induced high levels of VP2-specific 

antibodies (Fernandez-Arias, 1998). 

 

It is possible that the host B cell receptors were biased against N1 towards 

immunodominant FWPV antigens (such as fpv140, fpv168 and fpv191; Boulanger et al., 

1998) in the first few weeks post-vaccination. As such effects have not been observed 

with other antigens, it is possible that it is a unique feature of the expression of NA in 

rFWPV that led to the observed delay in host seroconversion. The same observation or 

other NA expression has not been reported elsewhere. Although anti-β-galactosidase 

responses could have been evaluated, clear demonstration of this effect would ideally 

have required the inclusion of another, similar antigen in the rFWPV, to serve as a 

control for the timing of seroconversion.  
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5.3.2    Cellular immune response  

IL-12 has been demonstrated to induce priming for high production of IFN-γ in both 

CD4+ and CD8+ T cell clones (Manetti et al., 1995; Paganin et al., 1995). However, the 

cytokine has a short life-span (5 to 6 hours) in blood circulation, thus leading to a 

dramatic decrease of IFN-γ levels after peak release (Lui et al., 2002). However, it was 

conceivable that co-expression of chicken IL-12 from rFWPV/N1 might initiate and 

maintain circulating IFN-γ concentration for a longer duration. This was assessed by 

measuring the preponderance of predominantly IFN-γ producers, namely CD4+ and 

CD8+ T cells. 

 

5.3.2.1 CD4+ T cells 

For Experiment 1, flow cytometry results showed that neither rFWPV/N1 nor 

rFWPV/N1/IL-12 increased CD4+ T cell population percentage (Table 5.2, Figure 5.1A). 

For Experiment 2, a slight, although not statistically significant, increase in the CD4+ T 

cell population was observed at Week 2 (n=5) upon rFWPV/N1 or rFWPV/N1/IL-12 

vaccination (Figure 5.1B). This result suggests that the presence of NA antigen alone 

might be able to increase CD4+ T cell population. In fact, de novo synthesis of NA is not 

required to enhance T cell proliferation (Oh and Eichelberger, 1999). Several studies 

have demonstrated that sialic acid cleavage by NA contributes to distortion of charge at 

dendritic, T lymphocyte or B cell surface, thus enhance the avidity of APC for T cells, T 

cell responses and proliferation (Oh and Eichelberger, 1999). It was later demonstrated 

that sialidase from Clostrodium perfringens (Garcia et al., 2005) and Salmonella 

typhimurium (Berger et al., 2006) improves CD4+ T cell function in both young and old 
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mice by cleaving α2,3- and/or α2,6-linked terminal sialic acid residues of specific 

proteins that regulate interaction between T cell receptor and APC. However, the effect 

of the cleavage on CD4+ T cell proliferation was not addressed in either report. Their 

findings suggested that desialylation might be a useful strategy to enhance 

immunogenicity of a vaccine. 

 

We observed similar levels of percentage of CD4+ T cells in rFWPV/N1 and 

rFWPV/N1/IL-12, indicating that IL-12 co-expression did not influence CD4+ T cell 

populations significantly, at least not in PBMC samples at 2 or 4 weeks post-vaccination. 

A pattern of decreasing CD4+ T cell populations over time suggests that incorporation of 

the IL-12 gene in rFWPV does not lead to sustained T cell response in chickens. This is 

consistent with recent in vivo findings, where IFN-γ appears rapidly in circulation on day 

3 post-vaccination with rFWPV expressing IBDV VP2 plus rFWPV expressing 

recombinant chicken IL-12, but decreased to the basal level 14 and 28 days later (Su et 

al., 2011). Upon lethal IBDV challenge at day 28 post-vaccination, 83 to 100 % 

protection was observed in these dually-vaccinated chickens, in comparison to 17 % and 

50 % protection in chickens vaccinated only with rFWPV expressing VP2 (Su et al., 

2011). Their finding suggests that the level of protection is increased upon IL-12 

administration, even though only a low IFN-γ level was detected prior to challenge.  
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5.3.2.2 CD8+ T cells 

Although no significant, augmentation of CD8+ T cell level was observed for rFWPV/N1 

in Experiment 1, the vaccine led to an increase, although not statistically significant, in 

the CD8+ T cell population in Experiment 2. NA-specific CD8+ T cell-mediated 

responses upon influenza virus infection have been described (Oh et al., 2001) but that is 

in a very different context. The proliferations of the self-regulating CD8+ T cells, which 

are not dependent on CD4+ T cell activation, indicate that influenza virus alters the 

capacity of antigen-presenting cells (APC) to stimulate T cell proliferation (Oh and 

Eichelberger, 1999) though it is not clear how large a specific role NA might play in this 

mechanism.  

 

Increasing proliferation levels or nonspecific expansion of CD8+ T cells after IL-12 

treatment have been reported extensively, including in in vitro studies using Myeloid-

derived suppressor cells (Steding et al., 2011) and Lewis lung carcinoma cells (Yin et al., 

2011) from mice, describing the pivotal role of IL-12 in CMI responses. In vivo studies 

using recombinant VV expressing IL-12-infected mice showed that reduction of VV 

titres correlate with the increased number of specific CD8+ T cells seen after expression 

of high levels of IL-12 (Gherardi et al., 1999; Gherardi et al., 2003). Our flow cytometry 

results for Experiment 1 (Figure 5.2A) demonstrated that rFWPV/N1/IL-12 did not 

increase CD8+ T cell percentage but results for Experiment 2 (Figure 5.2B) showed a 

significant increase of the CD8+ T cell population at Week 2 (n=5) after rFWPV/N1/IL-

12 vaccination. The significant differences in population levels between rFWPV/N1/IL-

12 and control or WT FP9 indicates that co-expression of chicken IL-12 induced high 
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levels of circulating CD8+ T cells present even at 2 weeks post vaccination. Two weeks 

later, we observed that the level had dropped to levels comparable to the control. It is 

possible that this was due to over-expression of IL-12 from the strong synthetic/hybrid 

promoter. High levels of recombinant chicken IL-12 have been shown to elicit lower 

levels of IBDV-specific IFN-γ production (Su et al., 2011). 

 

A slight increase over time in the CD8+ T cell population percentage in birds vaccinated 

with WT FP9 was noted, contradicting the observations with rFWPV/N1 and 

rFWPV/N1/IL-12. There are two possible explanations for this apparent discrepancy: 

(i) WT FP9 encodes undefined immunomodulatory proteins, which can induce persistent 

CD8+ T cell proliferation, although not markedly high. This is not surprising since 

FWPV strain FP9 has been shown to be more immunogenic in eliciting CD8+ T cell 

responses in mice against the circumsporozoite protein of a liver-stage, Plasmodium 

berghei malaria, than the commercially available Webster's FWPV vaccine strain 

(Anderson et al., 2004; Cottingham et al., 2006). 

(ii) Expression of NA N1 from rFWPV triggers, by an unknown mechanism, interaction 

between immune cells, leading to the reduction of the CD8+ T cell population to the 

basal state. It has been reported that pre-existing CD8+ T cell responses against viral 

epitopes in a boosting agent can inhibit the boosting of the CD8+ T cell response against 

the recombinant antigen (Anderson et al., 2004). It is not known whether the immediate 

CD8+ T cell responses against N1 after vaccination suppress further increase of of CD8+ 

T cells. 
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5.3.2.3 CD4+/CD8+ T cell population ratio  

As reported in the previous chapter, the ratio of CD4+ to CD8+ cells was shown to 

provide a general comparison on immune fluctuation after vaccination (Table 5.3).  Since 

there is no standard range of CD4+/CD8+ ratio for SPF White Leghorn chickens in any 

literature, ratios of control group served as benchmarks. We considered the results of 

Experiment 2 to be more reliable for data interpretation (Section 4.3.2.3). In comparison 

to the control, we observed a lower level of CD4+/CD8+ ratio in WT FP9, rFWPV/N1 

and rFWPV/N1/IL-12-vaccinated birds at both sampling points. Interestingly, the 

CD4+/CD8+ ratio of rFWPV/N1/IL-12-vaccinated birds was indistinguishable at Week 2 

and Week 4 of the second animal experiment, indicating that IL-12 might be a potent 

CMI-regulator for the flux of both CD4+ and CD8+ T cells in circulating blood.  
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CHAPTER 6 

Effect on host body weight of chicken IL-15 or IL-12 coexpressed from recombinant 

fowlpox viruses 

 

6.1 Introduction 

In the intensive and massive global poultry industry, vaccination is the most commonly 

applied strategy to control infectious diseases. Recombinant fowlpox virus (rFWPV) has 

been identified as a safe, important vaccine vector for numerous infectious pathogens of 

poultry, including avian influenza virus (e.g. Bublot et al., 2006), Newcastle disease 

virus, NDV (e.g. Sun et al., 2006), Marek's disease virus (e.g. Lee et al., 2003), 

Infectious bursal disease virus, IBDV (e.g. Su et al., 2011) and Infectious bronchitis virus 

(Chen et al., 2010a). Despite the efficacy, vaccination with rFWPV in ovo or in young 

chickens can slow the rate of growth and induce weight loss (Springer and Truman, 1981; 

Karaca et al., 1998; Mingxiao et al., 2006). This condition might not give a significant 

impact on small flocks. However, in the intensive commercial industry, a minor weight 

loss or retarded growth of large numbers of broiler chickens can influence the meat 

production greatly.  

 

Co-expression of chicken Type I IFN (Karaca et al., 1998), IFN-γ (Wang et al., 2009) or 

IL-18 (Mingxiao et al., 2006; Chen et al., 2010b) from rFWPV expressing various 

antigens has been shown to normalize the negative effect of FWPV vaccination on body 

weight. In our study, an animal experiment was carried out, described in Chapter 2.4.2.1, 

to demonstrate the effect of IL-15 or IL-12 co-expression from rFWPV vaccines, on 
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chicken body weight. Briefly, fifty-four 1-day-old chicks were randomly assigned into 

six groups. Each group of nine chicks was inoculated with rFWPV constructed 

previously, namely; rFWPV/H5, rFWPV/H5/IL-15, rFWPV/N1 or rFWPV/N1/IL-12. 

Another two groups were inoculated with WT FP9 or PBS, as controls. Weights of the 

chickens were measured in one-week intervals, for four weeks.  

 

In order to represent the differences in body weight, the percentage change was 

calculated using the equation below: 

   Weight of a particular vaccine group – Weight of PBS-treated control      X 100 

                             Weight of PBS-treated control 
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6.2 Results 

To measure body weights, all chickens were weighed at Week 1 until Week 4, post-

vaccination. The chickens were left until Week 7 to distinguish their sexes (Table 6.1). 

As shown in Figure 6.2, body weights of chickens in WT FP9 (93.9 ± 9.9 g), rFWPV/H5 

(98.9 ± 12.7 g), rFWPV/H5/IL-15 (101.1 ± 3.5 g) and rFWPV/N1 (102.2 ± 10.9 g) 

decreased 10.6 %, 5.8 %, 3.7 % and 2.7 %, respectively, compared to control chickens 

(105.0 ± 10.0 g), with rFWPV/N1/IL-12 having the highest weight loss of 25.9 % or 27.2 

g (77.8 ± 11.5 g), after one week post-vaccination. At Week 2, the relative weight 

reduction was irreversible for WT FP9 (164.2 ± 18.4 g), rFWPV/H5 (162.2 ± 41.6 g), 

rFWPV/N1 (165.1 ± 19.0 g) and rFWPV/N1/IL-12 (146.3 ± 19.0 g). However, 

rFWPV/H5/IL-15 (189.7 ± 9.5 g) showed a weight similar to the control (190.9 ± 16.9 g), 

with difference of only 0.6 % or 1.2 g. This weight pattern was consistent for all groups 

until Week 4, with WT FP9, rFWPV/H5, rFWPV/N1, rFWPV/N1/IL-12 having a 

statistically significant weight loss compared to the control (P≤0.05). The body weight of 

chickens vaccinated with rFWPV/H5/IL-15 was higher compared to other vaccine 

groups, indicating a potential effect of IL-15 in reversing the rFWPV side effect of 

weight loss. The weight gain was gender independent, as the control group had two more 

male chickens than the rFWPV/H5/IL-15 group. 

 

 

Table 6.1. Sex of nine experimental chickens, determined at Week 7 post immunization. 

Vaccine Males Females Total 

Mock-treated (Control) 6 3 9 

WT FP9 5 4 9 

rFWPV/H5 5 4 9 

rFWPV/H5/IL-15 4 5 9 

rFWPV/N1 5 4 9 

rFWPV/N1/IL-12 3 6 9 
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  B) 

 

Vaccine 

Mean body weight in grams at different weeks,  

post-vaccination 

 Week 1 Week 2 Week 3 Week 4 

Control 105.0 ± 10.0 190.9 ±   16.9 285.0 ±   21.9 392.1 ±   25.0 

WT FP9 93.9 ± 9.9* 164.2 ± 18.4* 256.8 ±   35.3 350.0 ± 44.5* 

rFWPV/H5 98.9 ± 12.7 162.2 ± 41.6* 251.1 ± 56.3* 350.1 ± 70.2* 

rFWPV/H5/IL-15 101.1 ±   3.5 189.7 ±     9.5      272.1 ±   30.0 378.6 ±   32.7 

rFWPV/N1 102.2 ± 10.9 165.1 ± 19.0* 249.6 ± 28.4* 345.3 ± 35.0* 

rFWPV/N1/IL-12 77.8 ± 11.5* 146.3 ± 19.1* 228.7 ± 24.0* 280.4 ± 30.3* 

 

Figure 6.1. Effect of WT FP9 or rFWPV inoculation of 1-day-old chicks on mean body weight 

(grams) at Weeks 1, 2, 3 and 4. Data were presented in a bar graph (A) or table (B). Each value 

represents the means ± SD (error bars) of nine samples (n=9). Significant differences between 

control and vaccinated groups were determined by one-way ANOVA (P≤0.05) and indicated by 

an asterisk (*). 
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6.3 Discussion 

6.3.1 Effect of IL-15 co-expression from rFWPV on body weight of chickens 

IL-15 is among the most abundant cytokines in skeletal muscle. In humans and other 

mammals, IL-15 has been shown to regulate the fat-to-lean pathway by several means, 

including; (i) stimulating protein synthesis and inhibiting proteolysis of skeletal muscle 

(Quinn et al., 2002; Busquets et al., 2005), (ii) increasing glucose uptake
 
into skeletal 

muscle (Busquets
 
et al., 2006), (iii) stimulating lipid oxidation of skeletal muscle 

(Almendro
 
et al., 2006) and (iv) reducing fat composition in adipocytes (Alvarez et al., 

2002). In one study, lean human subjects showed higher levels of muscle IL-15 mRNA 

expression and circulating/plasma IL-15, compared to obese subjects. However, muscle 

IL-15 protein level of obese subjects was increased, suggesting that the role of IL-15 in 

regulating obesity involves processes downstream of transcription (Nielsen et al., 2008). 

The involvement of avian IL-15 in fat decomposition and muscle anabolism has not been 

described.  

 

From our experiment, the growth of chickens immunized with rFWPV/H5/IL-15 was 

similar to that of the control group, indirectly suggesting IL-15 can ameliorate the weight 

loss effect of rFWPV vaccines. Similar observations were reported after in ovo (Ding et 

al., 2004; Lillehoj et al., 2005) and intramuscular leg injection (Ma et al., 2011) of DNA 

vaccines coexpressing chicken IL-15 with the 3-1E gene of Eimeria acervulina, a 

parasite which can also cause weight loss. It is clear that the host responses to rFWPV 

expressing AIV H5 and to the DNA vaccine expressing the parasite E. acervulina 3-1E 
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gene are likely to be very different. However, both experiments indicate that IL-15 can 

reverse the weight-suppressive effect of pathogens of chickens.   

 

Similar results have also been shown in mice. Despite the effect of recombinant IL-15 

protein treatment in significantly reducing the body weight of IL-15-deficient mice 

(Barra et al., 2010), the same treatment reversed the suppressive effect of Coxsackievirus 

B3 on body weight (Bigalke et al., 2009). However, in macaques infected with Simian 

Immunodeficiency Virus, which does not induce weight loss, no weight gain was 

observed upon treatment of IL-15 protein, despite an increase in effector memory CD8+ 

T cells and NK cells (Mueller et al., 2005). 

 

It is interesting to note that co-administration of chicken IL-18 (expressed from a 

different plasmid DNA vector) with a DNA vaccine expressing the 3-1E gene of E. 

acervulina introduces weight loss upon E. acervulina infection, relative to PBS-

vaccinated group (Lillehoj et al., 2005), though this contradicts its observed effect of 

inducing weight gain in chickens vaccinated with rFWPV expressing AIV H5 (Ding et 

al., 2004). It appears that, compared to IL-18, IL-15 plays a more consistent role in 

sparing disease-related weight loss in chickens. It is of course possible that IL-15 reduced 

weight loss by inhibiting FWPV replication. The replication of FWPV, which would have 

required sampling at the site of inoculation as FP9 does not spread, was not monitored 

but the induction of HI titres observed by rFWPV/H5/IL-15 (Section 4.2.1) argues 

against this explanation. 
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6.3.2 Effect of IL-12 co-expression from rFWPV on body weight of chickens 

It has been reported that IL-12-deficient mice have normal size and weight, despite 

having defective IFN-γ production and type 1 cytokine responses (Magram et al., 1996). 

However, weight loss of more than 10 % in uninfected, with more than 20 % in 

lymphocytic choriomeningitis virus-infected, IL-12-deficient mice, was observed upon 

high-dose administration of recombinant IL-12, following 6 days of daily treatment 

(Orange et al., 1995). This finding suggests that high concentrations of IL-12 might 

increase host stress, and severity of disease, as indicated by weight loss. 

 

In this study, exacerbated weight loss was observed as early as one week post-inoculation 

with rFWPV/N1/IL-12. The weight loss was not accompanied by loss of appetite, 

suggesting the suppressive effect of IL-12 co-expression from rFWPV/N1/IL-12 on body 

weight of chickens did not involve restricted food consumption. In vivo studies in mice 

have suggested that administration of high dose IL-12 can increase the level of TNF-α 

(Orange et al., 1994; Orange et al., 1995; Ciftci et al., 2010), a cytokine that can regulate 

physiological and pathological changes, and can promote weight loss or anorexia 

(Langhans and Hrupka, 1999). Unfortunately, the levels of TNF-α were not not measured 

during the course of the experiment, so it is not possible to conclude whether or not the 

weight loss was TNF-α-dependent. There is also a possibility that the effect of IL-12 in 

our study involved either FWPV or AIV antigen-specific interaction. In the latter case, 

we did not managed to construct rFWPV co-expressing H5 gene of AIV and IL-12, 

which can serve as a comparison to rFWPV/N1/IL-12. Hence, more studies involving 
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measurement of viral load, viral antigens, host antibodies and specific cytokine 

productions are needed to support such theory. 
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CHAPTER 7 

General Discussion and Conclusions 

 

7.1 Poultry vaccination against avian influenza virus  

The poultry sector has been a steady-growing industry in most parts of the world 

developed and developing, due to an increasing global population and purchasing power. 

In addition, poultry products are highly demanded due to their relatively low pricing 

compared to other meat, absence of religious barriers and nutritional (protein) qualities 

(Magdelaine et al., 2008). Moreover poultry production is viewed as more 

environmentally sustainable than alternative sources of animal protein. The trend is 

reciprocal to a constant production of healthy chickens, thus indicating the need to 

control the occurrence and circulation of infectious diseases of poultry. Although several 

disease pathogens only cause mild distress, and consequent reduction in production 

levels, several other important pathogens including avian influenza virus (AIV), 

Newcastle disease virus (NDV) and infectious bursal disease virus (IBDV), can lead to 

severe illness with high mortality rate. In commercial production of poultry, the risk of 

rapid spread of infectious diseases is increased due to: (i) the centralisation of chick 

production, (ii) the close-rearing environment of large numbers of the birds and (iii) the 

frequent requirement for migratory labour to handle large numbers of poultry. The most 

common preventive tool in controlling the occurence of infectious disease, especially 

viral, is vaccination, normally implemented in the first few weeks of the animal's life to 

provide lifelong protection (though for the modern broiler this need only be as little as 6 

to 7 weeks). However, depending on the nature of the particular vaccine, they can possess 
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several disadvantages, such as: slow stimulation of host immunity, weak cross protection 

against diverse field viruses or subtypes, difficulty in large scale production in a short 

period of time, variable antigen quantity, requirement for adjuvant, and difficult to 

differentiate between infected or vaccinated birds in routine serological tests. New 

vaccination strategies, including recombinant viral vectors, are designed to minimise 

these weaknesses thus improving overall vaccine efficacy. 

 

In this study, we constructed recombinant fowlpox virus (rFWPV) vaccines co-

expressing the H5 or N1 antigens of AIV with chicken cytokines, IL-15 or IL-12. AIV is 

an important pathogen for poultry and still enzootic in certain parts of the world, 

particularly in Asia. Of the greatest concern is the highly pathogenic avian influenza A 

(H5N1), which is species-adapted and may be evolving inconspicuously to start a new 

panzootic. The vaccines were constructed to allow laboratory-based studies to provide 

more knowledge on chicken immune responses upon infection of recombinant vaccines 

against AIV. The cytokines were chosen due to their profound effect on Th1 responses, 

which are critical for host cellular-mediated immune (CMI) response for viral clearance 

and defence against intracellular pathogens (AIV). Expression of AIV antigens proteins, 

HA or NA, in the recombinant vaccines normally triggers host Th2 responses. Hence, we 

hypothesized that our recombinant vaccines might also be able to induce strong cellular 

responses for efficient virus clearance associated with reduced virus shedding in 

vaccinated, challenged chickens. 
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7.2 Restrictions of chicken experiment 

In comparison to mammals, less is known about modulation of the avian immune system 

in response to physiological processes or infections. In this study, we tried to provide 

more perspectives on chicken immune system upon recombinant viral infection. Despite 

some advantages, notably the direct relevance of the avian pathogen antigens, conducting 

animal experiments in chickens rather than mammals actually poses several major 

challenges. Firstly, more effort is needed to rear chickens compared to smaller 

mammalians, such as mice or ferrets. Mammalian model studies are performed in a 

smaller environment, allowing are easier care and management. Unlike chickens, those 

small animals require less effort for sanitizing, feeding and blood sampling purposes. 

Secondly, the availability of avian research reagents, including antibodies to avian cell 

surface markers and cytokine proteins, is limited. Despite an increasing number of 

reagents and a growing profile of avian cytokines, the accessibility still lags far behind.  

 

To negate some of these issues and to study whether the rFWPV vaccines could elicit 

good immune responses at an early stage of life, comparable to the gold standard rFWPV 

vaccines developed by Merial (Bublot et al., 2007), the vaccines were inoculated into 

one-day-old chicks. This practice allowed the study of larger numbers of birds, while 

limiting the total volume of whole blood and sera that could be sampled from them.  

 

To determine the blood volume to be sampled from each chicken, we considered the 

chicken body weight, frequency (once a week) and period (seven weeks) over which the 

blood will be collected. In this study, we sampled 0.2 mL blood at Week 1 and 2, 0.3 mL 
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at Week 3 and 4, 0.5 mL at Week 5 and 1 mL at Week 6 and 7. Extra blood volume was 

sampled for flow cytometry analysis (0.2 mL at Week 2 and Week 5 for Experiment 1; 

0.5 mL at Week 2 and 4 for Experiment 2). This etiquette was advised by veterinarians 

and approved by the local IACUC. The general guide allows a maximum of 10 % of the 

total blood volume for weekly-repeat bleeds, in which ten percent of chicken body weight 

(g) is estimated to represent the total blood volume (mL) of an individual chicken (Dr 

Mustapha Abu Bakar and Dr Kartini Ahmad, personal communication). Frequent 

samplings of a large volume of blood may allow a short-term hypovolaemic shock or in a 

longer term, anaemia (British Veterinary Association (BVA), 1993). 

 

7.2.1 Limitations and suggestions for improved evaluation of cellular mediated 

immune responses   

For the assessment of CMI responses, T lymphocyte cell subsets were measured in 

peripheral blood mononuclear cells (PBMC). Other than lymphocytes (T cells, B cells 

and NK cells), PBMC of whole blood extracted using ficoll contains monocytes. 

Therefore, in our flow cytometry results, we do not know the absolute number of PBMC 

per volume of blood, and thus it is impossible to deduce accurate estimates of cell 

proliferation in response to vaccination For example, variation in the number of 

monocytes would change the apparent % of T cells, even if the absolute number of T 

cells had not changed. To improve the assay, cell counting should be done in addition to 

antibody staining, either by using an automated analyzer or manually. To increase the 

assay specificity, antigen-specific responses could be measured by staining for 

intracellular cytokine such as IFN-γ after in vitro stimulation of PBMC with appropriate 
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antigen. However, availability of commercialised anti-chicken cytokine markers is the 

major limitation compared to those of mammals.  

 

An alternative approach of not using PBMC would have been to measure the magnitude 

of T lymphocyte cell populations from organs such as the spleen, the largest secondary 

lymphoid organ. However, this approach would have restricted the experiment to single 

time-point data, requiring higher numbers of birds.  

 

7.3 Experimental design 

In this study, four recombinant vaccines, rFWPV/H5, rFWPV/H5/IL-15, rFWPV/N1 and 

rFWPV/N1/IL-12 were characterized. It had originally been the intention to isolate more 

recombinants for comparative study, namely rFWPV/H5/IL-12, rFWPV/N1/IL-15, 

rFWPV/NP/IL-15 and rFWPV/NP/IL-12 but it proved impossible to isolate resolved and 

stable recombinant clones within the limited time available for rFWPV construction in 

the UK (Chapter 3). It had also been the intention to challenge chickens vaccinated with 

homologous HPAIV. Unfortunately delays to the construction and licensure of 

appropriate facilities in Malaysia, together with the scarcity of and high demand upon 

such facilities elsewhere, means that this objective has had to be deferred.  Therefore, the 

study did not evaluate the protective efficacy of the vaccines against lethal viral 

challenge, but only their immunogenicity and general effects upon vaccinated hosts. 

Those vaccines which induced stronger humoral and cellular-mediated responses will be 

subjected to protection/challenge studies when the facilities eventually become available. 
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7.4 Characterization of rFWPV/H5 and rFWPV/H5/IL-15 

The results showed that inoculation of rFWPV/H5/IL-15 did not induce any adverse 

effect in the host. In fact, co-expression of IL-15 induced gain in body weight relative to 

birds vaccinated with rFWPV not expressing IL-15, indicating its ameliorating effect on 

the suppressive effect of rFWPV on body weight. rFWPV/H5/IL-15 showed a stronger 

humoral response, compared to rFWPV/H5, indicated by a higher HI titre at peak week 

(Week 3).  The vaccine induced higher, although not statistically significant, CD4+ T 

cells and similar CD8+ T cells level compared to rFWPV/H5. This suggests that the level 

of IL-15 co-expressed from rFWPV/H5/IL-15 was sufficient to enhance CD4+ T cell 

population (Kanegane et al., 1996; Seder, 1996; Niedbala et al., 2002). CD4+ T cell 

proliferation is a multifaceted process, which relies on activation of recognition and 

verification signals. These signals are critical in recognizing extracellular, soluble 

materials that are released from infected cells and ensuring that a T cell is responding to 

that foreign antigen. Once the signals are activated, proliferation of CD4+ T cells is 

allowed through a further complex process involving IL-2 (also called T cell growth 

factor) and expression of IL-2 receptor. Since Lillehoj et al. showed that chicken IL-15 

and chicken IL-2 share similar functional characteristic in increasing the level of T cells 

(Lillehoj et al., 2001), we showed indirectly that the chicken IL-15 co-expressed from 

rFWPV/H5/IL-15 was biologically active, indicated by its preferential increase of CD4+ 

T cells compared to rFWPV/H5. Interestingly, no significant difference in the level of 

CD8+ T cells of rFWPV/H5 and rFWPV/H5/IL-15 was observed. It is possible that the 

host cytotoxic response is H5 antigen-dependent and IL-15-independent. Alternatively 
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over-expression of IL-15 might have been at such levels that CD8+ responses were not 

stimulated (Niedbala et al., 2002; Oh et al., 2003).  

 

Collectively, rFWPV/H5/IL-15 showed enhanced immunogenicity and might prove to be 

a valuable adjunct to recombinant vaccines against AIV. However, further study should 

be done to evaluate its effect on the protective efficacy of the vaccines against lethal 

challenge infection.  

 

7.5 Characterization of rFWPV/N1 and rFWPV/N1/IL-12 

Neuraminidase (NA) is less-well recognized as a potentially protective antigen in AIV 

vaccine candidates. Considering the ability of NA antibodies to limit viral replication and 

reduce the release of progeny virus from infected cells, we constructed rFWPV/N1 and 

rFWPV/N1/IL-12 and evaluated their levels of immunogenicity. Humoral responses 

induced by each vaccine appeared four weeks after vaccination, suggesting a late 

induction of immunity, which is a disadvantage in vaccine development. It is likely that 

the delayed induction of immunity was attributable to the expression of the 

neuraminidase itself. CD4+ T cell population percentage in rFWPV/N1 and 

rFWPV/N1/IL-12-vaccinated groups was indistinguishable, whereas the CD8+ T cell 

population was higher in the rFWPV/N1/IL-12 group, suggesting a predominant effect of 

IL-12 in modulating cytotoxic T cell activity against foreign antigens. 

 

Despite the enhanced CD8+ T cell response, rFWPV/N1/IL-12 would not be desirable as 

a vaccine candidate due to the unforeseen, suppressive effect on chicken body weight. 
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Until further tests are done on the levels of TNF-α, thymic athrophy or corticosterone 

(Orange et al., 1995; Matsushita et al., 1999) concurrently with weighing, the loss of 

weight and possible toxicities, which could be triggered by IL-12, could not be explained 

mechanistically. In conclusion, the study showed that IL-12 co-expression from a 

recombinant poultry vaccine would require careful consideration due to the detrimental 

effect on body weight, despite possible enhancements of host CMI responses. 

 

7.6 Future experiments 

The animal experiments conducted have allowed evaluation of immunogenicity of the 

vaccines pre-challenge. Further assays would be necessary to provide a broader 

perspective, particularly to the cellular responses in chickens post-vaccination. Harvested 

organs from the 7-week-old experimental chickens have been reserved for real-time 

quantitative reverse transcription-PCR assay. The assay will allow quantification of 

cytokine targets, including IFN-α, IFN-γ, IL-1β, IL-2, IL-10, IL-12, IL-15, IL-18 (Th1 or 

Th1-related cytokines) and TGF-β4, IL-4 (Th2 cytokines) (Hong et al., 2006; Park et al., 

2008). A transcription factor, named lipopolysaccharide-induced TNF-α factor (LITAF) 

can be used for a direct indication of TNF-α levels in the host (Hong et al., 2006), which 

may be related to body weight (Orange et al., 1995; Tanaka et al., 2001). An alternative 

experimental design for this assay would be to quantitate the mRNA levels in specific 

organs every week, post vaccination, although it will not reflect responses of the same, 

individual chicken. 
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Due to constraints of time and containment facilities, it was not possible to conduct a 

protective/challenge study using live, homologous H5N1 virus strain 

A/Chicken/Malaysia/5858/2004. This final stage will allow measurements of viral 

replication, viral shedding and mortality/survival rate, thus indicating whether the 

enhanced humoral and CMI responses, which were elicited by the vaccines, can confer 

protection against lethal infection. 

 

7.7 Concluding remarks 

In summary, this study showed diverse immunogenicity of H5N1-rFWPV co-expressing 

IL-12 or IL-15, with rFWPV/H5/IL-15 being a better vaccine candidate compared to 

rFWPV/N1/IL-12. It also demonstrates a weight sparing effect of co-expressing IL-15 in 

rFWPV vaccines. The results provide the basis for future homologous challenge studies, 

using live H5N1 virus to evaluate the protective efficacy of the rFWPV vaccines.  
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Appendix 1 

Primers used in this study. Restriction enzyme sites are shown in bold. 

 

Primer Description Sequence (5 ’- 3’) 

H5-F +EcoRV site ATCGGATATCATGGAGAAAATAGTGC 

H5-R +EcoRV site GACTGATATCTTAAATGCAAATTCTGC 

N1-F +Ssp site ACCGAATATTATGAATCCAAATAAGAAG 

N1-R +Ssp site AGGCAATATTCTACTTGTCAATGGTG 

NP-F +EcoRV site ACTGATATCATGGCGTCTCAAGG 

NP-R +EcoRV site ACGTGATATCTCAATTGTCATATTCCTC 

S(2-F) Mutagenic 

primer 

CAAAGAGAGACAAGAGGATTATTTGGAGCTATAG 

S(1-R) Mutagenic 

primer 

CAAATAATCCTCTTGTCTCTCTTTGAGGGCTATTTC 

H5-F1 For screening ATGGAGAAAATAGTGCTTCTTTTTG 

H5-R1 For screening TTAAATGCAAATTCTGCATTGTAACG 

N1-F1 For screening ATGAATCCAAATAAGAAGATAATAACCATCG 

N1-R1 For screening CTACTTGTCAATGGTGAATGGCAACT 

NP-F1 For screening ATGGCGTCTCAAGGCACCA 

NP-R1 For screening TCAATTGTCATATTCCTCTGCATTG 

pEFL29-F For screening CGGAGACCATATCCATACGC 

pEFL29-R For screening CGTAAAAGTAGAAAATATATTC 

pEFGPT12S-F For screening AGTAAGAGAACCGGGAGCG 

pEFGPT12S-R For screening ACCCACATGATAAGAGATTGTATC 

pPC1.X-F For screening ATGAAAAATAGTACCACTATGG 

pPC1.X-R For screening ATCCGATACTAGTATTAGGTTAGC 

IL15-F For screening ATGCTGGGGATGGCACAGCC 

IL15-R For screening ACAGAGTTTTGTAAAGGTTATACAGAGG     

IL12-F For screening ATGTCTCACCTGCTATTTGCC    

IL12-R For screening ACCACCCTTGGCTCCTTCCAGG 
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Appendix 2 

Media Constituents 

 

Media I – 2 % Newborn bovine serum (NBBS) in DMEM 

Component Volume 

1 bottle DMEM (Sigma) 500 mL 

Newborn bovine serum (NBBS) (Autogen Bioclear) 10 mL 

Nystatin (Sigma) 5 mL 

Pen-Strep 500 uL 

Tryptose Phosphate Broth (TPB) 5 mL 

 

Media II – 10 % Newborn bovine serum (NBBS) in DMEM 

Component Volume 

1 bottle DMEM (Sigma) 500 mL 

Newborn bovine serum (NBBS) (Autogen Bioclear) 10 mL 

Nystatin (Sigma) 5 mL 

Pen-Strep 500 uL 

Tryptose Phosphate Broth (TPB) 5 mL 

 

Media III – For agarose overlay 

2 % Newborn bovine serum (NBBS) in 2X MEM 

Component Volume 

1 bottle 2X MEM (Sigma) 250 mL 

Newborn bovine serum (NBBS) (Autogen Bioclear) 10 mL 

Nystatin (Sigma) 5 mL 

Pen-Strep 500 uL 

 

Media III was mixed with 2 % Low Gelling Agarose, LGA (diluted in distilled water), to 

make the agarose medium. 
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Appendix III 

Data of CD4+ and CD8+ T cell population (n=3 for Experiment 1, n=5 for Experiment 2) 

 

Experiment 1 

Vaccine 

Number 

of 

Chickens 

CD4+ T cell population, 

% 

Week 2 Week 5 

Control 

  

  

1 12.26 10.14 

2 16.51 21.36 

3 18.14 18.11 

Wild Type FP9 

  

  

1 22.80 19.17 

2 14.10 21.31 

3 19.35 21.96 

rFWPV/H5 

  

  

1 21.74 17.80 

2 25.60 10.77 

3 23.66 19.71 

rFWPV/H5/IL-15 

  

  

1 15.74 24.14 

2 13.97 12.33 

3 13.43 16.16 

 

 

Experiment 1 

Vaccine 

Number 

of 

Chickens 

CD8+ T cell population, 

% 

Week 2 Week 5 

Control 

  

  

1 7.56 5.93 

2 9.47 9.75 

3 8.58 8.84 

Wild Type FP9 

  

  

1 14.12 13.74 

2 11.29 14.84 

3 12.71 11.27 

rFWPV/H5 

  

  

1 14.12 11.21 

2 19.35 6.82 

3 15.38 10.08 

rFWPV/H5/IL-15 

  

  

1 12.53 13.08 

2 8.46 11.16 

3 10.47 4.77 
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Experiment 1 

Vaccine 

Number 

of 

Chickens 

CD4+ T cell population, % 

Week 2 Week 5 

Control 

  

  

1 12.26 10.14 

2 16.51 21.36 

3 18.14 18.11 

Wild Type FP9 

  

  

1 22.80 19.17 

2 14.10 21.31 

3 19.35 21.96 

rFWPV/N1 

  

  

1 16.50 15.64 

2 15.37 12.86 

3 12.90 13.76 

rFWPV/N1/IL-12 

  

  

1 12.57 13.58 

2 19.20 9.84 

3 17.30 13.82 

 

 

Experiment 1 

Vaccine 

Number 

of 

Chickens 

CD8+ T cell population, % 

Week 2 Week 5 

Control 

  

  

1 7.56 5.93 

2 9.47 9.75 

3 8.58 8.84 

Wild Type FP9 

  

  

1 14.12 13.74 

2 11.29 14.84 

3 12.71 11.27 

rFWPV/N1 

  

  

1 13.16 11.19 

2 8.66 8.23 

3 6.64 6.26 

rFWPV/N1/IL-12 

  

  

1 8.52 8.63 

2 7.56 7.54 

3 13.64 10.01 

 

 

 

 

 

 

 

 

 



 206 

Experiment 2 

Vaccine 

Number 

of 

Chickens 

CD4+ T cell population, 

% 

Week 2 Week 4 

Control 

  

  

  

  

1 13.73 5.54 

2 7.96 10.16 

3 7.03 8.57 

4 11.33 5.43 

5 12.40 7.15 

Wild Type FP9 

  

  

  

  

1 7.90 11.34 

2 8.06 7.71 

3 14.25 12.73 

4 8.98 12.29 

5 10.49 10.58 

rFWPV/H5 

  

  

  

  

1 13.65 9.49 

2 9.83 10.90 

3 9.38 10.12 

4 9.50 10.75 

5 9.48 6.99 

rFWPV/H5/IL-15 

  

  

  

  

1 13.33 7.42 

2 11.78 7.51 

3 15.57 8.74 

4 14.80 7.80 

5 9.77 10.73 
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Experiment 2 

Vaccine 

Number 

of 

Chickens 

CD8+ T cell population, 

% 

Week 2 Week 4 

Control 

  

  

  

  

1 10.40 4.43 

2 6.30 5.20 

3 11.05 4.60 

4 6.78 5.23 

5 7.20 7.83 

Wild Type FP9 

  

  

  

  

1 7.10 14.62 

2 7.14 9.46 

3 9.05 10.51 

4 10.94 7.75 

5 7.59 12.72 

rFWPV/H5 

  

  

  

  

1 11.81 9.87 

2 13.84 9.08 

3 11.88 7.17 

4 10.45 10.02 

5 10.54 8.96 

rFWPV/H5/IL-15 

  

  

  

  

1 11.47 4.59 

2 10.88 8.88 

3 12.84 4.75 

4 9.01 4.30 

5 9.75 6.74 
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Experiment 2 

Vaccine 

Number 

of 

Chickens 

CD4+ T cell population, % 

Week 2 Week 4 

Control 

  

  

  

  

1 13.73 5.54 

2 7.96 10.16 

3 7.03 8.57 

4 11.33 5.43 

5 12.40 7.15 

Wild Type FP9 

  

  

  

  

1 7.90 11.34 

2 8.06 7.71 

3 14.25 12.73 

4 8.98 12.29 

5 10.49 10.58 

rFWPV/N1 

  

  

  

  

1 12.40 12.45 

2 14.20 6.81 

3 11.06 6.68 

4 12.09 5.79 

5 13.46 7.23 

rFWPV/N1/IL-12 

  

  

  

  

1 13.79 6.39 

2 12.81 3.72 

3 11.22 3.65 

4 9.18 3.92 

5 9.55 17.01 
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Experiment 2 

Vaccine 

Number 

of 

Chickens 

CD8+ T cell population, % 

Week 2 Week 4 

Control 

  

  

  

  

1 10.40 4.43 

2 6.30 5.20 

3 11.05 4.60 

4 6.78 5.23 

5 7.20 7.83 

Wild Type FP9 

  

  

  

  

1 7.10 14.62 

2 7.14 9.46 

3 9.05 10.51 

4 10.94 7.75 

5 7.59 12.72 

rFWPV/N1 

  

  

  

  

1 14.08 11.46 

2 10.13 7.76 

3 9.92 5.08 

4 15.36 4.66 

5 8.12 4.55 

rFWPV/N1/IL-12 

  

  

  

  

1 12.08 3.82 

2 15.87 3.23 

3 17.37 4.49 

4 8.46 13.90 

5 8.92 12.98 

 

 

 

 

 

 

 

 

 

 

 



 210 

BIBLIOGRAPHY 

Ada, G. L., and P. D. Jones. 1986. The immune response to influenza infection. Curr Top 

Microbiol Immunol 128:1-54. 

Afonso, C. L., E. R. Tulman, Z. Lu, L. Zsak, G. F. Kutish, and D. L. Rock. 2000. The 

genome of fowlpox virus. J Virol 74:3815-31. 

Airoldi, I., G. Gri, J. D. Marshall, A. Corcione, P. Facchetti, R. Guglielmino, G. Trinchieri, 

and V. Pistoia. 2000. Expression and function of IL-12 and IL-18 receptors on human 

tonsillar B cells. J Immunol 165:6880-8. 

Alcami, A., and G. L. Smith. 1995. Vaccinia, cowpox, and camelpox viruses encode soluble 

gamma interferon receptors with novel broad species specificity. J Virol 69:4633-9. 

Almendro, V., N. Carbo, S. Busquets, J. Lopez-Soriano, M. Figueras, E. Ametller, J. M. 

Argiles, and F. J. Lopez-Soriano. 2005. Interleukin-15 decreases lipid intestinal 

absorption. Int J Mol Med 15:963-7. 

Alvarez, B., N. Carbo, J. Lopez-Soriano, R. H. Drivdahl, S. Busquets, F. J. Lopez-Soriano, 

J. M. Argiles, and L. S. Quinn. 2002. Effects of interleukin-15 (IL-15) on adipose tissue 

mass in rodent obesity models: evidence for direct IL-15 action on adipose tissue. Biochim 

Biophys Acta 1570:33-7. 

Anderson, R. J., C. M. Hannan, S. C. Gilbert, S. M. Laidlaw, E. G. Sheu, S. Korten, R. 

Sinden, G. A. Butcher, M. A. Skinner, and A. V. Hill. 2004. Enhanced CD8+ T cell 

immune responses and protection elicited against Plasmodium berghei malaria by prime 

boost immunization regimens using a novel attenuated fowlpox virus. J Immunol 

172:3094-100. 

Armitage, R. J., B. M. Macduff, J. Eisenman, R. Paxton, and K. H. Grabstein. 1995. IL-15 

has stimulatory activity for the induction of B cell proliferation and differentiation. J 

Immunol 154:483-90. 

Arulanandam, B. P., V. H. Van Cleave, and D. W. Metzger. 1999. IL-12 is a potent neonatal 

vaccine adjuvant. Eur J Immunol 29:256-64. 

Balu, S., and P. Kaiser. 2003. Avian interleukin-12beta (p40): cloning and characterization of 

the cDNA and gene. J Interferon Cytokine Res 23:699-707. 

Banadyga, L., J. Gerig, T. Stewart, and M. Barry. 2007. Fowlpox virus encodes a Bcl-2 

homologue that protects cells from apoptotic death through interaction with the 

proapoptotic protein Bak. J Virol 81:11032-45. 

Banks, J., E. S. Speidel, E. Moore, L. Plowright, A. Piccirillo, I. Capua, P. Cordioli, A. 

Fioretti, and D. J. Alexander. 2000. Changes in the haemagglutinin and the 

neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza 

viruses in Italy. Arch Virol 146:963-73. 

Barber, M. R., J. R. Aldridge, Jr., R. G. Webster, and K. E. Magor. 2010. Association of 

RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci U S A 107:5913-8. 

Baron, S. D., R. Singh, and D. W. Metzger. 2007. Inactivated Francisella tularensis live vaccine 

strain protects against respiratory tularemia by intranasal vaccination in an immunoglobulin 

A-dependent fashion. Infect Immun 75:2152-62. 

Barra, N. G., S. Reid, R. MacKenzie, G. Werstuck, B. L. Trigatti, C. Richards, A. C. 

Holloway, and A. A. Ashkar. 2010. Interleukin-15 contributes to the regulation of murine 

adipose tissue and human adipocytes. Obesity (Silver Spring) 18:1601-7. 

Beard, C. W., W. M. Schnitzlein, and D. N. Tripathy. 1991. Protection of chickens against 

highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses. Avian 

Dis 35:356-9. 

Becker, T. C., E. J. Wherry, D. Boone, K. Murali-Krishna, R. Antia, A. Ma, and R. Ahmed. 
2002. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T 

cells. J Exp Med 195:1541-8. 



 211 

Bender, B. S., T. Croghan, L. Zhang, and P. A. Small, Jr. 1992. Transgenic mice lacking class 

I major histocompatibility complex-restricted T cells have delayed viral clearance and 

increased mortality after influenza virus challenge. J Exp Med 175:1143-5. 

Berger, S. B., A. A. Sadighi Akha, R. A. Miller, and G. G. Garcia. 2006. CD43-independent 

augmentation of mouse T-cell function by glycoprotein cleaving enzymes. Immunology 

119:178-86. 

Betakova, T. 2007. M2 protein-a proton channel of influenza A virus. Curr Pharm Des 13:3231-

5. 

Bigalke, B., P. L. Schwimmbeck, C. S. Haas, and S. Lindemann. 2009. Effect of interleukin-

15 on the course of myocarditis in Coxsackievirus B3-infected BALB/c mice. Can J 

Cardiol 25:e248-54. 

Bodewes, R., Osterhaus, A. D.,  and Rimmelzwaan, G. F. 2010. Targets for the induction of 

protective immunity against influenza A viruses. Viruses 2(1):166-188. 

Bolte, A. L., J. Meurer and E. F. Kaleta. 1999. Avian host spectrum of avipoxviruses. Avian 

Pathology 28:415-432. 

Boltz, D. A., B. Douangngeun, S. Sinthasak, P. Phommachanh, S. Rolston, H. Chen, Y. 

Guan, J. S. Peiris, J. G. Smith, and R. G. Webster. 2006. H5N1 influenza viruses in Lao 

People's Democratic Republic. Emerg Infect Dis 12:1593-5. 

Boulanger, D., P. Green, T. Smith, C. P. Czerny, and M. A. Skinner. 1998. The 131-amino-

acid repeat region of the essential 39-kilodalton core protein of fowlpox virus FP9, 

equivalent to vaccinia virus A4L protein, is nonessential and highly immunogenic. J Virol 

72:170-9. 

Bouloy, M., C. Janzen, P. Vialat, H. Khun, J. Pavlovic, M. Huerre, and O. Haller. 2001. 

Genetic evidence for an interferon-antagonistic function of rift valley fever virus 

nonstructural protein NSs. J Virol 75:1371-7. 

Boursnell, M. E., P. F. Green, A. C. Samson, J. I. Campbell, A. Deuter, R. W. Peters, N. S. 

Millar, P. T. Emmerson, and M. M. Binns. 1990. A recombinant fowlpox virus 

expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) 

protects chickens against challenge by NDV. Virology 178:297-300. 

Boyle, D. B., and H. G. Heine. 1994. Recombinant fowlpox virus vaccines for poultry. Immunol 

Cell Biol 71 ( Pt 5):391-7. 

Bridle, B. W., R. Julian, P. E. Shewen, J. P. Vaillancourt, and A. K. Kaushik. 2006. T 

lymphocyte subpopulations diverge in commercially raised chickens. Can J Vet Res 

70:183-90. 

Brown, D. W., Y. Kawaoka, R. G. Webster, and H. L. Robinson. 1992. Assessment of 

retrovirus-expressed nucleoprotein as a vaccine against lethal influenza virus infections of 

chickens. Avian Dis 36:515-20. 

Brown, M., Y. Zhang, S. Dermine, E. A. de Wynter, C. Hart, H. Kitchener, P. L. Stern, M. 

A. Skinner, and S. N. Stacey. 2000. Dendritic cells infected with recombinant fowlpox 

virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T 

lymphocyte activity. Gene Ther 7:1680-9. 

Bublot, M., D. E. Swayne, P. Selleck, E. Montiel, N. Pritchard, and M. Lee 2005. TROVAC 

AI H5, an avian influenza fowlpox vector vaccine, as an alternative vaccine for hatcheries. 

In K. Dev Biol, Basel (ed.), OIE/FAO International Scientific Conference on Avian 

Influenza, Paris, France. 

Bublot, M., F. X. Le Gros, D. Nieddu, N. Pritchard, T. R. Mickle, and D. E. Swayne. 2007. 

Efficacy of two H5N9-inactivated vaccines against challenge with a recent H5N1 highly 

pathogenic avian influenza isolate from a chicken in Thailand. Avian Dis 51:332-7. 

Bublot, M., R. J. Manvell, W. Shell, and I. H. Brown. 2010. High level of protection induced 

by two fowlpox vector vaccines against a highly pathogenic avian influenza H5N1 

challenge in specific-pathogen-free chickens. Avian Dis 54:257-61. 



 212 

Bublot, M., N. Pritchard, D. E. Swayne, P. Selleck, K. Karaca, D. L. Suarez, J. C. Audonnet, 

and T. R. Mickle. 2006. Development and use of fowlpox vectored vaccines for avian 

influenza. Ann N Y Acad Sci 1081:193-201. 

Buchanan, R. M., D. E. Briles, B. P. Arulanandam, M. A. Westerink, R. H. Raeder, and D. 

W. Metzger. 2001. IL-12-mediated increases in protection elicited by pneumococcal and 

meningococcal conjugate vaccines. Vaccine 19:2020-8. 

Bui, M., E. G. Wills, A. Helenius, and G. R. Whittaker. 2000. Role of the influenza virus M1 

protein in nuclear export of viral ribonucleoproteins. J Virol 74:1781-6. 

Busquets, S., M. Figueras, V. Almendro, F. J. Lopez-Soriano, and J. M. Argiles. 2006. 

Interleukin-15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of 

the cytokine. Biochim Biophys Acta 1760:1613-7. 

Buttigieg, K. R. 2009. Identifying a molecular determinant of Fowlpox virus resistance to avian 

type I interferon. Imperial College London, PhD thesis. 

Capua, I., and F. Mutinelli. 2001. A Colour Atlas and Text on Avian Influenza, p. 13-20, Papi 

Editore, Bologna. 

Capua, I., and D. J. Alexander. 2007. Animal and human health implications of avian influenza 

infections. Biosci Rep 27:359-72. 

Capua, I., and D. J. Alexander. 2004. Avian influenza: recent developments. Avian Pathol 

33:393-404. 

Carson, W. E., J. G. Giri, M. J. Lindemann, M. L. Linett, M. Ahdieh, R. Paxton, D. 

Anderson, J. Eisenmann, K. Grabstein, and M. A. Caligiuri. 1994. Interleukin (IL) 15 is 

a novel cytokine that activates human natural killer cells via components of the IL-2 

receptor. J Exp Med 180:1395-403. 

Chan, M. C., C. Y. Cheung, W. H. Chui, S. W. Tsao, J. M. Nicholls, Y. O. Chan, R. W. 

Chan, H. T. Long, L. L. Poon, Y. Guan, and J. S. Peiris. 2005. Proinflammatory 

cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and 

bronchial epithelial cells. Respir Res 6:135. 

Chen, H., Y. Li, Z. Li, J. Shi, K. Shinya, G. Deng, Q. Qi, G. Tian, S. Fan, H. Zhao, Y. Sun, 

and Y. Kawaoka. 2006. Properties and dissemination of H5N1 viruses isolated during an 

influenza outbreak in migratory waterfowl in western China. J Virol 80:5976-83. 

Chen, H. Y., M. F. Yang, B. A. Cui, P. Cui, M. Sheng, G. Chen, S. J. Wang, and J. W. Geng. 
2010a. Construction and immunogenicity of a recombinant fowlpox vaccine coexpressing 

S1 glycoprotein of infectious bronchitis virus and chicken IL-18. Vaccine 28:8112-9. 

Chen, H. Y., H. Y. Zhang, X. S. Li, B. A. Cui, S. J. Wang, J. W. Geng, and K. Li. 2010b. 

Interleukin-18-mediated enhancement of the protective effect of an infectious 

laryngotracheitis virus glycoprotein B plasmid DNA vaccine in chickens. J Med Microbiol 

60:110-6. 

Chen, W., P. A. Calvo, D. Malide, J. Gibbs, U. Schubert, I. Bacik, S. Basta, R. O'Neill, J. 

Schickli, P. Palese, P. Henklein, J. R. Bennink, and J. W. Yewdell. 2001. A novel 

influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306-12. 

Chen, Z., S. Kadowaki, Y. Hagiwara, T. Yoshikawa, K. Matsuo, T. Kurata, and S. Tamura. 
2000. Cross-protection against a lethal influenza virus infection by DNA vaccine to 

neuraminidase. Vaccine 18:3214-22. 

Cheung, C. Y., L. L. Poon, A. S. Lau, W. Luk, Y. L. Lau, K. F. Shortridge, S. Gordon, Y. 

Guan, and J. S. Peiris. 2002. Induction of proinflammatory cytokines in human 

macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of 

human disease? Lancet 360:1831-7. 

Choi, K. D., H. S. Lillehoj, K. D. Song, and J. Y. Han. 1999. Molecular and functional 

characterization of chicken IL-15. Dev Comp Immunol 23:165-77. 



 213 

Ciftci, O., S. Tanyildizi, and A. Godekmerdan. 2010. Protective effect of curcumin on immune 

system and body weight gain on rats intoxicated with 2,3,7,8-Tetrachlorodibenzo-p-dioxin 

(TCDD). Immunopharmacol Immunotoxicol 32:99-104. 

Conenello, G. M., J. R. Tisoncik, E. Rosenzweig, Z. T. Varga, P. Palese, and M. G. Katze. 
2010. A Single N66S Mutation in the PB1-F2 Protein of Influenza A Virus Increases 

Virulence by Inhibiting the Early Interferon Response In Vivo. J Virol 85:652-62. 

Conenello, G. M., D. Zamarin, L. A. Perrone, T. Tumpey, and P. Palese. 2007. A single 

mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to 

increased virulence. PLoS Pathog 3:1414-21. 

Cottingham, M. G., A. van Maurik, M. Zago, A. T. Newton, R. J. Anderson, M. K. Howard, 

J. Schneider, and M. A. Skinner. 2006. Different levels of immunogenicity of two strains 

of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous 

prime-boost vaccination strategies. Clin Vaccine Immunol 13:747-57. 

Crawford, J., B. Wilkinson, A. Vosnesensky, G. Smith, M. Garcia, H. Stone, and M. L. 

Perdue. 1999. Baculovirus-derived hemagglutinin vaccines protect against lethal influenza 

infections by avian H5 and H7 subtypes. Vaccine 17:2265-74. 

Cullen, S. P., and S. J. Martin. 2008. Mechanisms of granule-dependent killing. Cell Death 

Differ 15:251-62. 

Davidson, I., I. Shkoda, and S. Perk. 2008. Integration of the reticuloendotheliosis virus 

envelope gene into the poultry fowlpox virus genome is not universal. J Gen Virol 

89:2456-60. 

Davies, M. V., O. Elroy-Stein, R. Jagus, B. Moss, and R. J. Kaufman. 1992. The vaccinia 

virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-

activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation 

factor 2. J Virol 66:1943-50. 

Daviet, S., S. Van Borm, A. Habyarimana, M. L. Ahanda, V. Morin, A. Oudin, T. Van Den 

Berg, and R. Zoorob. 2009. Induction of Mx and PKR failed to protect chickens from 

H5N1 infection. Viral Immunol 22:467-72. 

Davis, A. R., T. Bos, M. Ueda, D. P. Nayak, D. Dowbenko, and R. W. Compans. 1983. 

Immune response to human influenza virus hemagglutinin expressed in Escherichia coli. 

Gene 21:273-84. 

de Jong, M. D., and T. T. Hien. 2006. Avian influenza A (H5N1). J Clin Virol 35:2-13. 

Degen, W. G., N. van Daal, H. I. van Zuilekom, J. Burnside, and V. E. Schijns. 2004. 

Identification and molecular cloning of functional chicken IL-12. J Immunol 172:4371-80. 

Denton, A. E., P. C. Doherty, S. J. Turner, and N. L. La Gruta. 2007. IL-18, but not IL-12, is 

required for optimal cytokine production by influenza virus-specific CD8+ T cells. Eur J 

Immunol 37:368-75. 

Deroo, T., W. M. Jou, and W. Fiers. 1996. Recombinant neuraminidase vaccine protects against 

lethal influenza. Vaccine 14:561-9. 

Ding, X., H. S. Lillehoj, M. A. Quiroz, E. Bevensee, and E. P. Lillehoj. 2004. Protective 

immunity against Eimeria acervulina following in ovo immunization with a recombinant 

subunit vaccine and cytokine genes. Infect Immun 72:6939-44. 

Doherty, P. C., D. J. Topham, R. A. Tripp, R. D. Cardin, J. W. Brooks, and P. G. Stevenson. 
1997. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus 

infections. Immunol Rev 159:105-17. 

Donelan, N. R., C. F. Basler, and A. Garcia-Sastre. 2003. A recombinant influenza A virus 

expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon 

and is attenuated in mice. J Virol 77:13257-66. 

Dredge, K., J. B. Marriott, S. M. Todryk, and A. G. Dalgleish. 2002. Adjuvants and the 

promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol Immunother 

51:521-31. 



 214 

Drillien, R., D. Spehner, D. Villeval, and J. P. Lecocq. 1987. Similar genetic organization 

between a region of fowlpox virus DNA and the vaccinia virus HindIII J fragment despite 

divergent location of the thymidine kinase gene. Virology 160:203-9. 

Dupuis, S., E. Jouanguy, S. Al-Hajjar, C. Fieschi, I. Z. Al-Mohsen, S. Al-Jumaah, K. Yang, 

A. Chapgier, C. Eidenschenk, P. Eid, A. Al Ghonaium, H. Tufenkeji, H. Frayha, S. Al-

Gazlan, H. Al-Rayes, R. D. Schreiber, I. Gresser, and J. L. Casanova. 2003. Impaired 

response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat 

Genet 33:388-91. 

Edelman, R. 2002. The development and use of vaccine adjuvants. Mol Biotechnol 21:129-48. 

Edelman, R. 1980. Vaccine adjuvants. Rev Infect Dis 2:370-83. 

Ehrhardt, C., T. Wolff, S. Pleschka, O. Planz, W. Beermann, J. G. Bode, M. Schmolke, and 

S. Ludwig. 2007. Influenza A virus NS1 protein activates the PI3K/Akt pathway to 

mediate antiapoptotic signaling responses. J Virol 81:3058-67. 

Eldaghayes, I. 2005. Use of chicken interleuin-18 as a vaccine adjuvant with a recombinant 

fowlpox virus fpIBD1, a subunit vaccine giving partial protection against IBDV. PhD 

Thesis, University of Bristol. 

Fair, J. M., K. J. Taylor-McCabe, Y. Shou, and B. L. Marrone. 2008. Immunophenotyping of 

chicken peripheral blood lymphocyte subpopulations: individual variability and 

repeatability. Vet Immunol Immunopathol 125:268-73. 

Falcon, A. M., R. M. Marion, T. Zurcher, P. Gomez, A. Portela, A. Nieto, and J. Ortin. 
2004. Defective RNA replication and late gene expression in temperature-sensitive 

influenza viruses expressing deleted forms of the NS1 protein. J Virol 78:3880-8. 

Falkner, F. G., and B. Moss. 1990. Transient dominant selection of recombinant vaccinia 

viruses. J Virol 64:3108-11. 

Fan, J., X. Liang, M. S. Horton, H. C. Perry, M. P. Citron, G. J. Heidecker, T. M. Fu, J. 

Joyce, C. T. Przysiecki, P. M. Keller, V. M. Garsky, R. Ionescu, Y. Rippeon, L. Shi, M. 

A. Chastain, J. H. Condra, M. E. Davies, J. Liao, E. A. Emini, and J. W. Shiver. 2004. 

Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and 

rhesus monkeys. Vaccine 22:2993-3003. 

Fawaz, L. M., E. Sharif-Askari, and J. Menezes. 1999. Up-regulation of NK cytotoxic activity 

via IL-15 induction by different viruses: a comparative study. J Immunol 163:4473-80. 

Fernandez-Arias, A., C. Risco, S. Martinez, J. P. Albar, and J. F. Rodriguez. 1998. 

Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-

like particles. J Gen Virol 79 ( Pt 5):1047-54. 

Ferrara, J. L., S. Abhyankar, and D. G. Gilliland. 1993. Cytokine storm of graft-versus-host 

disease: a critical effector role for interleukin-1. Transplant Proc 25:1216-7. 

Fiers, W., M. De Filette, A. Birkett, S. Neirynck, and W. Min Jou. 2004. A "universal" human 

influenza A vaccine. Virus Res 103:173-6. 

Flint, S. J., Enquist, L. W., Racaniello, V. R., and Skalka, A. M. 2004. Principles of virology. 

Molecular biology, pathogenesis, and control of animal viruses., 2 ed. ASM Press, 

Washington, DC, USA. 

Fouchier, R. A., V. Munster, A. Wallensten, T. M. Bestebroer, S. Herfst, D. Smith, G. F. 

Rimmelzwaan, B. Olsen, and A. D. Osterhaus. 2005. Characterization of a novel 

influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 

79:2814-22. 

Fouchier, R. A., P. M. Schneeberger, F. W. Rozendaal, J. M. Broekman, S. A. Kemink, V. 

Munster, T. Kuiken, G. F. Rimmelzwaan, M. Schutten, G. J. Van Doornum, G. Koch, 

A. Bosman, M. Koopmans, and A. D. Osterhaus. 2004. Avian influenza A virus (H7N7) 

associated with human conjunctivitis and a fatal case of acute respiratory distress 

syndrome. Proc Natl Acad Sci U S A 101:1356-61. 



 215 

Gabriel, G., B. Dauber, T. Wolff, O. Planz, H. D. Klenk, and J. Stech. 2005. The viral 

polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl 

Acad Sci U S A 102:18590-5. 

Gall-Recule, G. L., F. X. Briand, A. Schmitz, O. Guionie, P. Massin, and V. Jestin. 2008. 

Double introduction of highly pathogenic H5N1 avian influenza virus into France in early 

2006. Avian Pathol 37:15-23. 

Garcia, G. G., S. B. Berger, A. A. Sadighi Akha, and R. A. Miller. 2005. Age-associated 

changes in glycosylation of CD43 and CD45 on mouse CD4 T cells. Eur J Immunol 

35:622-31. 

Garcia, M., J. M. Crawford, J. W. Latimer, E. Rivera-Cruz, and M. L. Perdue. 1996. 

Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic 

phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77 ( Pt 

7):1493-504. 

Garcia, M. A., J. Gil, I. Ventoso, S. Guerra, E. Domingo, C. Rivas, and M. Esteban. 2006. 

Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. 

Microbiol Mol Biol Rev 70:1032-60. 

Garcia-Sastre, A. 2001. Inhibition of interferon-mediated antiviral responses by influenza A 

viruses and other negative-strand RNA viruses. Virology 279:375-84. 

Garcia-Sastre, A., A. Egorov, D. Matassov, S. Brandt, D. E. Levy, J. E. Durbin, P. Palese, 

and T. Muster. 1998. Influenza A virus lacking the NS1 gene replicates in interferon-

deficient systems. Virology 252:324-30. 

Ge, J., G. Deng, Z. Wen, G. Tian, Y. Wang, J. Shi, X. Wang, Y. Li, S. Hu, Y. Jiang, C. Yang, 

K. Yu, Z. Bu, and H. Chen. 2007. Newcastle disease virus-based live attenuated vaccine 

completely protects chickens and mice from lethal challenge of homologous and 

heterologous H5N1 avian influenza viruses. J Virol 81:150-8. 

Gerentes, L., N. Kessler, and M. Aymard. 1999. Difficulties in standardizing the neuraminidase 

content of influenza vaccines. Dev Biol Stand 98:189-96; discussion 197. 

Gherardi, M. M., J. C. Ramirez, and M. Esteban. 2003. IL-12 and IL-18 act in synergy to 

clear vaccinia virus infection: involvement of innate and adaptive components of the 

immune system. J Gen Virol 84:1961-72. 

Gherardi, M. M., J. C. Ramirez, D. Rodriguez, J. R. Rodriguez, G. Sano, F. Zavala, and M. 

Esteban. 1999. IL-12 delivery from recombinant vaccinia virus attenuates the vector and 

enhances the cellular immune response against HIV-1 Env in a dose-dependent manner. J 

Immunol 162:6724-33. 

Gill, N., and A. A. Ashkar. 2009. Overexpression of interleukin-15 compromises CD4-

dependent adaptive immune responses against herpes simplex virus 2. J Virol 83:918-26. 

Gill, N., G. Paltser, and A. A. Ashkar. 2009. Interleukin-15 expression affects homeostasis and 

function of B cells through NK cell-derived interferon-gamma. Cell Immunol 258:59-64. 

Grabstein, K. H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. 

Richardson, M. A. Schoenborn, M. Ahdieh, and et al. 1994. Cloning of a T cell growth 

factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965-8. 

Grant, C. E., M. Z. Vasa, and R. G. Deeley. 1995. cIRF-3, a new member of the interferon 

regulatory factor (IRF) family that is rapidly and transiently induced by dsRNA. Nucleic 

Acids Res 23:2137-46. 

Guo, Z., L. M. Chen, H. Zeng, J. A. Gomez, J. Plowden, T. Fujita, J. M. Katz, R. O. Donis, 

and S. Sambhara. 2007. NS1 protein of influenza A virus inhibits the function of 

intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol 36:263-9. 

Gupta, R. K., E. H. Relyveld, E. B. Lindblad, B. Bizzini, S. Ben-Efraim, and C. K. Gupta. 
1993. Adjuvants--a balance between toxicity and adjuvanticity. Vaccine 11:293-306. 



 216 

Haghighi, H. R., L. R. Read, S. M. Haeryfar, S. Behboudi, and S. Sharif. 2009. Identification 

of a dual-specific T cell epitope of the hemagglutinin antigen of an h5 avian influenza virus 

in chickens. PLoS One 4:e7772. 

Hai, R., M. Schmolke, Z. T. Varga, B. Manicassamy, T. T. Wang, J. A. Belser, M. B. Pearce, 

A. Garcia-Sastre, T. M. Tumpey, and P. Palese. 2010. PB1-F2 expression by the 2009 

pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J Virol 

84:4442-50. 

Hale, B. G., D. Jackson, Y. H. Chen, R. A. Lamb, and R. E. Randall. 2006. Influenza A virus 

NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc Natl 

Acad Sci U S A 103:14194-9. 

Hale, B. G., R. E. Randall, J. Ortin, and D. Jackson. 2008. The multifunctional NS1 protein of 

influenza A viruses. J Gen Virol 89:2359-76. 

Haller, O., G. Kochs, and F. Weber. 2006. The interferon response circuit: induction and 

suppression by pathogenic viruses. Virology 344:119-30. 

Haller, O., and F. Weber. 2007. Pathogenic viruses: smart manipulators of the interferon 

system. Curr Top Microbiol Immunol 316:315-34. 

Hama, Y., M. Kurokawa, M. Imakita, Y. Yoshida, T. Shimizu, W. Watanabe, and K. 

Shiraki. 2009. Interleukin 12 is a primary cytokine responding to influenza virus infection 

in the respiratory tract of mice. Acta Virol 53:233-40. 

Hance, K. W., C. J. Rogers, D. A. Zaharoff, D. Canter, J. Schlom, and J. W. Greiner. 2009. 

The antitumor and immunoadjuvant effects of IFN-alpha in combination with recombinant 

poxvirus vaccines. Clin Cancer Res 15:2387-96. 

Harris, A., G. Cardone, D. C. Winkler, J. B. Heymann, M. Brecher, J. M. White, and A. C. 

Steven. 2006. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc 

Natl Acad Sci U S A 103:19123-7. 

Hartoonian, C., M. Ebtekar, H. Soleimanjahi, A. Karami, M. Mahdavi, N. Rastgoo, and K. 

Azadmanesh. 2009. Effect of immunological adjuvants: GM-CSF (granulocyte-monocyte 

colony stimulating factor) and IL-23 (interleukin-23) on immune responses generated 

against hepatitis C virus core DNA vaccine. Cytokine 46:43-50. 

Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka. 2001. Molecular basis for high virulence of 

Hong Kong H5N1 influenza A viruses. Science 293:1840-2. 

Heiny, A. T., O. Miotto, K. N. Srinivasan, A. M. Khan, G. L. Zhang, V. Brusic, T. W. Tan, 

and J. T. August. 2007. Evolutionarily conserved protein sequences of influenza a viruses, 

avian and human, as vaccine targets. PLoS One 2:e1190. 

Hertig, C., B. E. Coupar, A. R. Gould, and D. B. Boyle. 1997. Field and vaccine strains of 

fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis 

virus. Virology 235:367-76. 

Hghihghi, H. R., L. R. Read, H. Mohammadi, Y. Pei, C. Ursprung, E. Nagy, S. Behboudi, S. 

M. Haeryfar, and S. Sharif. Characterization of host responses against a recombinant 

fowlpox virus-vectored vaccine expressing the hemagglutinin antigen of an avian influenza 

virus. Clin Vaccine Immunol 17:454-63. 

Higgins, D. A., K. F. Shortridge, and P. L. Ng. 1987. Bile immunoglobulin of the duck (Anas 

platyrhynchos). II. Antibody response in influenza A virus infections. Immunology 62:499-

504. 

Hilton, L. S., A. G. Bean, and J. W. Lowenthal. 2002. The emerging role of avian cytokines as 

immunotherapeutics and vaccine adjuvants. Vet Immunol Immunopathol 85:119-28. 

Hiroi, T., M. Yanagita, N. Ohta, G. Sakaue, and H. Kiyono. 2000. IL-15 and IL-15 receptor 

selectively regulate differentiation of common mucosal immune system-independent B-1 

cells for IgA responses. J Immunol 165:4329-37. 



 217 

Hiromoto, Y., Y. Yamazaki, T. Fukushima, T. Saito, S. E. Lindstrom, K. Omoe, R. Nerome, 

W. Lim, S. Sugita, and K. Nerome. 2000. Evolutionary characterization of the six internal 

genes of H5N1 human influenza A virus. J Gen Virol 81:1293-303. 

Hoare, M., M. S. Levy, D. G. Bracewell, S. D. Doig, S. Kong, N. Titchener-Hooker, J. M. 

Ward, and P. Dunnill. 2005. Bioprocess engineering issues that would be faced in 

producing a DNA vaccine at up to 100 m3 fermentation scale for an influenza pandemic. 

Biotechnol Prog 21:1577-92. 

Hong, Y. H., H. S. Lillehoj, E. P. Lillehoj, and S. H. Lee. 2006. Changes in immune-related 

gene expression and intestinal lymphocyte subpopulations following Eimeria maxima 

infection of chickens. Vet Immunol Immunopathol 114:259-72. 

Horimoto, T., K. Nakayama, S. P. Smeekens, and Y. Kawaoka. 1994. Proprotein-processing 

endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza 

viruses. J Virol 68:6074-8. 

Horimoto, T., A. Takada, K. Fujii, H. Goto, M. Hatta, S. Watanabe, K. Iwatsuki-Horimoto, 

M. Ito, Y. Tagawa-Sakai, S. Yamada, H. Ito, T. Ito, M. Imai, S. Itamura, T. Odagiri, 

M. Tashiro, W. Lim, Y. Guan, M. Peiris, and Y. Kawaoka. 2006. The development and 

characterization of H5 influenza virus vaccines derived from a 2003 human isolate. 

Vaccine 24:3669-76. 

Horthongkham, N., T. Srihtrakul, N. Athipanyasilp, S. Siritantikorn, W. Kantakamalakul, 

Y. Poovorawan, and R. Sutthent. 2007. Specific antibody response of mice after 

immunization with COS-7 cell derived avian influenza virus (H5N1) recombinant proteins. 

J Immune Based Ther Vaccines 5:10. 

Hu, Y. C., Y. L. Luo, W. T. Ji, J. L. Chulu, P. C. Chang, H. Shieh, C. Y. Wang, and H. J. 

Liu. 2006. Dual expression of the HA protein of H5N2 avian influenza virus in a 

baculovirus system. J Virol Methods 135:43-8. 

Hunt, H. D., S. Jadhao, and D. E. Swayne. 2010. Major histocompatibility complex and 

background genes in chickens influence susceptibility to high pathogenicity avian influenza 

virus. Avian Dis 54:572-5. 

Institute for Laboratory Animal Research (ILAR). 1996. Guide for the care and use of 

laboratory animals. National Academy Press, Washington D.C. 

Ito, N., M. Takayama, K. Yamada, M. Sugiyama, and N. Minamoto. 2001. Rescue of rabies 

virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein 

gene is associated with virulence for adult mice. J Virol 75:9121-8. 

Ito, T., H. Goto, E. Yamamoto, H. Tanaka, M. Takeuchi, M. Kuwayama, Y. Kawaoka, and 

K. Otsuki. 2001. Generation of a highly pathogenic avian influenza A virus from an 

avirulent field isolate by passaging in chickens. J Virol 75:4439-43. 

Jackson, D., M. J. Hossain, D. Hickman, D. R. Perez, and R. A. Lamb. 2008. A new influenza 

virus virulence determinant: the NS1 protein four C-terminal residues modulate 

pathogenicity. Proc Natl Acad Sci U S A 105:4381-6. 

Jackson, R. J., A. J. Ramsay, C. D. Christensen, S. Beaton, D. F. Hall, and I. A. Ramshaw. 
2001. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses 

cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 

75:1205-10. 

Jeon, W. J., E. K. Lee, Y. J. Lee, O. M. Jeong, Y. J. Kim, J. H. Kwon, and K. S. Choi. 2008. 

Protective efficacy of commercial inactivated Newcastle disease virus vaccines in chickens 

against a recent Korean epizootic strain. J Vet Sci 9:295-300. 

Jeshtadi, A., G. Henriquet, S. M. Laidlaw, D. Hot, Y. Zhang, and M. A. Skinner. 2005. In 

vitro expression and analysis of secreted fowlpox virus CC chemokine-like proteins 

Fpv060, Fpv061, Fpv116 and Fpv121. Arch Virol 150:1745-62. 



 218 

Jiao, P., G. Tian, Y. Li, G. Deng, Y. Jiang, C. Liu, W. Liu, Z. Bu, Y. Kawaoka, and H. Chen. 
2008. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of 

H5N1 avian influenza viruses in mice. J Virol 82:1146-54. 

Jin, M., G. Wang, R. Zhang, S. Zhao, H. Li, Y. Tan, and H. Chen. 2004. Development of 

enzyme-linked immunosorbent assay with nucleoprotein as antigen for detection of 

antibodies to avian influenza virus. Avian Dis 48:870-8. 

Johansson, B. E., T. M. Moran, C. A. Bona, S. W. Popple, and E. D. Kilbourne. 1987b. 

Immunologic response to influenza virus neuraminidase is influenced by prior experience 

with the associated viral hemagglutinin. II. Sequential infection of mice simulates human 

experience. J Immunol 139:2010-4. 

Johansson, B. E., T. M. Moran, and E. D. Kilbourne. 1987a. Antigen-presenting B cells and 

helper T cells cooperatively mediate intravirionic antigenic competition between influenza 

A virus surface glycoproteins. Proc Natl Acad Sci U S A 84:6869-73. 

Kaiser, P., L. Rothwell, M. Goodchild, and N. Bumstead. 2004. The chicken proinflammatory 

cytokines interleukin-1beta and interleukin-6: differences in gene structure and genetic 

location compared with their mammalian orthologues. Anim Genet 35:169-75. 

Kajikawa, A., K. Masuda, M. Katoh, and S. Igimi. 2010. Adjuvant effects for oral 

immunization provided by recombinant Lactobacillus casei secreting biologically active 

murine interleukin-1(1). Clin Vaccine Immunol 17:43-8. 

Kalthoff, D., A. Giritch, K. Geisler, U. Bettmann, V. Klimyuk, H. R. Hehnen, Y. Gleba, and 

M. Beer. 2010. Immunization with plant-expressed hemagglutinin protects chickens from 

lethal highly pathogenic avian influenza virus H5N1 challenge infection. J Virol 84:12002-

10. 

Kanegane, H., and G. Tosato. 1996. Activation of naive and memory T cells by interleukin-15. 

Blood 88:230-5. 

Karaca, K., J. M. Sharma, B. J. Winslow, D. E. Junker, S. Reddy, M. Cochran, and J. 

McMillen. 1998. Recombinant fowlpox viruses coexpressing chicken type I IFN and 

Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and 

humoral responses of chickens following in ovo or post-hatch administration of 

recombinant viruses. Vaccine 16:1496-503. 

Kennedy, M. K., M. Glaccum, S. N. Brown, E. A. Butz, J. L. Viney, M. Embers, N. Matsuki, 

K. Charrier, L. Sedger, C. R. Willis, K. Brasel, P. J. Morrissey, K. Stocking, J. C. 

Schuh, S. Joyce, and J. J. Peschon. 2000. Reversible defects in natural killer and memory 

CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771-80. 

Kilbourne, E. D., W. G. Laver, J. L. Schulman, and R. G. Webster. 1968. Antiviral activity of 

antiserum specific for an influenza virus neuraminidase. J Virol 2:281-8. 

Kim, S., K. B. Miska, A. P. McElroy, M. C. Jenkins, R. H. Fetterer, C. M. Cox, L. H. 

Stuard, and R. A. Dalloul. 2009. Molecular cloning and functional characterization of 

avian interleukin-19. Mol Immunol 47:476-84. 

Kittel, C., B. Ferko, M. Kurz, R. Voglauer, S. Sereinig, J. Romanova, G. Stiegler, H. 

Katinger, and A. Egorov. 2005. Generation of an influenza A virus vector expressing 

biologically active human interleukin-2 from the NS gene segment. J Virol 79:10672-7. 

Ko, J. H., H. K. Jin, A. Asano, A. Takada, A. Ninomiya, H. Kida, H. Hokiyama, M. Ohara, 

M. Tsuzuki, M. Nishibori, M. Mizutani, and T. Watanabe. 2002. Polymorphisms and 

the differential antiviral activity of the chicken Mx gene. Genome Res 12:595-601. 

Kolibab, K., A. Yang, S. C. Derrick, T. A. Waldmann, L. P. Perera, and S. L. Morris. 2010. 

Highly persistent and effective prime/boost regimens against tuberculosis that use a 

multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 

as a molecular adjuvant. Clin Vaccine Immunol 17:793-801. 



 219 

Kostense, S., W. H. Sun, R. Cottey, S. F. Taylor, S. Harmeling, D. Zander, P. A. Small, Jr., 

and B. S. Bender. 1998. Interleukin 12 administration enhances Th1 activity but delays 

recovery from influenza A virus infection in mice. Antiviral Res 38:117-30. 

Ku, C. C., M. Murakami, A. Sakamoto, J. Kappler, and P. Marrack. 2000. Control of 

homeostasis of CD8+ memory T cells by opposing cytokines. Science 288:675-8. 

Kuzuhara, T., D. Kise, H. Yoshida, T. Horita, Y. Murazaki, A. Nishimura, N. Echigo, H. 

Utsunomiya, and H. Tsuge. 2009. Structural basis of the influenza A virus RNA 

polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 

residue. J Biol Chem 284:6855-60. 

Laidlaw, S. M., M. A. Anwar, W. Thomas, P. Green, K. Shaw, and M. A. Skinner. 1998. 

Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC-1, and an 

orphan human homolog of a secreted nematode protein. J Virol 72:6742-51. 

Laidlaw, S. M., and M. A. Skinner. 2004. Comparison of the genome sequence of FP9, an 

attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent 

American and European viruses. J Gen Virol 85:305-22. 

Langhans, W., and B. Hrupka. 1999. Interleukins and tumor necrosis factor as inhibitors of 

food intake. Neuropeptides 33:415-24. 

Layton, S. L., D. R. Kapczynski, S. Higgins, J. Higgins, A. D. Wolfenden, K. A. Liljebjelke, 

W. G. Bottje, D. Swayne, L. R. Berghman, Y. M. Kwon, B. M. Hargis, and K. Cole. 
2009. Vaccination of chickens with recombinant Salmonella expressing M2e and CD154 

epitopes increases protection and decreases viral shedding after low pathogenic avian 

influenza challenge. Poult Sci 88:2244-52. 

Layton, S. L., D. R. Kapczynski, S. Higgins, J. Higgins, A. D. Wolfenden, K. A. Liljebjelke, 

W. G. Bottje, D. Swayne, L. R. Berghman, Y. M. Kwon, B. M. Hargis, and K. Cole. 
2009. Vaccination of chickens with recombinant Salmonella expressing M2e and CD154 

epitopes increases protection and decreases viral shedding after low pathogenic avian 

influenza challenge. Poult Sci 88:2244-52. 

Le, Q. M., M. Ito, Y. Muramoto, P. V. Hoang, C. D. Vuong, Y. Sakai-Tagawa, M. Kiso, M. 

Ozawa, R. Takano, and Y. Kawaoka. 2010. Pathogenicity of highly pathogenic avian 

H5N1 influenza A viruses isolated from humans between 2003 and 2008 in northern 

Vietnam. J Gen Virol 91:2485-90. 

Lee, L. E., R. L. Witter, S. M. Reddy, P. Wu, N. Yanagida, and S. Yoshida. 2003. Protection 

and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's 

disease virus. Avian Dis 47:549-58. 

Lee, M. S., and J. S. Chen. 2004. Predicting antigenic variants of influenza A/H3N2 viruses. 

Emerg Infect Dis 10:1385-90. 

Li, J., M. Ishaq, M. Prudence, X. Xi, T. Hu, Q. Liu, and D. Guo. 2009. Single mutation at the 

amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian 

influenza virus during adaptation in mice can be compensated by multiple mutations at 

other sites of PB2. Virus Res 144:123-9. 

Li, S., J. Schulman, S. Itamura, and P. Palese. 1993. Glycosylation of neuraminidase 

determines the neurovirulence of influenza A/WSN/33 virus. J Virol 67:6667-73. 

Li, S. Q., M. Orlich, and R. Rott. 1990. Generation of seal influenza virus variants pathogenic 

for chickens, because of hemagglutinin cleavage site changes. J Virol 64:3297-303. 

Li, W. X., H. Li, R. Lu, F. Li, M. Dus, P. Atkinson, E. W. Brydon, K. L. Johnson, A. Garcia-

Sastre, L. A. Ball, P. Palese, and S. W. Ding. 2004. Interferon antagonist proteins of 

influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 

101:1350-5. 

Li, Z., H. Chen, P. Jiao, G. Deng, G. Tian, Y. Li, E. Hoffmann, R. G. Webster, Y. Matsuoka, 

and K. Yu. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a 

mammalian mouse model. J Virol 79:12058-64. 



 220 

Li, Z., Y. Jiang, P. Jiao, A. Wang, F. Zhao, G. Tian, X. Wang, K. Yu, Z. Bu, and H. Chen. 
2006. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol 

80:11115-23. 

Lillehoj, H. S., X. Ding, M. A. Quiroz, E. Bevensee, and E. P. Lillehoj. 2005. Resistance to 

intestinal coccidiosis following DNA immunization with the cloned 3-1E Eimeria gene plus 

IL-2, IL-15, and IFN-gamma. Avian Dis 49:112-7. 

Lillehoj, H. S., W. Min, K. D. Choi, U. S. Babu, J. Burnside, T. Miyamoto, B. M. Rosenthal, 

and E. P. Lillehoj. 2001. Molecular, cellular, and functional characterization of chicken 

cytokines homologous to mammalian IL-15 and IL-2. Vet Immunol Immunopathol 82:229-

44. 

Lipatov, A. S., V. A. Evseenko, H. L. Yen, A. V. Zaykovskaya, A. G. Durimanov, S. I. 

Zolotykh, S. V. Netesov, I. G. Drozdov, G. G. Onishchenko, R. G. Webster, and A. M. 

Shestopalov. 2007. Influenza (H5N1) viruses in poultry, Russian Federation, 2005-2006. 

Emerg Infect Dis 13:539-46. 

Lipatov, A. S., E. A. Govorkova, R. J. Webby, H. Ozaki, M. Peiris, Y. Guan, L. Poon, and 

R. G. Webster. 2004. Influenza: emergence and control. J Virol 78:8951-9. 

Liu, J., R. Kjeken, I. Mathiesen, and D. H. Barouch. 2008. Recruitment of antigen-presenting 

cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 

DNA vaccine immunogenicity by in vivo electroporation. J Virol 82:5643-9. 

Liu, W., P. Zou, J. Ding, Y. Lu, and Y. H. Chen. 2005. Sequence comparison between the 

extracellular domain of M2 protein human and avian influenza A virus provides new 

information for bivalent influenza vaccine design. Microbes Infect 7:171-7. 

Liu, Y., E. Mundt, A. Mundt, M. Sylte, D. L. Suarez, D. E. Swayne, and M. Garcia. 2010. 

Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect 

enzyme-linked immunosorbent assay for poultry using the differentiation of infected from 

vaccinated animals control strategy. Avian Dis 54:613-21. 

Long, J. X., D. X. Peng, Y. L. Liu, Y. T. Wu, and X. F. Liu. 2008. Virulence of H5N1 avian 

influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus 

Genes 36:471-8. 

Lousberg, E. L., C. K. Fraser, M. G. Tovey, K. R. Diener, and J. D. Hayball. 2010. Type I 

interferons mediate the innate cytokine response to recombinant fowlpox virus but not the 

induction of plasmacytoid dendritic cell-dependent adaptive immunity. J Virol 84:6549-63. 

Lu, Y., X. Y. Qian, and R. M. Krug. 1994. The influenza virus NS1 protein: a novel inhibitor of 

pre-mRNA splicing. Genes Dev 8:1817-28. 

Lu, Y., M. Wambach, M. G. Katze, and R. M. Krug. 1995. Binding of the influenza virus NS1 

protein to double-stranded RNA inhibits the activation of the protein kinase that 

phosphorylates the elF-2 translation initiation factor. Virology 214:222-8. 

Lucey, D. R., M. Clerici, and G. M. Shearer. 1996. Type 1 and type 2 cytokine dysregulation in 

human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9:532-62. 

Ludwig, S., X. Wang, C. Ehrhardt, H. Zheng, N. Donelan, O. Planz, S. Pleschka, A. Garcia-

Sastre, G. Heins, and T. Wolff. 2002. The influenza A virus NS1 protein inhibits 

activation of Jun N-terminal kinase and AP-1 transcription factors. J Virol 76:11166-71. 

Lui, V. W., Y. He, L. Falo, and L. Huang. 2002. Systemic administration of naked DNA 

encoding interleukin 12 for the treatment of human papillomavirus DNA-positive tumor. 

Hum Gene Ther 13:177-85. 

Lupiani, B., and S. M. Reddy. 2009. The history of avian influenza. Comp Immunol Microbiol 

Infect Dis 32:311-23. 

Lvov, A., D. Chikvashvili, I. Michaelevski, and I. Lotan. 2008. VAMP2 interacts directly with 

the N terminus of Kv2.1 to enhance channel inactivation. Pflugers Arch 456:1121-36. 



 221 

Lynch, J. M., D. E. Briles, and D. W. Metzger. 2003. Increased protection against 

pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. 

Infect Immun 71:4780-8. 

Ma, D., C. Ma, L. Pan, G. Li, J. Yang, J. Hong, H. Cai, and X. Ren. 2011. Vaccination of 

chickens with DNA vaccine encoding Eimeria acervulina 3-1E and chicken IL-15 offers 

protection against homologous challenge. Exp Parasitol 127:208-14. 

Ma, M., N. Jin, G. Shen, G. Zhu, H. J. Liu, M. Zheng, H. Lu, X. Huo, M. Jin, G. Yin, H. Ma, 

X. Li, Y. Ji, and K. Jin. 2008. Immune responses of swine inoculated with a recombinant 

fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18. Vet Immunol 

Immunopathol 121:1-7. 

Magdelaine, P., M. P. Spiess, and E. Valceschini. 2008. Poultry meat consumption trends in 

Europe. World Poultry Sci J Vol. 64.  

Magram, J., S. E. Connaughton, R. R. Warrier, D. M. Carvajal, C. Y. Wu, J. Ferrante, C. 

Stewart, U. Sarmiento, D. A. Faherty, and M. K. Gately. 1996. IL-12-deficient mice are 

defective in IFN gamma production and type 1 cytokine responses. Immunity 4:471-81. 

Mandel, M., and A. Higa. 1970. Calcium-dependent bacteriophage DNA infection. J Mol Biol 

53:159-62. 

Manetti, R., F. Gerosa, M. G. Giudizi, R. Biagiotti, P. Parronchi, M. P. Piccinni, S. 

Sampognaro, E. Maggi, S. Romagnani, G. Trinchieri, and et al. 1995. Interleukin 12 

induces stable priming for interferon gamma (IFN-gamma) production during 

differentiation of human T helper (Th) cells and transient IFN-gamma production in 

established Th2 cell clones. J Exp Med 179:1273-83. 

Marjuki, H., C. Scholtissek, J. Franks, N. J. Negovetich, J. R. Aldridge, R. Salomon, D. 

Finkelstein, and R. G. Webster. Three amino acid changes in PB1-F2 of highly 

pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks. Arch Virol 

155:925-34. 

Markoff, L., B. C. Lin, M. M. Sveda, and C. J. Lai. 1984. Glycosylation and surface 

expression of the influenza virus neuraminidase requires the N-terminal hydrophobic 

region. Mol Cell Biol 4:8-16. 

Marks-Konczalik, J., S. Dubois, J. M. Losi, H. Sabzevari, N. Yamada, L. Feigenbaum, T. A. 

Waldmann, and Y. Tagaya. 2000. IL-2-induced activation-induced cell death is inhibited 

in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97:11445-50. 

Martinet, W., X. Saelens, T. Deroo, S. Neirynck, R. Contreras, W. Min Jou, and W. Fiers. 
1997. Protection of mice against a lethal influenza challenge by immunization with yeast-

derived recombinant influenza neuraminidase. Eur J Biochem 247:332-8. 

Matsushita, T., K. Ando, K. Kimura, H. Ohnishi, M. Imawari, Y. Muto, and H. Moriwaki. 
1999. IL-12 induces specific cytotoxicity against regenerating hepatocytes in vivo. Int 

Immunol 11:657-65. 

Mayr, A., V. Hochstein-Mintzel, and H. Stickl. 1975. Abstammung, Eigenschaften und 

Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 3(1):6-14. 

Mayr, A., and K. Malicki. 1966. [Attenuation of virulent fowl pox virus in tissue culture and 

characteristics of the attenuated virus]. Zentralbl Veterinarmed B 13:1-13. 

Mazur, I., D. Anhlan, D. Mitzner, L. Wixler, U. Schubert, and S. Ludwig. 2008. The 

proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by 

interaction with the PB1 protein. Cell Microbiol 10:1140-52. 

Medrano, G., M. C. Dolan, N. T. Stephens, A. McMickle, G. Erf, D. Radin, and C. L. 

Cramer. Efficient plant-based production of chicken interleukin-12 yields a strong 

immunostimulatory cytokine. J Interferon Cytokine Res 30:143-54. 

Metzger, D. W. 2009. IL-12 as an adjuvant for the enhancement of protective humoral immunity. 

Expert Rev Vaccines 8:515-8. 



 222 

Mibayashi, M., L. Martinez-Sobrido, Y. M. Loo, W. B. Cardenas, M. Gale, Jr., and A. 

Garcia-Sastre. 2007. Inhibition of retinoic acid-inducible gene I-mediated induction of 

beta interferon by the NS1 protein of influenza A virus. J Virol 81:514-24. 

Min, J. Y., and R. M. Krug. 2006. The primary function of RNA binding by the influenza A 

virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L 

pathway. Proc Natl Acad Sci U S A 103:7100-5. 

Min, J. Y., S. Li, G. C. Sen, and R. M. Krug. 2007. A site on the influenza A virus NS1 protein 

mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. 

Virology 363:236-43. 

Min, W., H. S. Lillehoj, J. Burnside, K. C. Weining, P. Staeheli, and J. J. Zhu. 2001. 

Adjuvant effects of IL-1beta, IL-2, IL-8, IL-15, IFN-alpha, IFN-gamma TGF-beta4 and 

lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine 20:267-74. 

Min, W., H. S. Lillehoj, G. Li, E. J. Sohn, and T. Miyamoto. 2002. Development and 

characterization of monoclonal antibodies to chicken interleukin-15. Vet Immunol 

Immunopathol 88:49-56. 

Mingxiao, M., J. Ningyi, W. Zhenguo, W. Ruilin, F. Dongliang, Z. Min, Y. Gefen, L. Chang, 

J. Leili, J. Kuoshi, and Z. Yingjiu. 2006. Construction and immunogenicity of 

recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18. Vaccine 

24:4304-11. 

Mockett, B., M. M. Binns, M. E. Boursnell, and M. A. Skinner. 1992. Comparison of the 

locations of homologous fowlpox and vaccinia virus genes reveals major genome 

reorganization. J Gen Virol 73 ( Pt 10):2661-8. 

Moore, K. M., J. R. Davis, T. Sato, and A. Yasuda. 2000. Reticuloendotheliosis virus (REV) 

long terminal repeats incorporated in the genomes of commercial fowl poxvirus vaccines 

and pigeon poxviruses without indication of the presence of infectious REV. Avian Dis 

44:827-41. 

Morse, M. A., T. M. Clay, A. C. Hobeika, T. Osada, S. Khan, S. Chui, D. Niedzwiecki, D. 

Panicali, J. Schlom, and H. K. Lyerly. 2005. Phase I study of immunization with 

dendritic cells modified with fowlpox encoding carcinoembryonic antigen and 

costimulatory molecules. Clin Cancer Res 11:3017-24. 

Mosmann, T. R., H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman. 1986. Two 

types of murine helper T cell clone. I. Definition according to profiles of lymphokine 

activities and secreted proteins. J Immunol 136:2348-57. 

Moss, B. 1996. Genetically engineered poxviruses for recombinant gene expression, vaccination, 

and safety. Proc Natl Acad Sci U S A 93:11341-8. 

Mueller, Y. M., C. Petrovas, P. M. Bojczuk, I. D. Dimitriou, B. Beer, P. Silvera, F. Villinger, 

J. S. Cairns, E. J. Gracely, M. G. Lewis, and P. D. Katsikis. 2005. Interleukin-15 

increases effector memory CD8+ t cells and NK Cells in simian immunodeficiency virus-

infected macaques. J Virol 79:4877-85. 

Nazerian, K., L. F. Lee, N. Yanagida, and R. Ogawa. 1992. Protection against Marek's disease 

by a fowlpox virus recombinant expressing the glycoprotein B of Marek's disease virus. J 

Virol 66:1409-13. 

Neirynck, S., T. Deroo, X. Saelens, P. Vanlandschoot, W. M. Jou, and W. Fiers. 1999. A 

universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat 

Med 5:1157-63. 

Nemchinov, L. G., and A. Natilla. 2007. Transient expression of the ectodomain of matrix 

protein 2 (M2e) of avian influenza A virus in plants. Protein Expr Purif 56:153-9. 

Neumann, G., H. Chen, G. F. Gao, Y. Shu, and Y. Kawaoka. 2010. H5N1 influenza viruses: 

outbreaks and biological properties. Cell Res 20:51-61. 



 223 

Neumann, G., M. T. Hughes, and Y. Kawaoka. 2000. Influenza A virus NS2 protein mediates 

vRNP nuclear export through NES-independent interaction with hCRM1. Embo J 19:6751-

8. 

Nicholls, J. M., A. J. Bourne, H. Chen, Y. Guan, and J. S. Peiris. 2007. Sialic acid receptor 

detection in the human respiratory tract: evidence for widespread distribution of potential 

binding sites for human and avian influenza viruses. Respir Res 8:73. 

Niedbala, W., X. Wei, and F. Y. Liew. 2002. IL-15 induces type 1 and type 2 CD4+ and CD8+ 

T cells proliferation but is unable to drive cytokine production in the absence of TCR 

activation or IL-12 / IL-4 stimulation in vitro. Eur J Immunol 32:341-7. 

Nielsen, A. R., P. Hojman, C. Erikstrup, C. P. Fischer, P. Plomgaard, R. Mounier, O. H. 

Mortensen, C. Broholm, S. Taudorf, R. Krogh-Madsen, B. Lindegaard, A. M. 

Petersen, J. Gehl, and B. K. Pedersen. 2008. Association between interleukin-15 and 

obesity: interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab 

93:4486-93. 

Nishimura, H., T. Yajima, Y. Naiki, H. Tsunobuchi, M. Umemura, K. Itano, T. Matsuguchi, 

M. Suzuki, P. S. Ohashi, and Y. Yoshikai. 2000. Differential roles of interleukin 15 

mRNA isoforms generated by alternative splicing in immune responses in vivo. J Exp Med 

191:157-70. 

Obenauer, J. C., J. Denson, P. K. Mehta, X. Su, S. Mukatira, D. B. Finkelstein, X. Xu, J. 

Wang, J. Ma, Y. Fan, K. M. Rakestraw, R. G. Webster, E. Hoffmann, S. Krauss, J. 

Zheng, Z. Zhang, and C. W. Naeve. 2006. Large-scale sequence analysis of avian 

influenza isolates. Science 311:1576-80. 

Oh, S., G. T. Belz, and M. C. Eichelberger. 2001. Viral neuraminidase treatment of dendritic 

cells enhances antigen-specific CD8(+) T cell proliferation, but does not account for the 

CD4(+) T cell independence of the CD8(+) T cell response during influenza virus infection. 

Virology 286:403-11. 

Oh, S., J. A. Berzofsky, D. S. Burke, T. A. Waldmann, and L. P. Perera. 2003. 

Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not 

IL-2 induces long-lasting cellular immunity. Proc Natl Acad Sci U S A 100:3392-7. 

Oh, S., and M. C. Eichelberger. 1999. Influenza virus neuraminidase alters allogeneic T cell 

proliferation. Virology 264:427-35. 

Oh, S., L. P. Perera, D. S. Burke, T. A. Waldmann, and J. A. Berzofsky. 2004. IL-15/IL-

15Ralpha-mediated avidity maturation of memory CD8+ T cells. Proc Natl Acad Sci U S A 

101:15154-9. 

Ohuchi, M., N. Asaoka, T. Sakai, and R. Ohuchi. 2006. Roles of neuraminidase in the initial 

stage of influenza virus infection. Microbes Infect 8:1287-93. 

Omar, A. R., K. A. Schat, L. F. Lee, and H. D. Hunt. 1998. Cytotoxic T lymphocyte response 

in chickens immunized with a recombinant fowlpox virus expressing Marek's disease 

herpesvirus glycoprotein B. Vet Immunol Immunopathol 62:73-82. 

O'Neill, R. E., J. Talon, and P. Palese. 1998. The influenza virus NEP (NS2 protein) mediates 

the nuclear export of viral ribonucleoproteins. Embo J 17:288-96. 

Opitz, B., A. Rejaibi, B. Dauber, J. Eckhard, M. Vinzing, B. Schmeck, S. Hippenstiel, N. 

Suttorp, and T. Wolff. 2007. IFNbeta induction by influenza A virus is mediated by RIG-I 

which is regulated by the viral NS1 protein. Cell Microbiol 9:930-8. 

Orange, J. S., T. P. Salazar-Mather, S. M. Opal, R. L. Spencer, A. H. Miller, B. S. McEwen, 

and C. A. Biron. 1995. Mechanism of interleukin 12-mediated toxicities during 

experimental viral infections: role of tumor necrosis factor and glucocorticoids. J Exp Med 

181:901-14. 

Orange, J. S., S. F. Wolf, and C. A. Biron. 1994. Effects of IL-12 on the response and 

susceptibility to experimental viral infections. J Immunol 152:1253-64. 



 224 

Paganin, C., I. Frank, and G. Trinchieri. 1995. Priming for high interferon-gamma production 

induced by interleukin-12 in both CD4+ and CD8+ T cell clones from HIV-infected 

patients. J Clin Invest 96:1677-82. 

Park, S. S., H. S. Lillehoj, P. C. Allen, D. W. Park, S. FitzCoy, D. A. Bautista, and E. P. 

Lillehoje. 2008. Immunopathology and cytokine responses in broiler chickens coinfected 

with Eimeria maxima and Clostridium perfringens with the use of an animal model of 

necrotic enteritis. Avian Dis 52:14-22. 

Peiris, J. S., W. C. Yu, C. W. Leung, C. Y. Cheung, W. F. Ng, J. M. Nicholls, T. K. Ng, K. H. 

Chan, S. T. Lai, W. L. Lim, K. Y. Yuen, and Y. Guan. 2004. Re-emergence of fatal 

human influenza A subtype H5N1 disease. Lancet 363:617-9. 

Perdue, M. L., M. Garcia, D. Senne, and M. Fraire. 1998. Virulence-associated sequence 

duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 49:173-

86. 

Perera, L. P., C. K. Goldman, and T. A. Waldmann. 2001. Comparative assessment of 

virulence of recombinant vaccinia viruses expressing IL-2 and IL-15 in immunodeficient 

mice. Proc Natl Acad Sci U S A 98:5146-51. 

Perera, L. P., T. A. Waldmann, J. D. Mosca, N. Baldwin, J. A. Berzofsky, and S. K. Oh. 
2007. Development of smallpox vaccine candidates with integrated interleukin-15 that 

demonstrate superior immunogenicity, efficacy, and safety in mice. J Virol 81:8774-83. 

Picker, L. J., E. F. Reed-Inderbitzin, S. I. Hagen, J. B. Edgar, S. G. Hansen, A. Legasse, S. 

Planer, M. Piatak, Jr., J. D. Lifson, V. C. Maino, M. K. Axthelm, and F. Villinger. 
2006. IL-15 induces CD4 effector memory T cell production and tissue emigration in 

nonhuman primates. J Clin Invest 116:1514-24. 

Poon, L. L., Y. H. Leung, J. M. Nicholls, P. Y. Perera, J. H. Lichy, M. Yamamoto, T. A. 

Waldmann, J. S. Peiris, and L. P. Perera. 2009. Vaccinia virus-based multivalent H5N1 

avian influenza vaccines adjuvanted with IL-15 confer sterile cross-clade protection in 

mice. J Immunol 182:3063-71. 

Potter, C. W. 2001. A history of influenza. J Appl Microbiol 91:572-9. 

Qiao, C., K. Yu, Y. Jiang, C. Li, G. Tian, X. Wang, and H. Chen. 2006. Development of a 

recombinant fowlpox virus vector-based vaccine of H5N1 subtype avian influenza. Dev 

Biol (Basel) 124:127-32. 

Qiao, C. L., K. Z. Yu, Y. P. Jiang, Y. Q. Jia, G. B. Tian, M. Liu, G. H. Deng, X. R. Wang, Q. 

W. Meng, and X. Y. Tang. 2003. Protection of chickens against highly lethal H5N1 and 

H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 

haemagglutinin and N1 neuraminidase genes. Avian Pathol 32:25-32. 

Qingzhong, Y., T. Barrett, T. D. Brown, J. K. Cook, P. Green, M. A. Skinner, and D. 

Cavanagh. 1994. Protection against turkey rhinotracheitis pneumovirus (TRTV) induced 

by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 

12:569-73. 

Qu, D., S. Wang, W. Cai, and A. Du. 2008. Protective effect of a DNA vaccine delivered in 

attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 

26:4541-8. 

Quinn, L. S., B. G. Anderson, R. H. Drivdahl, B. Alvarez, and J. M. Argiles. 2002. 

Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications 

for treatment of muscle wasting disorders. Exp Cell Res 280:55-63. 

Rao, S., W. P. Kong, C. J. Wei, Z. Y. Yang, M. Nason, D. Styles, L. J. DeTolla, A. Panda, E. 

M. Sorrell, H. Song, H. Wan, G. C. Ramirez-Nieto, D. Perez, and G. J. Nabel. 2008. 

Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza 

infection in chickens and mice. PLoS One 3:e2432. 



 225 

Rautenschlein, S., J. M. Sharma, B. J. Winslow, J. McMillen, D. Junker, and M. Cochran. 
2000. Embryo vaccination of turkeys against Newcastle disease infection with recombinant 

fowlpox virus constructs containing interferons as adjuvants. Vaccine 18:426-33. 

Ridge, J. P., F. Di Rosa, and P. Matzinger. 1998. A conditioned dendritic cell can be a temporal 

bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474-8. 

Roberts, P. C., W. Garten, and H. D. Klenk. 1993. Role of conserved glycosylation sites in 

maturation and transport of influenza A virus hemagglutinin. J Virol 67:3048-60. 

Rogge, L., A. Papi, D. H. Presky, M. Biffi, L. J. Minetti, D. Miotto, C. Agostini, G. 

Semenzato, L. M. Fabbri, and F. Sinigaglia. 1999. Antibodies to the IL-12 receptor beta 

2 chain mark human Th1 but not Th2 cells in vitro and in vivo. J Immunol 162:3926-32. 

Rohm, C., T. Horimoto, Y. Kawaoka, J. Suss, and R. G. Webster. 1995. Do hemagglutinin 

genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? 

Virology 209:664-70. 

Rothwell, L., J. R. Young, R. Zoorob, C. A. Whittaker, P. Hesketh, A. Archer, A. L. Smith, 

and P. Kaiser. 2004. Cloning and characterization of chicken IL-10 and its role in the 

immune response to Eimeria maxima. J Immunol 173:2675-82. 

Rott, R. 1979. Molecular basis of infectivity and pathogenicity of myxovirus. Brief review. Arch 

Virol 59:285-98. 

Rott, R. 1992. The pathogenic determinant of influenza virus. Vet Microbiol 33:303-10. 

Ryman, K. D., W. B. Klimstra, K. B. Nguyen, C. A. Biron, and R. E. Johnston. 2000. 

Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an 

important determinant of cell and tissue tropism. J Virol 74:3366-78. 

Saelens, X., P. Vanlandschoot, W. Martinet, M. Maras, S. Neirynck, R. Contreras, W. Fiers, 

and W. M. Jou. 1999. Protection of mice against a lethal influenza virus challenge after 

immunization with yeast-derived secreted influenza virus hemagglutinin. Eur J Biochem 

260:166-75. 

Salomon, R., J. Franks, E. A. Govorkova, N. A. Ilyushina, H. L. Yen, D. J. Hulse-Post, J. 

Humberd, M. Trichet, J. E. Rehg, R. J. Webby, R. G. Webster, and E. Hoffmann. 
2007. The polymerase complex genes contribute to the high virulence of the human H5N1 

influenza virus isolate A/Vietnam/1203/04. J Exp Med 203:689-97. 

Sarmento, L., C. L. Afonso, C. Estevez, J. Wasilenko, and M. Pantin-Jackwood. 2008. 

Differential host gene expression in cells infected with highly pathogenic H5N1 avian 

influenza viruses. Vet Immunol Immunopathol 125:291-302. 

Schaefer-Klein, J., I. Givol, E. V. Barsov, J. M. Whitcomb, M. VanBrocklin, D. N. Foster, 

M. J. Federspiel, and S. H. Hughes. 1998. The EV-O-derived cell line DF-1 supports the 

efficient replication of avian leukosis-sarcoma viruses and vectors. Virology 248:305-11. 

Schneider, K., F. Puehler, D. Baeuerle, S. Elvers, P. Staeheli, B. Kaspers, and K. C. 

Weining. 2000. cDNA cloning of biologically active chicken interleukin-18. J Interferon 

Cytokine Res 20:879-83. 

Schoenhaut, D. S., A. O. Chua, A. G. Wolitzky, P. M. Quinn, C. M. Dwyer, W. McComas, P. 

C. Familletti, M. K. Gately, and U. Gubler. 1992. Cloning and expression of murine IL-

12. J Immunol 148:3433-40. 

Scull, M. A., L. Gillim-Ross, C. Santos, K. L. Roberts, E. Bordonali, K. Subbarao, W. S. 

Barclay, and R. J. Pickles. 2009. Avian Influenza virus glycoproteins restrict virus 

replication and spread through human airway epithelium at temperatures of the proximal 

airways. PLoS Pathog 5:e1000424. 

Seder, R. A. 1996. High-dose IL-2 and IL-15 enhance the in vitro priming of naive CD4+ T cells 

for IFN-gamma but have differential effects on priming for IL-4. J Immunol 156:2413-22. 

Sen, G. C. 2001. Viruses and interferons. Annu Rev Microbiol 55:255-81. 

Senne, D. A., B. Panigrahy, Y. Kawaoka, J. E. Pearson, J. Suss, M. Lipkind, H. Kida, and R. 

G. Webster. 1996. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 



 226 

avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of 

pathogenicity potential. Avian Dis 40:425-37. 

Sharma, J. M., Y. Zhang, D. Jensen, S. Rautenschlein, and H. Y. Yeh. 2002. Field trial in 

commercial broilers with a multivalent in ovo vaccine comprising a mixture of live viral 

vaccines against Marek's disease, infectious bursal disease, Newcastle disease, and fowl 

pox. Avian Dis 46:613-22. 

Shaw, I., and T. F. Davison. 2000. Protection from IBDV-induced bursal damage by a 

recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and 

chicken genotype. Vaccine 18:3230-41. 

Shearn-Bochsler, V., D. Earl Green, K. A. Converse, D. E. Docherty, T. Thiel, H. N. Geisz, 

W. R. Fraser and D. L. Patterson-Fraser. 2008. Cutaneous and diphtheritic avian 

poxvirus infection in a nestling Southern Giant Petrel (Macronectes giganteus) from 

Antarctica. Polar Biol 31:569-573. 

Shen, G., N. Jin, M. Ma, K. Jin, M. Zheng, T. Zhuang, H. Lu, G. Zhu, H. Jin, M. Jin, X. 

Huo, X. Qin, R. Yin, C. Li, H. Li, Y. Li, Z. Han, Y. Chen, and M. Jin. 2007. Immune 

responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of 

porcine reproductive and respiratory syndrome virus and swine IL-18. Vaccine 25:4193-

202. 

Shin, Y. K., Q. Liu, S. K. Tikoo, L. A. Babiuk, and Y. Zhou. 2007. Influenza A virus NS1 

protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct 

interaction with the p85 subunit of PI3K. J Gen Virol 88:13-8. 

Singh, P., T. J. Kim, and D. N. Tripathy. 2000. Re-emerging fowlpox: evaluation of isolates 

from vaccinated flocks. Avian Pathol 29:449-55. 

Singh, P., and D. N. Tripathy. 2003. Fowlpox virus infection causes a lymphoproliferative 

response in chickens. Viral Immunol 16:223-7. 

Singh, V., U. Gowthaman, S. Jain, P. Parihar, S. Banskar, P. Gupta, U. D. Gupta, and J. N. 

Agrewala. 2010. Coadministration of interleukins 7 and 15 with bacille Calmette-Guerin 

mounts enduring T cell memory response against Mycobacterium tuberculosis. J Infect Dis 

202:480-9. 

Skinner, M. A., S. M. Laidlaw, I. Eldaghayes, P. Kaiser, and M. G. Cottingham. 2005. 

Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert 

Rev Vaccines 4:63-76. 

Skok, J., J. Poudrier, and D. Gray. 1999. Dendritic cell-derived IL-12 promotes B cell 

induction of Th2 differentiation: a feedback regulation of Th1 development. J Immunol 

163:4284-91. 

Smits, H. H., J. G. van Rietschoten, C. M. Hilkens, R. Sayilir, F. Stiekema, M. L. 

Kapsenberg, and E. A. Wierenga. 2001. IL-12-induced reversal of human Th2 cells is 

accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. 

Eur J Immunol 31:1055-65. 

Springer, W. T., and R. W. Truman. 1981. Effect of subcutaneous pox vaccination of young 

chicks on immune responses and weight gains. Poult Sci 60:1213-20. 

Steding, C. E., S. T. Wu, Y. Zhang, M. H. Jeng, B. D. Elzey, and C. Kao. 2011. The role of 

interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival 

and reducing metastasis. Immunology. 

Steel, J., S. V. Burmakina, C. Thomas, E. Spackman, A. Garcia-Sastre, D. E. Swayne, and 

P. Palese. 2008. A combination in-ovo vaccine for avian influenza virus and Newcastle 

disease virus. Vaccine 26:522-31. 

Steinhauer, D. A., and J. J. Skehel. 2002. Genetics of influenza viruses. Annu Rev Genet 

36:305-32. 

Stevceva, L., M. Moniuszko, and M. G. Ferrari. 2006. Utilizing IL-12, IL-15 and IL-7 as 

Mucosal Vaccine Adjuvants. Lett Drug Des Discov 3:586-592. 



 227 

Stieneke-Grober, A., M. Vey, H. Angliker, E. Shaw, G. Thomas, C. Roberts, H. D. Klenk, 

and W. Garten. 1992. Influenza virus hemagglutinin with multibasic cleavage site is 

activated by furin, a subtilisin-like endoprotease. Embo J 11:2407-14. 

Su, B. S., H. H. Chiu, C. C. Lin, J. H. Shien, H. S. Yin, and L. H. Lee. 2011. Adjuvant activity 

of chicken interleukin-12 co-administered with infectious bursal disease virus recombinant 

VP2 antigen in chickens. Vet Immunol Immunopathol 139:167-75. 

Su, B. S., H. S. Yin, H. H. Chiu, L. H. Hung, J. P. Huang, J. H. Shien, and L. H. Lee. 2010. 

Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with 

Newcastle disease virus recombinant HN protein. Vet Microbiol. 

Suarez, D. L. 2005. Overview of avian influenza DIVA test strategies. Biologicals 33:221-6. 

Suarez, D. L., and S. Schultz-Cherry. 2000b. The effect of eukaryotic expression vectors and 

adjuvants on DNA vaccines in chickens using an avian influenza model. Avian Dis 44:861-

8. 

Suarez, D. L., and S. Schultz-Cherry. 2000a. Immunology of avian influenza virus: a review. 

Dev Comp Immunol 24:269-83. 

Subbarao, E. K., W. London, and B. R. Murphy. 1993. A single amino acid in the PB2 gene of 

influenza A virus is a determinant of host range. J Virol 67:1761-4. 

Subbarao, K., and J. Katz. 2000. Avian influenza viruses infecting humans. Cell Mol Life Sci 

57:1770-84. 

Subbarao, K., A. Klimov, J. Katz, H. Regnery, W. Lim, H. Hall, M. Perdue, D. Swayne, C. 

Bender, J. Huang, M. Hemphill, T. Rowe, M. Shaw, X. Xu, K. Fukuda, and N. Cox. 
1998. Characterization of an avian influenza A (H5N1) virus isolated from a child with a 

fatal respiratory illness. Science 279:393-6. 

Sun, H. L., Y. F. Wang, D. Y. Miao, P. J. Zhang, H. D. Zhi, L. L. Xu, M. Wang, G. Z. Tong, 

and M. Wang. 2006. [Construction and characterization of a recombinant fowlpox virus 

co-expressing F, HN genes of Newcastle disease virus and gB gene of infectious 

laryngnotracheitis virus]. Sheng Wu Gong Cheng Xue Bao 22:931-9. 

Sundick, R. S., and C. Gill-Dixon. 1997. A cloned chicken lymphokine homologous to both 

mammalian IL-2 and IL-15. J Immunol 159:720-5. 

Swain, S. L., J. N. Agrewala, D. M. Brown, D. M. Jelley-Gibbs, S. Golech, G. Huston, S. C. 

Jones, C. Kamperschroer, W. H. Lee, K. K. McKinstry, E. Roman, T. Strutt, and N. 

P. Weng. 2006. CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells 

in protective immunity to influenza. Immunol Rev 211:8-22. 

Swayne, D. E. 2008. Avian influenza vaccines and therapies for poultry. Comp Immunol 

Microbiol Infect Dis 32:351-63. 

Swayne, D. E., J. R. Beck, and N. Kinney. 2000. Failure of a recombinant fowl poxvirus 

vaccine containing an avian influenza hemagglutinin gene to provide consistent protection 

against influenza in chickens preimmunized with a fowl pox vaccine. Avian Dis 44:132-7. 

Swayne, D. E., J. R. Beck, and T. R. Mickle. 1997. Efficacy of recombinant fowl poxvirus 

vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian 

influenza virus. Avian Dis 41:910-22. 

Swayne, D. E., C. W. Lee, and E. Spackman. 2006. Inactivated North American and European 

H5N2 avian influenza virus vaccines protect chickens from Asian H5N1 high pathogenicity 

avian influenza virus. Avian Pathol 35:141-6. 

Sylte, M. J., B. Hubby, and D. L. Suarez. 2007. Influenza neuraminidase antibodies provide 

partial protection for chickens against high pathogenic avian influenza infection. Vaccine 

25:3763-72. 

Symons, J. A., A. Alcami, and G. L. Smith. 1995. Vaccinia virus encodes a soluble type I 

interferon receptor of novel structure and broad species specificity. Cell 81:551-60. 



 228 

Szabo, S. J., N. G. Jacobson, A. S. Dighe, U. Gubler, and K. M. Murphy. 1995. 

Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 

2:665-75. 

Szretter, K. J., S. Gangappa, X. Lu, C. Smith, W. J. Shieh, S. R. Zaki, S. Sambhara, T. M. 

Tumpey, and J. M. Katz. 2007. Role of host cytokine responses in the pathogenesis of 

avian H5N1 influenza viruses in mice. J Virol 81:2736-44. 

Talon, J., C. M. Horvath, R. Polley, C. F. Basler, T. Muster, P. Palese, and A. Garcia-Sastre. 
2000. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 

protein. J Virol 74:7989-96. 

Tan, J. T., B. Ernst, W. C. Kieper, E. LeRoy, J. Sprent, and C. D. Surh. 2002. Interleukin 

(IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ 

cells but are not required for memory phenotype CD4+ cells. J Exp Med 195:1523-32. 

Tanaka, S., F. Isoda, Y. Ishihara, M. Kimura, and T. Yamakawa. 2001. T lymphopaenia in 

relation to body mass index and TNF-alpha in human obesity: adequate weight reduction 

can be corrective. Clin Endocrinol (Oxf) 54:347-54. 

Tang, C., H. Yamada, K. Shibata, S. Yoshida, W. Wajjwalku, and Y. Yoshikai. 2009. IL-15 

protects antigen-specific CD8+ T cell contraction after Mycobacterium bovis bacillus 

Calmette-Guerin infection. J Leukoc Biol 86:187-94. 

Tanimoto, T., R. Nakatsu, I. Fuke, T. Ishikawa, M. Ishibashi, K. Yamanishi, M. Takahashi, 

and S. Tamura. 2005. Estimation of the neuraminidase content of influenza viruses and 

split-product vaccines by immunochromatography. Vaccine 23:4598-609. 

Taubenberger, J. K. 2006. The origin and virulence of the 1918 "Spanish" influenza virus. Proc 

Am Philos Soc 150:86-112. 

Taylor, J., L. Christensen, R. Gettig, J. Goebel, J. F. Bouquet, T. R. Mickle, and E. Paoletti. 
1996. Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate 

against velogenic and respiratory challenge. Avian Dis 40:173-80. 

Taylor, J., and E. Paoletti. 1988. Fowlpox virus as a vector in non-avian species. Vaccine 

6:466-8. 

Taylor, J., R. Weinberg, B. Languet, P. Desmettre, and E. Paoletti. 1988. Recombinant 

fowlpox virus inducing protective immunity in non-avian species. Vaccine 6:497-503. 

Thomas, J. D., K. R. Morris, D. I. Godfrey, J. W. Lowenthal, and A. G. Bean. 2008. 

Expression, purification and characterisation of recombinant Escherichia coli derived 

chicken interleukin-12. Vet Immunol Immunopathol 126:403-6. 

Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive 

immunity. Nat Rev Immunol 3:133-46. 

Tsurita, M., M. Kurokawa, M. Imakita, Y. Fukuda, Y. Watanabe, and K. Shiraki. 2001. 

Early augmentation of interleukin (IL)-12 level in the airway of mice administered orally 

with clarithromycin or intranasally with IL-12 results in alleviation of influenza infection. J 

Pharmacol Exp Ther 298:362-8. 

van den Berg, T., B. Lambrecht, S. Marche, M. Steensels, S. Van Borm, and M. Bublot. 
2008. Influenza vaccines and vaccination strategies in birds. Comp Immunol Microbiol 

Infect Dis 31:121-65. 

Van Der Sluijs, K. F., L. J. Van Elden, R. Arens, M. Nijhuis, R. Schuurman, S. Florquin, J. 

Kwakkel, S. Akira, H. M. Jansen, R. Lutter, and T. Van Der Polls. 2005. Enhanced 

viral clearance in interleukin-18 gene-deficient mice after pulmonary infection with 

influenza A virus. Immunology 114:112-20. 

van der Sluijs, K. F., L. J. van Elden, Y. Xiao, R. Arens, M. Nijhuis, R. Schuurman, S. 

Florquin, H. M. Jansen, R. Lutter, and T. van der Poll. 2006. IL-12 deficiency 

transiently improves viral clearance during the late phase of respiratory tract infection with 

influenza A virus in mice. Antiviral Res 70:75-84. 



 229 

Vecino, W. H., N. M. Quanquin, L. Martinez-Sobrido, A. Fernandez-Sesma, A. Garcia-

Sastre, W. R. Jacobs, Jr., and G. J. Fennelly. 2004. Mucosal immunization with 

attenuated Shigella flexneri harboring an influenza hemagglutinin DNA vaccine protects 

mice against a lethal influenza challenge. Virology 325:192-9. 

Veits, J., A. Romer-Oberdorfer, D. Helferich, M. Durban, Y. Suezer, G. Sutter, and T. C. 

Mettenleiter. 2008. Protective efficacy of several vaccines against highly pathogenic 

H5N1 avian influenza virus under experimental conditions. Vaccine 26:1688-96. 

Vey, M., M. Orlich, S. Adler, H. D. Klenk, R. Rott, and W. Garten. 1992. Hemagglutinin 

activation of pathogenic avian influenza viruses of serotype H7 requires the protease 

recognition motif R-X-K/R-R. Virology 188:408-13. 

Vliegenthart, J. F. G., and J. Montreuil. 1995. Primary structure of glycoprotein glycans. In 

Glycoproteins, New Comprehensive Biochemistry, vol. 29a. Elsevier, Amsterdam. 

Vogel, L. A., L. C. Showe, T. L. Lester, R. M. McNutt, V. H. Van Cleave, and D. W. 

Metzger. 1996. Direct binding of IL-12 to human and murine B lymphocytes. Int Immunol 

8:1955-62. 

Vogelstein, B., and D. Gillespie. 1979. Preparative and analytical purification of DNA from 

agarose. Proc Natl Acad Sci U S A 76:615-9. 

Wagner, R., T. Wolff, A. Herwig, S. Pleschka, and H. D. Klenk. 2000. Interdependence of 

hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a 

study by reverse genetics. J Virol 74:6316-23. 

Wambura, P. N., and S. K. Godfrey. 2010. Protective immune response of chickens to oral 

vaccination with thermostable live Fowlpox virus vaccine (strain TPV-1) coated on oiled 

rice. Trop Anim Health Prod 42:451-6. 

Wang, J., D. Vijaykrishna, L. Duan, J. Bahl, J. X. Zhang, R. G. Webster, J. S. Peiris, H. 

Chen, G. J. Smith, and Y. Guan. 2008. Identification of the progenitors of Indonesian and 

Vietnamese avian influenza A (H5N1) viruses from southern China. J Virol 82:3405-14. 

Wang, X., M. Li, H. Zheng, T. Muster, P. Palese, A. A. Beg, and A. Garcia-Sastre. 2000. 

Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of 

alpha/beta interferon. J Virol 74:11566-73. 

Wang, Y. F., Y. K. Sun, Z. C. Tian, X. M. Shi, G. Z. Tong, S. W. Liu, H. D. Zhi, X. G. Kong, 

and M. Wang. 2009. Protection of chickens against infectious bronchitis by a recombinant 

fowlpox virus co-expressing IBV-S1 and chicken IFNgamma. Vaccine 27:7046-52. 

Webster, D. P., S. Dunachie, S. McConkey, I. Poulton, A. C. Moore, M. Walther, S. M. 

Laidlaw, T. Peto, M. A. Skinner, S. C. Gilbert, and A. V. Hill. 2006b. Safety of 

recombinant fowlpox strain FP9 and modified vaccinia virus Ankara vaccines against liver-

stage P. falciparum malaria in non-immune volunteers. Vaccine 24:3026-34. 

Webster, R. G., W. J. Bean, O. T. Gorman, T. M. Chambers, and Y. Kawaoka. 1992. 

Evolution and ecology of influenza A viruses. Microbiol Rev 56:152-79. 

Webster, R. G., Y. Kawaoka, J. Taylor, R. Weinberg, and E. Paoletti. 1991. Efficacy of 

nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for 

influenza in chickens. Vaccine 9:303-8. 

Webster, R. G., M. Peiris, H. Chen, and Y. Guan. 2006a. H5N1 outbreaks and enzootic 

influenza. Emerg Infect Dis 12:3-8. 

Webster, R. G., and H. G. Pereira. 1968. A common surface antigen in influenza viruses from 

human and avian sources. J Gen Virol 3:201-8. 

Webster, R. G., P. A. Reay, and W. G. Laver. 1988. Protection against lethal influenza with 

neuraminidase. Virology 164:230-7. 

Wei, F., Q. Liu, Y. Zhai, Z. Fu, W. Liu, L. Shang, J. Men, S. Gao, H. Lian, H. Jin, C. Chen, 

J. Lin, Y. Shi, Z. Xia, and X. Q. Zhu. 2009. IL-18 enhances protective effect in mice 

immunized with a Schistosoma japonicum FABP DNA vaccine. Acta Trop 111:284-8. 



 230 

Wood, G. W., J. Banks, J. W. McCauley, and D. J. Alexander. 1994. Deduced amino acid 

sequences of the haemagglutinin of H5N1 avian influenza virus isolates from an outbreak 

in turkeys in Norfolk, England. Arch Virol 134:185-94. 

Wood, G. W., J. W. McCauley, J. B. Bashiruddin, and D. J. Alexander. 1993. Deduced 

amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of 

H5 and H7 subtypes. Arch Virol 130:209-17. 

World-Health-Organization, W. H. O. 2008. H5N1 avian influenza: Timeline of major events. 

http://www.who.int/csr/disease/avian_influenza/ai_timeline/en/index.html. 

Wu, W. L., Y. Chen, P. Wang, W. Song, S. Y. Lau, J. M. Rayner, G. J. Smith, R. G. 

Webster, J. S. Peiris, T. Lin, N. Xia, Y. Guan, and H. Chen. 2008. Antigenic profile of 

avian H5N1 viruses in Asia from 2002 to 2007. J Virol 82:1798-807. 

Xiang, Y., and B. Moss. 1999. IL-18 binding and inhibition of interferon gamma induction by 

human poxvirus-encoded proteins. Proc Natl Acad Sci U S A 96:11537-42. 

Yang, Y., D. Leggat, A. Herbert, P. C. Roberts, and R. S. Sundick. 2009. A novel method to 

incorporate bioactive cytokines as adjuvants on the surface of virus particles. J Interferon 

Cytokine Res 29:9-22. 

Yin, X., X. Yan, Q. Yang, H. Cao, and H. Liang. 2011. Antitumor mechanism of recombinant 

murine interleukin-12 vaccine. Cancer Biother Radiopharm 25:263-8. 

Zamarin, D., A. Garcia-Sastre, X. Xiao, R. Wang, and P. Palese. 2005. Influenza virus PB1-

F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 

1:e4. 

Zhang, X., S. Sun, I. Hwang, D. F. Tough, and J. Sprent. 1998. Potent and selective 

stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591-9. 

Zhou, J. J., J. Fu, D. Y. Fang, H. J. Yan, J. Tian, J. M. Zhou, J. P. Tao, Y. Liang, and L. F. 

Jiang. 2007. Molecular characterization of the surface glycoprotein genes of an H5N1 

influenza virus isolated from a human in Guangdong, China. Arch Virol 152:1515-21. 

Zhou, J. Y., J. Y. Wang, J. G. Chen, J. X. Wu, H. Gong, Q. Y. Teng, J. Q. Guo, and H. G. 

Shen. 2005. Cloning, in vitro expression and bioactivity of duck interleukin-2. Mol 

Immunol 42:589-98. 

Zhu, H., J. Wang, P. Wang, W. Song, Z. Zheng, R. Chen, K. Guo, T. Zhang, J. S. Peiris, H. 

Chen, and Y. Guan. 2010. Substitution of lysine at 627 position in PB2 protein does not 

change virulence of the 2009 pandemic H1N1 virus in mice. Virology 401:1-5. 

Zhu, Q., H. Yang, W. Chen, W. Cao, G. Zhong, P. Jiao, G. Deng, K. Yu, C. Yang, Z. Bu, Y. 

Kawaoka, and H. Chen. 2008. A naturally occurring deletion in its NS gene contributes to 

the attenuation of an H5N1 swine influenza virus in chickens. J Virol 82:220-8. 

Zielinski, R. J., J. V. Smedley, P. Y. Perera, P. M. Silvera, T. A. Waldmann, J. Capala, and 

L. P. Perera. 2010. Smallpox vaccine with integrated IL-15 demonstrates enhanced in vivo 

viral clearance in immunodeficient mice and confers long term protection against a lethal 

monkeypox challenge in cynomolgus monkeys. Vaccine 28:7081-91. 

 


