489 research outputs found

    Assessment of the global Copernicus, NASADEM, ASTER and AW3D digital elevation models in Central and Southern Africa

    Get PDF
    \ua9 2024 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. Validation studies of global Digital Elevation Models (DEMs) in the existing literature are limited by the diversity and spread of landscapes, terrain types considered and sparseness of groundtruth. Moreover, there are knowledge gaps on the accuracy variations in rugged and complex landscapes, and previous studies have often not relied on robust internal and external validation measures. Thus, there is still only partial understanding and limited perspective of the reliability and adequacy of global DEMs for several applications. In this study, we utilize a dense spread of LiDAR groundtruth to assess the vertical accuracies of four medium-resolution, readily available, free-access and global coverage 1 arc-second (30 m) DEMs: NASADEM, ASTER GDEM, Copernicus GLO-30, and ALOS World 3D (AW3D). The assessment is carried out at landscapes spread across Cape Town, Southern Africa (urban/industrial, agricultural, mountain, peninsula and grassland/shrubland) and forested national parks in Gabon, Central Africa (low-relief tropical rainforest and high-relief tropical rainforest). The statistical analysis is based on robust accuracy metrics that cater for normal and non-normal elevation error distribution, and error ranking. In Cape Town, Copernicus DEM generally had the least vertical error with an overall Mean Error (ME) of 0.82 m and Root Mean Square Error (RMSE) of 2.34 m while ASTER DEM had the poorest performance. However, ASTER GDEM and NASADEM performed better in the low-relief and high-relief tropical forests of Gabon. Generally, the DEM errors have a moderate to high positive correlation in forests, and a low to moderate positive correlation in mountains and urban areas. Copernicus DEM showed superior vertical accuracy in forests with less than 40% tree cover, while ASTER and NASADEM performed better in denser forests with tree cover greater than 70%. This study is a robust regional assessment of these global DEMs

    Extrapolation of Airborne Polarimetric and Interferometric SAR Data for Validation of Bio-Geo-Retrieval Algorithms for Future Spaceborne SAR Missions

    Get PDF
    Spaceborne SAR system concepts and mission design is often based on algorithms developed and the experience gathered from airborne SAR experiments and associated dedicated campaigns. However, airborne SAR systems have better performance parameters than their future space-borne counterparts as their design is not impacted by mass, power, and storage constraints. This paper describes a methodology to extrapolate spaceborne quality SAR image products from long wavelength airborne polarimetric SAR data which were acquired especially for the development and validation of bio/geo-retrieval algorithms in forested regions. For this purpose not only system (sensor) related parameters are altered, but also those relating to the propagation path (ionosphere) and to temporal decorrelation

    The E-Agriculture Research Landscape In South Africa: A Systematic Literature Review

    Get PDF
    Despite the growing interest in e-agriculture research in South Africa, academic studies have not sufficiently and deeply investigated the current e-agriculture research trends in the South African context. It is unclear how primary e-agriculture research in South Africa will aid both current and future generations to create new and better ways to transform agricultural development using this modern technology. This study sought to determine the current status of e-agriculture research in the South African context. A systematic literature review was used to gather and analyze data. The results indicate that 17 papers (26.5%) were published during the first two years (2010-2011) and 28 papers (43.7%) during the last two years (2014-2015). The results of the study further indicate that the use of satellite enhancing agriculture (14 papers, 21.8%) was the most prominent e-agriculture research area in South Africa (27 papers, 23.6%). The results of this study show that information mapping was the most used research method by researchers in their studies (30 papers, 46.8%). The results of the study helped to understand the importance of enhancing research capability and socio-economic transformation of farmworkers and farmers through enhanced communication of agriculture research knowledge in the area of agricultural informatics

    Comparison of machine learning and statistical approaches for Digital Elevation Model (DEM) correction: interim results

    Get PDF
    The correction of digital elevation models (DEMs) can be achieved using a variety of techniques. Machine learning and statistical methods are broadly applicable to a variety of DEM correction case studies in different landscapes. However, a literature survey did not reveal any research that compared the effectiveness or performance of both methods. In this study, we comparatively evaluate three gradient boosted decision trees (XGBoost, LightGBM and CatBoost) and multiple linear regression for the correction of two publicly available global DEMs: Copernicus GLO-30 and ALOS World 3D (AW3D) in Cape Town, South Africa. The training datasets are comprised of eleven predictor variables including elevation, slope, aspect, surface roughness, topographic position index, terrain ruggedness index, terrain surface texture, vector ruggedness measure, percentage bare ground, urban footprints and percentage forest cover as an indicator of the overland forest distribution. The target variable (elevation error) was derived with respect to highly accurate airborne LiDAR. The results presented in this study represent urban/industrial and grassland/shrubland/dense bush landscapes. Although the accuracy of the original DEMs had been degraded by several anomalies, the corrections improved the vertical accuracy across vast areas of the landscape. In the urban/industrial and grassland/shrubland landscapes, the reduction in the root mean square error (RMSE) of the original AW3D DEM was greater than 70%, after correction. The corrections improved the accuracy of Copernicus DEM, e.g., > 44% RMSE reduction in the urban area and >32% RMSE reduction in the grassland/shrubland landscape. Generally, the gradient boosted decision trees outperformed multiple linear regression in most of the tests

    Digital elevation model correction in urban areas using extreme gradient boosting, land cover and terrain parameters

    Full text link
    The accuracy of digital elevation models (DEMs) in urban areas is influenced by numerous factors including land cover and terrain irregularities. Moreover, building artifacts in global DEMs cause artificial blocking of surface flow pathways. This compromises their quality and adequacy for hydrological and environmental modelling in urban landscapes where precise and accurate terrain information is needed. In this study, the extreme gradient boosting (XGBoost) ensemble algorithm is adopted for enhancing the accuracy of two medium-resolution 30m DEMs over Cape Town, South Africa: Copernicus GLO-30 and ALOS World 3D (AW3D). XGBoost is a scalable, portable and versatile gradient boosting library that can solve many environmental modelling problems. The training datasets are comprised of eleven predictor variables including elevation, urban footprints, slope, aspect, surface roughness, topographic position index, terrain ruggedness index, terrain surface texture, vector roughness measure, forest cover and bare ground cover. The target variable (elevation error) was calculated with respect to highly accurate airborne LiDAR. After training and testing, the model was applied for correcting the DEMs at two implementation sites. The correction achieved significant accuracy gains which are competitive with other proposed methods. The root mean square error (RMSE) of Copernicus DEM improved by 46 to 53% while the RMSE of AW3D DEM improved by 72 to 73%. These results showcase the potential of gradient boosted trees for enhancing the quality of DEMs, and for improved hydrological modelling in urban catchments.Comment: 8 page

    Multistatic Radar: System Requirements and Experimental Validation

    Get PDF
    Multistatic radar provides many advantages over conventional monostatic radar, such as enhanced information on target signatures and improvements in detection which are due to the multiple perspectives and differences in the properties of clutter. Furthermore, the fact that receive-only multistatic nodes are passive may be an advantage in military applications. In order to quantify potential performance benefits of these advantages a comprehensive understanding of target and clutter behaviour in multistatic scenarios is necessary. However, such information is currently limited because bistatic and multistatic measurements are difficult to make, their results depend on many variables such as multistatic geometry, frequency, polarization, and many others, and results from previous measurements are likely to be classified for military targets. Multistatic measurements of targets and clutter have been performed over the past few years by the NetRAD system developed at the University College London and the University of Cape Town. A new system, NeXtRAD, is now being developed in order to investigate some of the many aspects of multistatic radar. This paper discusses the results obtained with the previous system and the lessons learnt from its use. These points are then discussed in the context of the new radar, defining key important factors that have to be considered when developing a new multistatic radar system

    BIOSAR 2010 - A SAR campaign in support to the BIOMASS mission

    Get PDF
    The ESA funded campaign BioSAR 2010 was carried out at the forestry test site Remningstorp in southern Sweden, in support to the BIOMASS satellite mission under study. Fully polarimetric SAR data were successfully acquired at L- and P-band using ONERA's multi-frequency system SETHI. In addition with other data types gathered, e.g. LiDAR and in-situ measurements, the compiled data set will be used for analyses and comparisons with biomass estimation results obtained at the same test site in the campaign BioSAR 2007, in which DLR's E-SAR made the SAR imaging. Detection of forest changes, robustness of biomass retrieval algorithms and long-term P-band coherence will be in focus as well as cross-validations between the two SAR sensors

    Biomass Retrieval Algorithm Based on P-band BioSAR Experiments of Boreal Forest

    Get PDF
    A new biomass retrieval algorithm based on P-band multi-polarization backscatter has been developed and evaluated based on SAR and ground data over boreal forest. SAR data collections were conducted on three dates at a test site in southern Sweden (Remningstorp, biomass < 300 tons/ha; late winter to early summer 2007) and on a single date at a test site in northern Sweden (Krycklan, biomass < 200 tons/ha; fall 2008). The retrieval algorithm is a multiple linear regression model including the HV-polarized backscatter coefficient, the VV/HH backscatter ratio and the ground slope. Regression coefficients were determined from Krycklan data followed by algorithm evaluation using Remningstorp data. The results from the latter show that RMS errors vary in the range 29-42 tons/ha depending on date and stand type. The new algorithm is also compared with alternative algorithms and found to give significantly better performance. The developed model is a significant step towards an algorithm which gives consistent results across multiple sites and dates, i.e. when forest structure, topography and moisture conditions is expected to vary

    Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska

    Get PDF
    As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic aperture radar data from a spaceborne platform can be used to map wetland types and dynamics over large areas. Following from earlier work by Whitcomb et al. (2009) using Japanese Earth Resources Satellite (JERS-1) data, we applied the “random forests” classification algorithm to variables from L-band ALOS PALSAR data for 2007, topographic data (e.g., slope, elevation) and locational information (latitude, longitude) to derive a map of vegetated wetlands in Alaska, with a spatial resolution of 50 m. We used the National Wetlands Inventory and National Land Cover Database (for upland areas) to select training and validation data and further validated classification results with an independent dataset that we created. A number of improvements were made to the method of Whitcomb et al. (2009): (1) more consistent training data in upland areas; (2) better distribution of training data across all classes by taking a stratified random sample of all available training pixels; and (3) a more efficient implementation, which allowed classification of the entire state as a single entity (rather than in separate tiles), which eliminated discontinuities at tile boundaries. The overall accuracy for discriminating wetland from upland was 95%, and the accuracy at the level of wetland classes was 85%. The total area of wetlands mapped was 0.59 million km2, or 36% of the total land area of the state of Alaska. The map will be made available to download from NASA’s wetland monitoring website
    • …
    corecore