3,926 research outputs found

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Experimental Assessment of Time Reversal for In-Body to In-Body UWB Communications

    Full text link
    [EN] The standard of in-body communications is limited to the use of narrowband systems. These systems are far from the high data rate connections achieved by other wireless telecommunication services today in force. The UWB frequency band has been proposed as a possible candidate for future in-body networks. However, the attenuation of body tissues at gigahertz frequencies could be a serious drawback. Experimental measurements for channel modeling are not easy to carry out, while the use of humans is practically forbidden. Sophisticated simulation tools could provide inaccurate results since they are not able to reproduce all the in-body channel conditions. Chemical solutions known as phantoms could provide a fair approximation of body tissues¿ behavior. In this work, the Time Reversal technique is assessed to increase the channel performance of in-body communications. For this task, a large volume of experimental measurements is performed at the low part of UWB spectrum (3.1-5.1 GHz) by using a highly accurate phantom-based measurement setup. This experimental setup emulates an in-body to in-body scenario, where all the nodes are implanted inside the body. Moreover, the in-body channel characteristics such as the path loss, the correlation in transmission and reception, and the reciprocity of the channel are assessed and discussed.This work was supported by the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-16) from Universitat Politecnica de Valencia and by the Ministerio de Economia y Competitividad, Spain (TEC2014-60258-C2-1-R), by the European FEDER funds.Andreu-Estellés, C.; Garcia-Pardo, C.; Castelló-Palacios, S.; Cardona Marcet, N. (2018). Experimental Assessment of Time Reversal for In-Body to In-Body UWB Communications. Wireless Communications and Mobile Computing (Online). (8927107):1-12. https://doi.org/10.1155/2018/8927107S1128927107Fireman, Z. (2003). Diagnosing small bowel Crohn’s disease with wireless capsule endoscopy. Gut, 52(3), 390-392. doi:10.1136/gut.52.3.390Burri, H., & Senouf, D. (2009). Remote monitoring and follow-up of pacemakers and implantable cardioverter defibrillators. Europace, 11(6), 701-709. doi:10.1093/europace/eup110Scanlon, W. G., Burns, B., & Evans, N. E. (2000). Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Transactions on Biomedical Engineering, 47(4), 527-534. doi:10.1109/10.828152Chavez-Santiago, R., Garcia-Pardo, C., Fornes-Leal, A., Valles-Lluch, A., Vermeeren, G., Joseph, W., … Cardona, N. (2015). Experimental Path Loss Models for In-Body Communications within 2.36-2.5 GHz. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2015.2418757Khaleghi, A., Chávez-Santiago, R., & Balasingham, I. (2010). Ultra-wideband pulse-based data communications for medical implants. IET Communications, 4(15), 1889. doi:10.1049/iet-com.2009.0692Khaleghi, A., Chávez-Santiago, R., & Balasingham, I. (2011). Ultra-wideband statistical propagation channel model for implant sensors in the human chest. IET Microwaves, Antennas & Propagation, 5(15), 1805. doi:10.1049/iet-map.2010.0537Kurup, D., Scarpello, M., Vermeeren, G., Joseph, W., Dhaenens, K., Axisa, F., … Vanfleteren, J. (2011). In-body path loss models for implants in heterogeneous human tissues using implantable slot dipole conformal flexible antennas. EURASIP Journal on Wireless Communications and Networking, 2011(1). doi:10.1186/1687-1499-2011-51Floor, P. A., Chavez-Santiago, R., Brovoll, S., Aardal, O., Bergsland, J., Grymyr, O.-J. H. N., … Balasingham, I. (2015). In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals. IEEE Journal of Biomedical and Health Informatics, 19(3), 938-948. doi:10.1109/jbhi.2015.2417805Shimizu, Y., Anzai, D., Chavez-Santiago, R., Floor, P. A., Balasingham, I., & Wang, J. (2017). Performance Evaluation of an Ultra-Wideband Transmit Diversity in a Living Animal Experiment. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2596-2606. doi:10.1109/tmtt.2017.2669039Anzai, D., Katsu, K., Chavez-Santiago, R., Wang, Q., Plettemeier, D., Wang, J., & Balasingham, I. (2014). Experimental Evaluation of Implant UWB-IR Transmission With Living Animal for Body Area Networks. IEEE Transactions on Microwave Theory and Techniques, 62(1), 183-192. doi:10.1109/tmtt.2013.2291542Chou, C.-K., Chen, G.-W., Guy, A. W., & Luk, K. H. (1984). Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics, 5(4), 435-441. doi:10.1002/bem.2250050408Cheung, A. Y., & Koopman, D. W. (1976). Experimental Development of Simulated Biomaterials for Dosimetry Studies of Hazardous Microwave Radiation (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 24(10), 669-673. doi:10.1109/tmtt.1976.1128936YAMAMOTO, H., ZHOU, J., & KOBAYASHI, T. (2008). Ultra Wideband Electromagnetic Phantoms for Antennas and Propagation Studies. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91-A(11), 3173-3182. doi:10.1093/ietfec/e91-a.11.3173Lazebnik, M., Madsen, E. L., Frank, G. R., & Hagness, S. C. (2005). Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine and Biology, 50(18), 4245-4258. doi:10.1088/0031-9155/50/18/001Yilmaz, T., Foster, R., & Hao, Y. (2014). Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels. IEEE Transactions on Antennas and Propagation, 62(6), 3064-3075. doi:10.1109/tap.2014.2313139Gezici, S., Zhi Tian, Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., & Sahinoglu, Z. (2005). Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70-84. doi:10.1109/msp.2005.1458289Marinova, M., Thielens, A., Tanghe, E., Vallozzi, L., Vermeeren, G., Joseph, W., … Martens, L. (2015). Diversity Performance of Off-Body MB-OFDM UWB-MIMO. IEEE Transactions on Antennas and Propagation, 63(7), 3187-3197. doi:10.1109/tap.2015.2422353SHI, J., ANZAI, D., & WANG, J. (2012). Channel Modeling and Performance Analysis of Diversity Reception for Implant UWB Wireless Link. IEICE Transactions on Communications, E95.B(10), 3197-3205. doi:10.1587/transcom.e95.b.3197Pajusco, P., & Pagani, P. (2009). On the Use of Uniform Circular Arrays for Characterizing UWB Time Reversal. IEEE Transactions on Antennas and Propagation, 57(1), 102-109. doi:10.1109/tap.2008.2009715Chavez-Santiago, R., Sayrafian-Pour, K., Khaleghi, A., Takizawa, K., Wang, J., Balasingham, I., & Li, H.-B. (2013). Propagation models for IEEE 802.15.6 standardization of implant communication in body area networks. IEEE Communications Magazine, 51(8), 80-87. doi:10.1109/mcom.2013.6576343Andreu, C., Castello-Palacios, S., Garcia-Pardo, C., Fornes-Leal, A., Valles-Lluch, A., & Cardona, N. (2016). Spatial In-Body Channel Characterization Using an Accurate UWB Phantom. IEEE Transactions on Microwave Theory and Techniques, 64(11), 3995-4002. doi:10.1109/tmtt.2016.2609409Pahlavan, K., & Levesque, A. H. (2005). Wireless Information Networks. doi:10.1002/0471738646Qiu, R. C., Zhou, C., Guo, N., & Zhang, J. Q. (2006). Time Reversal With MISO for Ultrawideband Communications: Experimental Results. IEEE Antennas and Wireless Propagation Letters, 5, 269-273. doi:10.1109/lawp.2006.875888Ando, H., Takizawa, K., Yoshida, T., Matsushita, K., Hirata, M., & Suzuki, T. (2016). Wireless Multichannel Neural Recording With a 128-Mbps UWB Transmitter for an Implantable Brain-Machine Interfaces. IEEE Transactions on Biomedical Circuits and Systems, 10(6), 1068-1078. doi:10.1109/tbcas.2016.251452

    Spatial channel characterization for smart antenna solutions in FDD wireless networks

    Get PDF
    This paper introduces a novel metric for determining the spatial decorrelation between the up- and down-link wireless bearers in frequency division duplex (FDD) networks. This metric has direct relevance to smart or adaptive antenna array base-station deployments in cellular networks, which are known to offer capacity enhancement when compared to fixed coverage solutions. In particular, the results presented were obtained from field trial measurement campaigns for both urban and rural scenarios, with the observations having a direct impact on the choice of down-link beamforming architecture in FDD applications. Further, it is shown that significant spatial decorrelation can occur in urban deployments for bearer separations as small as 5 MHz. Results are presented in terms of both instantaneous characteristics as well as time averaged estimates, thus facilitating the appraisal of smart antenna solutions in both packet and circuit switched network

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    A Secure Cooperative Sensing Protocol for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secure authentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and an analysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.Las redes de radio cognitiva detectora de espectro se las arreglan para operar en las nuevas bandas sin molestar a los usuarios con licencia. La detección de espectro es más precisa si el conjunto está realizado por varios nodos fiables. Aunque la detección cooperativa es un área activa de investigación, la autenticación segura de informes locales de detección no ha sido resuelta, por lo tanto se pueden dar resultados falsos. Este trabajo presenta un protocolo distribuido basado en firmas digitales y en funciones hash, y un análisis de sus características de seguridad. El sistema permite determinar una decisión final de detección de múltiples fuentes de una manera rápida y segura.Les xarxes de ràdio cognitiva detectora d'espectre se les arreglen per operar en les noves bandes sense destorbar els usuaris amb llicència. La detecció d'espectre és més precisa si el conjunt està realitzat per diversos nodes fiables. Encara que la detecció cooperativa és una àrea activa d'investigació, l'autenticació segura d'informes locals de detecció no ha estat resolta, per tant es poden donar resultats falsos. Aquest treball presenta un protocol distribuït basat en signatures digitals i en funcions hash, i una anàlisi de les seves característiques de seguretat. El sistema permet determinar una decisió final de detecció de múltiples fonts d'una manera ràpida i segura

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin
    corecore