4 research outputs found

    Security wireless sensor networks: prospects, challenges, and future

    Get PDF
    With the advancements of networking technologies and miniaturization of electronic devices, wireless sensor network (WSN) has become an emerging area of research in academic, industrial, and defense sectors. Different types of sensing technologies combined with processing power and wireless communication capability make sensor networks very lucrative for their abundant use in near future. However, many issues are yet to be solved before their full-scale practical implementations. Among all the research issues in WSN, security is one of the most challenging topics to deal with. The major hurdle of securing a WSN is imposed by the limited resources of the sensors participating in the network. Again, the reliance on wireless communication technology opens the door for various types of security threats and attacks. Considering the special features of this type of network, in this chapter we address the critical security issues in wireless sensor networks. We talk about cryptography, steganography, and other basics of network security and their applicability in WSN. We explore various types of threats and attacks against wireless sensor networks, possible countermeasures, mentionable works done so far, other research issues, etc. We also introduce the view of holistic security and future trends towards research in wireless sensor network security

    High Performance Computing Systems with Various Checkpointing Schemes

    Get PDF
    Finding the failure rate of a system is a crucial step in high performance computing systems analysis. To deal with this problem, a fault tolerant mechanism, called checkpoint/ restart technique, was introduced. However, there are additional costs to perform this mechanism. Thus, we propose two models for different schemes (full and incremental checkpoint schemes). The models which are based on the reliability of the system are used to determine the checkpoint placements. Both proposed models consider a balance of between checkpoint overhead and the re-computing time. Due to the extra costs from each incremental checkpoint during the recovery period, a method to find the number of incremental checkpoints between two consecutive full checkpoints is given. Our simulation suggests that in most cases our incremental checkpoint model can reduce the waste time more than it is reduced by the full checkpoint model. The waste times produced by both models are in the range of 2% to 28% of the application completion time depending on the checkpoint overheads

    Security attacks and challenges in wireless sensor networks

    Get PDF

    Runtime binary analysis for security

    Get PDF
    Master'sMASTER OF SCIENC
    corecore