View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarBank@NUS

RUNTIME BINARY ANALYSIS FOR SECURITY

SARAVANAN SINNADURAI S/O GUNACHILAN

NATIONAL UNIVERSITY OF SINGAPORE

2007

https://core.ac.uk/display/48630943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RUNTIME BINARY ANALYSIS FOR SECURITY

SARAVANAN SINNADURAI S/O GUNACHILAN
(B.Comp.(Hons.), NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2007

Acknowledgements

| am greatly indebted to A/P Wong Weng Fai for msaluable assistance and
guidance in the course of this project. | woulddike to acknowledge Mr Zhao Qin,
to whom | am thankful for all help rendered. | alwoathankful to Mr Timothy Tsai’'s

useful insights and to Mr John Wilander for prowmglthe testbed program.

Table of Contents

ACKNOWIEAGEMENLS ...t enenae e aenaaanes i
TabIE Of CONTENESeiiiiiiieii ettt e e e e e e e e e e e e e s nneneeee e ii
SUIMIMAIY ..ttt et e e e e e e e e e e e et et e ee e et eeeessssaneneneeeensennnnnnnnnes Vi
LISt OFf TADIES ...t e e viii
LIST Of FIQUIES ... e e e e e e e e e e e e e e e e e e aeeaeaeaeaeaeaeeaees iX
Chapter 1 INtrOAUCTION.ueiiiee e e e e e e e e e e e e e e e e e e aaaaeaaeaaeeas 1
I = = Tod (o | £ 11 o I TPPPPRPIR 4
1.2 OBJECHIVE ...ttt ettt e e e e e e e e nnr e e e e e e e e e 5
IR I (o= To [=T o 6
Chapter 2 Executable File FOrmats.............oceeeiiiiiii e, 7
2.1 Executable And Linkable File (ELF) FOrmat ccccee.vevveveveeeeeeiiiiiiiiieeeeeeee L
2.1.1 Accessing Symbols In Shared Library.......ccc.ccvvviiiiiiiiiieee, 10
2.2 Microsoft Portable Executable (PE) Format...............oooooiiiiiiiiiiiiiiiiiiiinnns 11
2.2.1 Accessing Symbols In Shared Library........cccccooeeeiiiiieiininiiiiieeee 13
Chapter 3 Previous WOTK ... e e 15
3L TECRNIQUES ... ettt e e e e e e e e e 15
3.1.1 TOOIS FOI LINUX .eeeiiiieiiiiiiiieie e ettt e e 16
3.1.2 TOOIS FOIr WINUOWS......cciiiiiiiieiiiimeeee et 24
3.1.3 Tools That Operate In Linux And WindOWScooooiiiiiiiiiieeeneeennnn. 25

Chapter 4 DynamoRIO OPEratioNScccuvuiimreiiieeeeeaas e ee e e e e e 21

4.1 BasSIiC BIOCK CaCNE ... 28
4.2 TraCe CaACNEooiiiiieiie e e e 29
4.3 DYNamOoRIO INtEIfACE......ccccoeii i e 29
Chapter 5 Security MOAUIESvuuiiiiiimmme e e 31
5.1 Return Address DEfENSEoiiiiiiiieeeeecei ettt 31
5.1.1 Return Address Modification EXpIOit......ccccooooiiiiiiiiiiiiiiees 32
5.1.2 Preventing Return Address Attack In TRUSS............ccccccieiiiiiiniinns 34
5.2 Base POINter DEENSEuviiieii i ceemec ettt 35
5.2.1 Base Pointer Modification EXPIOIt.......ccceeviiriiiiiiiiiiiiiicieiicee e 6.3
5.2.2 Preventing Base Pointer Attack In TRUSS............cccoooiiiiiiiiiiiieeee. 37
5.3 Global Offset Table DEfENSE ... e e eee et 37
5.3.1 Global Offset Table Modification EXPIOit cm......cccocviviiiiiiiiiiiiiiiiiiiiiinnnns 39
5.3.2 Preventing Global Offset Table Attack In TRRS.............cccviiiiiieeneenn. 41
5.4 Format String DEefENSEccooiiiiii et 42
5.4.1 Reading The StacKcooiiiiiiiieccccccccrcn e, 43
5.4.2 Writing Into Arbitrary Memory LOCAtioNSevvviiiiiiiiiiiieeieeeeeeeee, 45
5.4.3 Format String EXPIOItcooiiiiimmeemee e 46
5.4.4 Preventing Format String Attack INn TRUSS e eooooeeiieiiiiiiiieeeiis 49
5.5 Vulnerable C Library FUNCtiONS DEfENSE ..o eeeeeeeeeiiiiiiiiiiiiieeeiiiiiis 51
5.5.1 Preventing Vulnerable C Library Functionsag&kt In TRUSS.................. 52

5.5.2 Vulnerable C Library Functions BSS/DATA/HERRerflow Exploit54

5.5.3 Preventing BSS/DATA/HEAP Overflow Attack IIRUSS...................... 57

5.6 Longjmp Buffer DEfENSEvvvviiiiiiiceeeee e 58

5.6.1 Longjmp Buffer Modification EXPIOIt......cccc.oovviviiiiiiiiiiiiiiiiiie e, 60
5.6.2 Preventing Longjmp Buffer Modification Attabk TRUSS..................... 61
5.7 Function Pointer DEfENSE..........uuiiiicmeeeee et 61
5.7.1 Function Pointer Modification EXPIOit... o .vvvveiiiiiiiiiiiiiiiiieeeeeeeeeeeee, 62
5.7.2 Preventing Function Pointer Modification Aktdn TRUSS.................... 63
Chapter 6 Security EValUALIONS..............ueiiieeeiiiiiiieie e e 64

6.1 Security Evaluation With John Wilander’'s Teskief Twenty Buffer Overflow

ATEACKS ..o 64
6.2 Security Evaluation With BASS............ommmeeeeeieiiiiiiiiiis e eeeeens 65
6.3 Security Evaluation With Libsafe EXPIOItS....c.........vvvviiiiiiiiiiiiiiiieieeeeeeee, 66
6.4 Security Evaluation With cOntext’'s GOT AtACK ce...cevvveeeeeiiiiiiiiiieeeeeeeeen 67

6.5 TRUSS vs Four Different Tricks To Bypass Stdukl And StackGuard

[(0] (=T ox 1 o] o TSP PPPPRPPROPN 68
Chapter 7 EXPErIMENTS.......ccoiiiiiiiiiiiiiiteee et 71
7.1 EXPErimental SEIUPcccoieieeii oo e e ettt anana 71
7.2 Performance Test With DynamoRIO’s Profiling..............cooovvvviiiiiiiin, 71
7.3 Performance Test With SPEC CINT2000 Benchmaogiams.............cccccec..... 71
7.4 Performance Test With Bapco Sysmark Benchmar§rBmsccccevveeees 74

7.5 Performance Of LibSafe And StackShield With SRANT2000 Benchmark

(00 =T 0 113 PP 75

Chapter 8 CONCIUSION ... e e 78

o J0 I T a1 =Y 0)] 1T

8.2 FULUIE RESEAICKH ..o et

References

Summary

Exploitation of buffer overflow vulnerabilities cefitutes a significant portion of
security attacks in computer systems. Common buofferflow attacks include return
address attacks, format string attacks, vulner@bfenction attacks, stack-smashing
attacks, heap overflows and GOT modifications. @ime of these attacks is typically
to hijack critical information in the process adsiespace so as to redirect the
program’s control flow to any malicious code ingtttinto the process memory.
Previous solutions to these problems are basedreitm hardware or compiler. The
former requires special hardware while the lateguires the source code of the

application.

In this thesis, | have introduced a runtime seguntechanism - Transparent
RUntime Security Suite (TRUSS) - that can protegpli@ations against common
buffer overflow attacks. The objective of TRUSStasprotect applications against
buffer overflow attacks during execution. TRUSS keomwith the binaries of the
applications and it does not require the applicetiosource code. Furthermore,
TRUSS does not require any modification to the esystthat executes the
applications. Many previous tools in this area &muli their security effort on some
specific vulnerability. Unlike such tools, TRUSShsolidates a number of techniques
that can monitor various parts of the memory teedetprevent and protect against
buffer overruns. Additionally, TRUSS includes a fewsvel techniques to thwart

attacks on the Global Offset Table entries and neamory.

TRUSS is built as a client program in DynamoRIQdyaamic binary rewriting

framework. DynamoRIO is implemented on both Windawsl Linux. Hence, this

vi

scheme is able to protect applications on both aijper systems. TRUSS has been
successfully tested on the SPEC CINT2000 benchmatrams (on both Windows
and Linux), on John Wilander's “Dynamic testbed foventy buffer overflow
attacks”, on James Poe’s and Tao Li's “BASS - A &enarking suite for evaluating
Architectural Security Systems” as well as on Msofy Access, PowerPoint, Excel
and Word 2002. This thesis includes the implemenmtadetails of TRUSS. It also
provides a performance evaluation, which will shihat TRUSS is able to operate

with an average overhead factorupfto 0.5 in Linux and 1.5 in Windows.

Vii

List of Tables

Table 1: Security performance on John Wilandesshied of twenty buffer overflow
ALEACKS 1N LINUX . ciiiiiiiiieiiie et e e e e e s e e e e e e e e nss e e 65

Table 2: Security performance on John Wilandessied of buffer overflow attacks

I WINOOWS ..t e e e e e e e e e e e e e e snnaes 65
Table 3: Security performance on BASS iN LINUX ceeeeeoooiiiiiiiiiiiicceeeceenn 66
Table 4: Security performance on Libsafe explodeo LinuXccccvvvvvvnnnnnn. 67
Table 5: Performance of SPEC CINT2000 benchmargrpras on Linux............... 72
Table 6: Performance of SPEC CINT2000 benchmargraras on Windows 73
Table 7: Performance of Sysmark benchmark prog@ma/indows 74

Table 8: Number of call and return pairs (in miti&) in SPEC CINT2000 benchmark
programs for WindOWScoooooiiiiiiiiie e 75

Table 9: Number of call and return instructionsritlions) in Sysmark benchmark
Programs fOr WiNQOWScooieeeeiii e s 75

Table 10: Performance of LibSafe with SPEC CINT2B8Achmarks in Linux....... 76

viii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Figure 23:

Software vulnerabilities reported to CERT.............oooiiiiiiiiiiis 2.
Linking view of the ELF fileccariiiiiiicc e, 9
Execution view of the ELF fileccccooiiiiiiii e 9
Symbol table entry information..... .o 9
PE file TaYOULeuuiiiiiiei e 12
COFF file layOUL......ccoiiii e 12
Operations of DynamoRIO ... 28
Layout of a x86 process stack frame€..cooeeeeeeeeeeiiiiiiiiiiieieiies 32
Vulnerable C fuNCLON - L.......ooieiiiiiieieeeee e 33
: Procedure linkage table ... 38
s Vulnerable C fUNCHON - 2. eeeee e 40
Copy of basic block in code cache............cccueeeeiiiiiiiiiiiiieee, 42
BOQUS fOrmat StriNg ..o 44
Detecting position of format string iB6xprocess stack.............cccceeeennn.. 44
Reading content at arbitrary memorytioca...............cccccoeeeeeeeiiiennnnnn, 45
Proper use of ‘%n’ format SPeCifier............cccveiiiiiiiiiiiiiiieee e 45
Overwriting content of desired memomyaioN...............ccccuvvevieeeeeeeeennn. 46
Vulnerable C fuNCLioN - 3.........ou e 47
Saturating counter apProach o .ceeeeeaeiiiiiiiiiieeee e 48
Heap memory ChunkS............cuiiiiiii e 54
Memory management MACTO.........coummeseeeeernseerernneerenneeeereeeesnna. 55
Vulnerable C program = 4. e 56
SYMDOI STTUCTUIE.......eiiiiii e 57

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

Figure 30:

Setimp/Longjmp BUfEr ... e, 59
Setimp/Longjmp eXampleuuiccccceee e e 59
Function pointer assembly COUE ..o 62
Vulnerable C program = 5....... e 62
Performance of SPEC CINT2000 benchmesgrams on Linux............ 72
Performance of SPEC CINT2000 benchmergrams on Windows....... 73
Performance of Sysmark benchmark programwindows.................... 74

Chapter 1

Introduction

Computer security is a field in computer sciena th concerned with the control of
menace associated with computer use. It is estaghtih any application that is
executed in computer systems is safe and doesonagpromise with the security of
the systems. The widespread viruses, worms andafrbprses have the ability to
intrude into systems and either steal critical infation from the systems illegally or
take control of the systems at privileged levelpéoform unauthorized operations. It

is therefore extremely imperative to protect corepsistems from these malwares.

The rapid development of the Internet has furtipamsied a sharp increase in the
number of computer systems being violated by malgiattacks. From the time of
the infamous Internet Worm written by Robert T. Merin 1988 [35], several
security breaches causing much damage to systevesten reported. Ori"4Viay
2000, a virus known as “l Love You” spread througha, Europe and the US within
five hours via e-mails. It was estimated that taendge caused by the virus resulted
in a loss of nearly one billion dollars [30]. Irettiollowing year, “Code Red Worm”
spread over the Internet and more than 359,000 stargpconnected to the Internet
were infected with the worm in less than 14 hotitee damage caused by this worm

was estimated to be $2.6 billion [35].

Software vulnerabilities have been prevalent inliappons since 1960s [14].
Figure 1 shows the number of security alerts repbldly CERT between 1995 and

2005. A total of 22,716 vulnerabilities were repdrivithin the 10-year period [13].

7000

6000

5000 -
4000 -]
3000 =

Vulnerabilities

2000 =

1000 - |—|
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Figure 1: Software vulnerabilities reported to CERT

One common technique employed by these malwaregn@vn as buffer
overflows. The core of this security vulnerabiliigs in the use of programming
languages such as C and C++. These programmingdgeg tend to compromise
safety of the application for efficiency. For insta, it is essential for any application
to ensure that every access to an element in ay srisafe. However, the compilers
in these languages do not perform such checks atiatly. In addition, the notions
between arrays and pointers to data structuressae interchangeably. This makes it
more difficult to monitor the violation of buffeihits in programs. Yet, due to legacy
as well as the continued popularity of these pnognéng languages, the problem

cannot be solved easily by abandoning them in fagbsafer ones.

Buffer overflow occurs when buffers allocated inpeogram overflow upon
copying data into the buffer of a size larger tharcapacity. This results in the excess
data overwriting the adjacent memory locations.thrs way, if critical control
information was stored in the adjacent memory iocat a well-crafted data can
overwrite the memory locations and cause the progmdeviate from its execution

flow and in turn, execute any malicious code. Retaddresses, frame pointers,

Global Offset Table (GOT) entrielengjmp() buffer and function pointers are such

vulnerable critical information that resides in ffrecess memory.

A variant of buffer overflow attack is the formatrisg attack. Format string
vulnerability is based on the lack of safety chelokgshe C compilers (as mentioned
earlier) and on the implementation of some fundionthe standard C library. The
standard C library provides a list of functions wmoas format functions, which
accept a variable number of arguments. One of thegements is the format string.
These functions evaluate the format string and ednthe arguments following the
format string into a suitable form to be passed the output stream. However, these
functions do not check the attributes of the argusieMoreover, they do not validate
if the function parameters are indeed passed bycdtier. There is also a lack of
control mechanism to prevent any procedure thaluetes the format string from
accessing erroneous memory locations. This vulildyals manifested mainly in
interactive computer systems. Apart from formatctions, a number of other
functions implemented in the standard C libraryase vulnerable to buffer overflow

attacks.

This situation raises a serious cause of concecause applications that utilize
these library functions become vulnerable to aakd this in turn compromises the
security of the computer system, which executesetapoplications. Hence, methods
that protect computer systems from becoming vubilerbecause of such applications
are vital. This research paper introduces a runsesurity mechanism, which | refer
to as_Tansparent Rbtime Scurity Suite (henceforth, TRUSS). TRUSS provides a
set of techniques to protect computer systems sgaiommon types of buffer

overflow attacks and format string attacks in batiux and Windows.

1.1 Background

Buffer overflow attacks fundamentally aim to acl@gwo goals. Firstly, an adversary
has to inject a malicious code into the process amgmrhis is usually a small
sequence of instructions that can invoke a shethersystem and pass control to the
adversary with the privilege of the user. Secontllg, adversary has to change the
execution flow to point to the start of the malitsocode residing in memory. An
attack is successful only when both the goals aleesed [57]. There is no major
security concern if only one of the goals is pultH#l by the adversary. Malicious
code residing in the computer system does not cagelamage to the system unless

it is invoked.

There are five main types of buffer overflow attackhe most common way to
perform a buffer overflow attack is by modifyingtuen addresses. These addresses
are usually modified via stack smashing — a metioodverwrite a buffer with data
more than the size of the buffer itself. Overflowedffers will usually cause the
program to crash. However, adversaries can useonadtied data to modify specific
location in the memory where the return addressdess This can change the
execution flow of the program and make the progremanter (also known as

instruction pointer) to point to the start of thalimious code.

The second type of attack targets the stack fraoietqy. This attack uses the
stack-smashing technique as well. The adversaydmsert a fake stack frame into
the process stack with a return address pointirigectart of the malicious code. The
overflowing data has to overwrite the value of@esti frame pointer with the address
of the fake stack frame. Hence, when a subroughems, control will be passed on to
the fake stack frame and it will perform a retugaia directing the flow of control to

the attack code.

The next type of attack aims to redirect a funcpomter in the program to point
to the attack code. This function pointer can tecated in the stack or heap for the
attack to succeed. A buffer is overflowed until themory location of the function
pointer is reached. The start address of malicomae is then copied to the function
pointer. Thus, when the function pointer is usedhea program, it will direct the

execution flow to execute the attack code.

The fourth type of attack targets the GOT entridge GOT is used by applications
in Linux to redirect function calls between the exi@able and a shared object or
between different shared objects. This is a pofntamtrol flow transfer and if an
adversary manages to hijack this data and ovenitritéth the start address of any

malware, the malware will be successfully executed.

The last type of attack uses tstjmp() /longjmp() buffers. Asetimp() call
saves the environment information in a buffer. Tdasa includes the contents of the
program counter, the stack pointer and the framet@o The program counter
contains the address of the instruction to be arécoext. If an adversary manages to
modify the program counter to point to the startatfack code, control will be
transferred to the attack code whemgjmp() restores the environment information

[14].

1.2 Objective

This paper presents TRUSS, which is to be usedphcations that execute on Intel
x86 architecture. The main objective of TRUSS ipitovide a defensive mechanism
that makes minimal modification to the original eutable and incur low overheads

during runtime. In order to efficiently work on application, TRUSS employs

DynamoRIO, a binary instrumentation tool. DynamoRI® a runtime code

manipulation system and TRUSS functions within #yistem. DynamoRIO is an IA-
32 implementation of the original PA-RISC based &y Project [5]. It supports
efficient, transparent and comprehensive manimratf applications running on
Windows or Linux operating systems. DynamoRIO padesi APIs to hook each basic
block in the application before the block gets exed. This provides ideal opening to

analyze the instructions and to implement defensieasures.

The suite of safety techniques presented in thé®aeh paper is to provide
efficient runtime protection for applications, inslve of those without any source
code. The primary aim of this research paper @ésent a defense suite that protects
existing applications from return address modifaatattacks, format string attacks,
stack smashing attacks, GOT attacks, heap buffeckstlongjmp() buffer attacks
and attacks that take advantage of the vulneraletibns in the standard C library

with considerably low overhead.

1.3 Roadmap

In Chapter 2, | will look at the two different typ®f executable file formats used in
Linux and Windows operating systems. Chapter 3 welliew some of the related
work in this field. In Chapter 4, | will look at ¢hunderlying tool, DynamoRIO, upon
which TRUSS is built. Chapter 5 will explain thecadty modules included in

TRUSS. In Chapters 6 and 7, | will analyze the secperformance and overhead

incurred by TRUSS respectively and | will concludeChapter 8.

Chapter 2

Executable File Formats

In this chapter, | will briefly describe the Exeahbte and Linkable File (ELF) format
and the Microsoft Portable Executable (PE) fileriat utilized by binaries in Linux
and Windows respectively. Understanding these ftgnsmessential as most of the

information used by TRUSS is extracted from theabigs.

2.1 Executable And Linkable File (ELF) Format

ELF [33] defines a binary interface that allows timking of several object files and

creates a process image during execution. Therin@e main types of object files.

> A relocatable file stores code and data suitableliftking with other object

files in order to create an executable or a shawvbgkct file.
» An executable file contains a program suitablegwecution.
» A shared object file stores code and data suit&nléwo functions:

o First, the link editor may process it with othelaeatable and shared

object files to create another object file.

o Second, the dynamic linker may combine it with xeecetable file and

other shared objects to create a process image.

The ELF object file provides a dual view of theef contents - linking view and

execution view. While linking view is required tailtl the program and it divides the

file content into sections that contain the texttadand other information such as the
symbol tables and relocation tables; execution vieweeded to form the program
image. It describes how the various parts of the $hould be mapped into the
memory to form the process image. Execution vievidds the content into segments

with differing permissions (e.g. read/write/exedlgd assigned to them.

The ELF file stores the ELF header at the begmmihthe file and this header
holds a roadmap that describes the file's orgaoizain addition, the ELF file
contains a program header table and a section heable. The program header
describes the ELF file’s execution view while thection headers describe the ELF
file's link view. The program header instructs #ystem on creating a process image.
Only ELF files that are used to build a processgenhave a program header table.
Relocatable ELF files do not need one. Each prodreader describes a segment in
the ELF file. A segment can contain one or moretiges. Sections with similar
access permissions can be grouped into the sammeséy Each segment
corresponds to a segment in the virtual addressesfde process image is made up

of segments of memory that hold code, data and.stac

The section header table is an array of sectiadérestructures. Each section
header contains information describing the fil&stions. Every section in the ELF
file occupies a contiguous block of memory andwo $ections overlap. The sections
in ELF are pre-defined and hold program and confridrmation. These sections are
used by the operating system and have differengstygnd attributes for different
operating systems. An illustration of the dual viefvan ELF file is depicted in

Figures 2 and 3.

ELF Header ELF Header
Program Header Table Program Header Table
Optional Segment 1
Section 1
Segment 2
Section n

Section Header Table

Section Header Table
Optional

Figure 2: Linking view of the ELF file

Linking two files essentially means to resolve flyenbols defined in one object file
and used in another. This process uses a numisectbns. To facilitate linking, the
ELF file contains two symbol tables that store st bf all the symbols used or
globally defined in an object file. The dynamickar exclusively uses the dynamic
symbol table and the static linker uses the otlyerb®l table. Each symbol entry

contains information regarding the name, value aeadtion index as depicted in

Figure 4.

Figure 3: Execution view of the ELF file

typedef struct {
EIf32_Word st_name;
EIf32_Addr st_value;
EIf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
EIf32_Half st_shndx;
} EIf32_Sym,;

st_name This member holds an index into the object file's

representations of the symbol names.

symbol strin g table, which holds the character

st_value This member gives the value of the associated symbo
Depending on the context, this may be an absolute
value, an address, and so on.

st_size Many symbols have associated si

zes. For example, a data

object's size is the number of bytes contained in t he
object. This member holds 0 if the symbol has no si ze
or an unknown size.

st_info This member specifies the symbol's type and binding
attributes.

st_other This member currentl y holds 0 and has no defined
meaning.

st_shndx Every symbol table entry is defined in relation to some
section. This member holds the relevant section hea der

table index.

Figure 4: Symbol table entry information

Relocation is the process of connecting symboliferemces to symbolic
definitions. For example, when a program calls acfion, the associated call
instruction must transfer control to the propertidesion address during execution. In
other words, relocatable files must contain infaiorathat describes how to modify
their section contents, thus allowing executabld ahared object files to hold the
right information for a process's program image.the ELF file, relocations are
needed because the virtual address of all the dgn®only available at runtime. The
virtual address of a function or a data item insadehared library is not known until
the program starts to execute. The ELF file thukesaise of the GOT to store all the
symbols that have to be resolved at runtime. Eadhy an the GOT specifies a
symbol and the first time a symbol is used in thegpam, the dynamic linker is

invoked to go through all the loaded libraries amgberform the specified relocation

[3].

2.1.1 Accessing Symbols In Shared Library

In Linux, instructions in dynamically linked librias are not bound to the executable
at link time. Dynamic linking defers much of the@HKing process until a program
starts running. Therefore, it is not possible towrthe addresses of functions defined
in shared libraries before the program begins ei@tuln Linux, however, a
programming interface is provided to dynamic linkilmader. This interface allows

shared libraries to be loaded explicitly via thepen() call.

dlopen() loads a dynamic library and returns a handletfdf the absolute path

for the library is not provided, the library is sef@ed for in the following locations:

» A list of directories in the user's LD_LIBRARY_PAdimVvironment variable.

10

» The list of libraries cached in /etc/ld.so.cache.
» llib directory, followed by /usr/lib directory.
If library filename is aNULL pointer, a handle for the main program is returned

External references in the library are resolvecgighe libraries in the library's
dependency list and any other libraries previowggned with theRTLD _GLOBAL
flag. If the executable was linked with the fladynamic , the global symbols in the

executable will also be used to resolve referencasdynamically linked library.

dlopen() has to load the dynamic library with the fl&FLD_NOWThis will
resolve all undefined symbols befatlpen() returns. OptionallyRTLD GLOBAL
may be added to flag, in which case, the exteryrabsls defined in the library will
be made available to subsequently loaded libradiegm() accepts the handle of a
dynamic library returned bgllopen() and the symbol name. It returns the address
where that symbol is loaded. If the symbol is nmtirfd, disym() returns a null
value. TRUSS employs this technique to obtain tidress of functions defined in

shared libraries in order to intercept them.

2.2 Microsoft Portable Executable (PE) Format

Microsoft PE files [36] are intended for a pagedimmment. Pages from a PE file
are usually mapped directly into memory and exetwemilar to an ELF executable.

There are two types of PE files.
» EXE programs

» DLL shared libraries (known as dynamic-link library

11

The format of the two files is the same. Only dustait differentiates the two PEs.
Both types of files can contain a list of exporfadctions and data that can be used
by other PE files loaded into the same addressespatist of imported functions and
data that has to be resolved from other PEs attioz can also be found in the PE

files. However, th&XEfiles do not export functions.

In addition, there exists another type of file WmoasCOFFE COFFis the Common
Object File Format. This is the type of an objelet éinder Microsoft Windows. The
structure of theCOFFis similar to the ELF relocatable file. The laypubf the

Microsoft PE file andCOFF file are illustrated in Figures 5 and 6.

MS-DOS 2.0 Compatible Microsoft COFF Header
EXE Header
unused
OEM ldentifier Section Headers

OEM Information
Offset to PE Header

MS-DOS 2.0 Stub Program

and
Relocation Table
Unused Raw Data:
PE Header code
(aligned on 8-byte boundary) data
Section Headers debug info
Image Pages: relocations
import info
export info
base relocations
resource info
Figure 5: PE file layout Figure 6: COFF file layout

The PE file header consists of a Microsoft MS-D@# sthe PE signature, ti&OFF
file header and an optional headerCAFFobject file header consists ofG®DFFfile
header and an optional header. In both casesett®s table follows the file headers
immediately. Each row of the section table is atisacheader, which describes a

particular section. Each section is physically radid on a disk block boundary and

12

logically aligned on a memory page boundary (408@ha x86). The linker creates a

PE file for a specific target address at whichfileewill be mapped [36].

2.2.1 Accessing Symbols In Shared Library

Unlike Linux, Microsoft Windows does not provide amterface that can be used to
retrieve the address of imported functions. Howevee PE file does contain an
imported function table that stores the names gfoirted functions and the libraries
where the functions are defined. This table is kmag the Import Address Table
(IAT). I will now explain the process of accessihg addresses of functions from the

IAT.

In order to work with the Microsoft PE, a handle ttee executable has to be
obtained. The Win32 API providesGetModuleHandle() call to retrieve a module
handle, known asiMODULEfor the specified module. This function returnbaadle
to the file used to create the calling process wisameter is NULL. The base of the
module, which contains the DOS header is thenenetd from theHMODULHbandle.
The optional header in the PE is then accessedtminothe data directory, which
contains the various sections in the PE. The imgestcriptor entry is then accessed
from the data directory. This is the section thamtains the information about the

imported libraries.

The import descriptor entry contains two data tlsunlOriginalFirstThunk
and FirstThunk . The import information is in fact stored in twabtes. The
OriginalFirstThunk contains a reference to the Import Name Table thar
module andFirstThunk contains a reference to the Import Address TabtetHe

module. The two tables contain entriedMPORT_BY_ NAMBtructure. This structure

13

contains both the address and the name of the tegpdunction and hence, the
desired function address can be retrieved fronPt@nce the program is loaded. The
Import Name Table and the Import Address Tablenagecly two copies of the same
table. The PE loader, which maps the function natmesldresses when loading the
PE, uses these two tables. Since the addresses whtious functions are unknown at
compile time, the loader performs the resolutiod eeplaces each entry in the Import
Address Table with the actual address of the fonctif there arises a need to know
which function an address corresponds to, the Itngame Table can then be used.
TRUSS employs this technique to obtain the addoéssandard C functions defined

in shared libraries in Windows.

14

Chapter 3

Previous Work

Security modules that provide protection to appices can be employed at three
different levels in computer systems. Firstly,sitpossible to modify the hardware of
the existing systems or add hardware modules tgytbems to monitor applications.
Some systems include an additional processor stigherform security checks. This
is a fast but rather expensive method. Secondbyrigg measures can be included
into compilers. Compilers can insert additionaltiastions into the applications to

perform checks and prevent any violations. This lgequire recompilation of the

source code but to most legacy applications, thiecgocode is not available. Thirdly,
defensive measures can be applied simultaneouslyhenapplications that are
executed in the system. This, however, requiregtiaddl tools to decode and analyze
the instructions in the applications and it is k& incur higher time overhead than

the earlier methods.

In this chapter, | will briefly review the curreptiavailable tools that claim to

protect systems against the attacks under discussio

3.1 Techniques

| will review tools built for Linux operating syste followed by tools built for
Windows operating system. | will then review tothsit are able to operate on both

Linux and Windows.

15

3.1.1 Tools For Linux

SmashGuard [40] is a hardware solution that pretkaiction return addresses in the
process stack from buffer overflow attacks. Thizhteque modifies the semantics of
call and return instructions in the instruction sethitecture. This modification
enables functions to store a copy of the returmesdeks in a memory segment during
calls and to perform comparison with the storedurretaddresses upon return
instructions. In an event where the return addretise stack does not match with the
stored copy, the processor raises a hardware esnegptd terminates the execution.
Modern CPUs contain a considerable amount of menurythe chip itself.
SmashGuard utilizes this memory space to creatgaastack. This is used for storing
function return addresses. Hence, by modifying ih&truction set architecture,
SmashGuard is able to provide protection to apfidina without modifying the

application.

StackGuard [19] is a compiler extension that enbarbe executable produced by
the compiler so that the executable is protectednag stack-based buffer overflow
attacks. This technique specifically targets tharreaddresses of the functions in the
stack. StackGuard can detect changes to activenreidresses before a function
returns. In order to prevent changes to activermefuldresses, StackGuard stores a
canary (known 4-byte value) adjacent to the retdldress in the stack. When the
function returns, checks are carried out to enshbia¢ the canary is unaltered. The
values of the canary are selected randomly scatiharsaries will not be able to skip
or simulate the canary. In addition, StackGuardsuseMemGuard to prevent any
modification to the return address. MemGuard wpitetects pages and generates

exceptions when protected pages are accessed. StagkGuard write-protects pages

16

containing the stack but restores write privilegethie topmost page to allow the

program to access the stack variables.

StackShield [55] is a compiler extension implemdritg Vendicator. It can work
with GCC compiler to provide protection for applicas that are compiled with it.
During compilation, StackShield inserts instrucianto the program to make copies
of function return addresses and saves them in t@&a dagment known as
Global_Ret_Stack . These instructions are inserted after call ir$ioms and
before return instructions. During execution of gregram, when a function call is
invoked, the function return address is stored Gitibal Ret Stack and before a
return instruction is executed, the return addnegbe process stack and the copy in
the data segment are compared. An alert is rafsdélteiaddresses do not match.
StackShield, however, will only protect an appilicatif the application is compiled
with it. Hence, the source code of the applicati®mecessary in order to utilize
StackShield. This, however, is not possible for ynkegacy applications where only

the binaries are available.

Return Address Defender (RAD) [14] is another cderpiextension which
provides a compile-time solution to buffer overflattacks targeting return addresses.
Like StackShield, RAD automatically adds instrun8ointo applications that are
compiled with it. Protection code is inserted intiee function prologues and
epilogues. Hence, when a program is executed, @mgtiobn invocation will copy the
return address to a memory segment céletirn Address Repository . When
return instructions are executed, the return addoesthe process stack is compared
against the stored copy. A mismatch would raiseexreption. In addition, RAD
marks theReturn Address Repository as read-only to ensure the credibility of

the return addresses stored in the memory segmextso has the option of marking

17

only the neighbouring pages of tReturn Address Repository as read-only;
this causes less performance degradation compatée previous method. However,
like StackShield, RAD too requires the source coidine program in order to provide

protection.

Libsafe [54] uses a technique that can intercepbdations of most standard C
functions and performs safety checks on the argtsnéinthe checks pass, either the
original functions or the equivalent alternativet gxecuted. Suppose the check fails,
the Libsafe will log the necessary information dedninate the application. Libsafe
functions as a dynamically linked library that istigated by explicitly specifying
itself in the LD_PRELOADenvironment variable. By doing so, the librarylosaded
even before the program begins execution. Whenalkgbsntercepts a C library
function, it performs frame pointer checks and feaspan checks. Frame pointer
check ensures thatsti format specifier does not modify any return addes or
frame pointers. Frame span check ensures that fier bs overflowed beyond the
current frame pointer in the process stack. Theathge of Libsafe is that it does not
require the source code of the application; neitth@es it modify any part of the

application.

Guarded Memory Move (GMM) [34] is a technique thaictions in a similar way
to Libsafe. GMM also functions as a dynamicallykiéd library that is activated by
explicitly specifying itself in the.D_PRELOADenvironment variable. During dynamic
symbol resolution, the loader checks librarieshia tD_PRELOADvariable and the
functions found in GMM library are executed insteafdthe C library functions.
GMM’s alternative C functions store content of somemory locations above the
current stack frame and three previous return addseinto private location during a

call instruction. When the subroutine returns, #dsting memory content is

18

compared with the stored data. A violation is sigubif a mismatch is found. In this
way, the safety of the application is assured. lkestLibsafe, GMM does not require
source code and it does not modify any part ofapplication. Both LibSafe and
GMM provide safe versions of format functions. Henihese applications can also be

considered as format string defense tools.

Libverify [6] is a proposed solution that works bmaries at runtime to provide
protection against buffer overflow attacks thatgédrfunction return addresses. It
works on Linux operating system. Libverify works aslynamically linked library
that is activated by explicitly specifying it inglhD_PRELOADenvironment variable.
By doing so, the library is loaded even before pinegram begins execution. The
_init() function in Libverify will modify the applicatiorsuch that every function
invocation and return instruction will invoke théecking functions in its library.
Libverify copies every function instruction to theeap and appends a branch
instruction to an entry wrapper function. This gntrapper function stores a copy of
the return address in a canary stack (which residgébe heap memory) and then
branches back to the original function. Likewidweg teturn instructions are replaced
with an exit wrapper function, which in turn vee$ the return address in the process
stack with the corresponding value stored in theaoa stack. Upon a match, the
process will execute the return instruction andtioore with its execution flow. Any
mismatch will create a syslog entry, output an remessage and terminate the
process. Libverify provides dynamic protection k@eutables. Its ability to work on
binaries without the source code is a major adggntBlowever, this software has not

been released.

FormatGuard [17] employs a defense mechanism tea&epts exploitations due to

format strings. In order to prevent format strirtaeks, FormatGuard compares the

19

number of actual arguments provided for format fioms against the number of
arguments specified in the format string. If thentner of arguments called for were
more than the number of arguments passed to thetidus, FormatGuard would
classify the case as an attack. It will log therafit and abort the program. Counting
the actual number of arguments that are passeatriwaf functions is a difficult task.
This is because the arguments are passed as bledisa that does not provide any
counting mechanism. FormatGuard counters this pmbby using CPP variable
argument syntax for argument counting and thistfonds inserted into thstdio.h

file. FormatGuard is packaged as a modified implaat@n ofglibc 2.2 libraries.
Thus, applications have to be complied with the ified libraries to utilize
FormatGuard’s protection. In addition, the CPP ayrdeployed in FormatGuard may

cause compatibility problems when executing sonpgdgrams.

White listing [49] is a technique used to contraémory modification via format
functions. It maintains a list of memory addressi\ges that allow memory
modification. This list is referred to as the whiit. During runtime, the technique
inserts and removes memory address ranges to the ligt and from it. Hence, a
format function can check with the white list tarifye whether a valid integer pointer
is being modified, when handling &ofi format specifier. The white listing scheme
proves to be rather flexible in that it is possitid enforce different policies - one at a
time - using the same technique. Firstly, removitigmemory addresses from the
white list can enforce a ‘no memory write’ scherSecondly, ‘write anywhere’ can
be put in place by specifying all possible addressges in the white list. Lastly,
adding a user specified range of addresses intwliite list can enforce a ‘restricted
write’. White listing can automatically registeretraddress range before a format

function and unregister it after the function. Henavhen a format function

20

encounters a%n specifier, it will always scan the white list theck if the memory

addresses to be written to is safe for a write afp@r. White listing uses the C
Intermediate Language System (CIL) to implementdéfense mechanism. CIL
provides the tools that permit easy analysis amtcgsto-source transformation of C
programs. Hence, the C program is transformedtheointermediate language, after
which the additional instructions for protectiore anserted. As such, this technique

requires the source code of the application.

C Range Error Detector (CRED) [51] is a safe C ctenplt uses an object tree,
containing the memory ranges occupied by all tiféebgiused in a program. When an
object is created, it is added to the tree and whisndestroyed or goes out of scope,
it is removed from the tree. A pointer operationcansidered illegal if a memory
location that is not within the tree is accessedrédver, CRED does not change the
representation of pointers within the applicatids. such the instrumented code can
interoperate with the unchecked code. Limitation€CRED include interchangeable

use of structures and arrays and unverified acsegskin library functions.

LibSafePlus [3] is a dynamically loadable librarndat is an extension to LibSafe.
LibSafePlus includes heap protection in additionLibSafe’s stack protection. It
contains wrapper functions for unsafe standardr€tfans. These wrapper functions
determine the target buffer sizes in any operatti@ writes to a buffer and ensures
that the operation does not result in an overfldype Information Extractor and
Depositor (TIED) is a tool that can extract debaggnformation from a program and
can enhance the program with additional informatiegarding the sizes of all the
buffers used in the program. LibSafePlus uses Tt&prevent buffer overflows.
LibSafePlus requires the program to be compiled wlite debugging optiond .

This provides the executable with additional delggsections. TIED can thus

21

examine this debugging information and extract steeting addresses and sizes of
buffers used in the program. The wrapper function LibSafePlus uses this
information to protect the unsafe functions in g C library so as to buffer

overflows.

Transparent Runtime Randomization (TRR) [58] pressoan idea to randomize
runtime locations of critical data in the applicatiin order to make it difficult for an
adversary to determine the location of the datautin experimentation. TRR
essentially modifies the dynamic loader to relodate user stack, shared libraries,
user heap and the GOT to different memory locatidtmss technique handles both
position dependent memory region and position irddpnt memory region. User
stack, user heap and shared libraries are positd@pendent, as these regions do not
have complex inherent relationship with other paftthe application. The GOT is a
position dependent region because this regionxsdfiinside the program’s data
segment and any uncoordinated relocation will breakerences within the
application. The random offsets used to relocagectitical data regions are chosen in
a way that the memory regions do not overlap buetsufficient space to grow. The
randomizations in this technique do make it mofécdilt for attacks to succeed but
do not completely thwart attacks because the réddcanemory regions are not

protected in any way.

PointGuard [18] is a pointer protection technigu@t tencrypts pointers when they
are stored in memory and decrypts them when theylaaded into CPU registers.
PointGuard is implemented as a compiler extendiat modifies the intermediate
syntax tree to insert encryption and decryptionecoHowever, encryption only
provides confidentiality. It does not guaranteeittiegrity of the encrypted values. In

addition, although PointGuard imposes very smatfgpmance overhead for most

22

applications, it only protects the code pointensnétion pointers and pointers in
longjmp() buffers) and data pointers. It does not offer gngtection for other

program objects.

Propolice [22] is a compiler extension that cantgerb executables from stack
smashing attacks. It places canaries in memorytitocdetween the frame pointers
and local variables and ensures that the memostitots adjacent to the canary are
not altered. In addition, Propolice reorders theatmn of stack variables. It places
local pointers below arrays. Pointers from the argots are placed before the local
variables. Having local pointers placed below arpyevents attacks that attempt to
overflow the arrays in order to modify the pointe®acing pointers from the
arguments before the local variables makes it ni@edy for the buffer overflow

attacks to be detected.

One point to note is that GCC 4.1 incorporates alifieal version of IBM ‘s
ProPolice Stack Detector. This version includes enam-time and compile-time
optimizations and function analysis. Hence, apfilices compiled with GCC 4.1 will

include stack protection instructions by default.

Another class of defense techniques include thdsehasupport non-executable
mappings on platforms. These techniques assignseéagaents such as the stack and
heap as non-executable. In this way, any malicmede that resides in these data
region will be denied execution privileges. Exanspl&f such techniques are the
SolarissfSPARC Non-Executable Stack Protection aetBSD 2.0 Non-executable

Stack and Heap Protection.

23

3.1.2 Tools For Windows

DOME [47] is a technique for detecting several séss of malicious code in
applications. It uses static analysis to identifyl &0 store locations of Win32 API
calls within the application. It then monitors tieecutable to verify that all API calls
are made from the observed addresses. DOME utlhe¢surs [27] to intercept every
API functions in an application. Detours is a Iflyréor intercepting Win32 functions
on x86 machines. It intercepts functions by insgrtadditional code into the binary
during execution. It can divert calls to Win32 ftinos so as to pass control to the
user. It can also allow the original function toibeoked if needed. The underlying
idea is to prevent any Win32 API invocation fronverified location, thus preventing

the malicious code from invoking any API function.

Binary rewriting defense [44] is a binary level wabn to foil buffer overflow
attacks. This technique does not require the satode of the application. It protects
the function return addresses by adding proteatamte at every function invocation
in the binaries. This is done by static analysisheut disturbing the procedure’s
execution flow. This technique requires tools talgre the binary in order to identify
each instruction. Binary rewriting method uses elislers to accurately trace the
location of function invocations in the binary. dénder to store copies of the return
addresses, the binary rewriting method employs laintechnique used in RAD.
Function return addresses are stored in a repgsitipon function calls and a
comparison is done before return instructions aexeted. However, in contrast to
previously mentioned techniques, binary rewritingethod inserts additional
protection code only for ‘interesting functiongiese functions contain instructions to
allocate and to free the memory for local variabldsis, functions that do not contain

any local variables are considered safe functiomsstack based buffer overflow

24

cannot succeed in functions without local variable®wever, static analysis of
binaries cannot provide protection for dynamicdilyked libraries and Position
Independent Code (PIC). Moreover, static analysibioaries using dissemblers is
not 100% accurate and it is still possible to miserable functions even after using

it.

3.1.3 Tools That Operate In Linux And Windows

HeapShield [8] is a memory management approachctiraiprevent heap overflows.
It basically modifies the free-list based heapygsctally used in Linux and Windows
to segregated-fits ‘Big Bag of Pages’ (BiBOP) stiysap. The heap allocator divides
memory into chunks that are multiples of the syspamge size. Objects of different
sizes are allocated in different chunks. Objecesiand other metadata are stored
either at the beginning of the chunks or in a pdgectory. This type of heap
organization allows efficient calculation of availe free space in allocated buffers

and thus thwarts heap overflow attacks.

Secure execution via program shepherding [29]ssfwvare technique that thwarts
all attempts to hijack a program’s control flow nggisecurity policies and binary
rewriting techniques. It monitors control flow tedars during program execution. It
employs the use of three techniques to enforceisgqolicies. Program shepherding
can restrict execution privileges based on codgirwi It can restrict control transfer
based on instruction class, source and targetddiitian, program shepherding can
place a sandbox on any type of application. Progghepherding has been built as an

extension to a dynamic optimizer called RIO. RIQbislt upon an 1A32 version of

25

Dynamo. RIO is implemented for both Linux and Windoand it can execute large

desktop applications and multi-threaded application

The No eXecute (NX) bit is a technology used tdinggliish areas of memory for
instructions storage and data storage. Any memagynent assigned with the NX bit
will mean that it can only be used for storing ddfa instructions can be executed
from regions assigned with the NX bit. The gen&zahnique is known as executable
space protection. It is used to prevent maliciamfsasare from taking over computers
by inserting their code into another program's dédeage area and running their own

code from within this section.

In this thesis, | am introducing a new tool callBRUSS. TRUSS is a software
technique that operates in both Windows and Litiuaims to thwart common forms
of buffer overflow attacks and it includes novethriques to protect the GOT and
heap buffers without modifying any part of the apgion. | employ a dynamic
binary rewriting tool, DynamoRIO, to implement TRE83t is to be noted that this is
the same tool that has been used in Program ShiépheHowever, the DynamoRIO

application used in this project has been modifeesupport self-modifying code.

26

Chapter 4

DynamoRIO Operations

The protection provided by TRUSS consists esséntiafl rather straightforward
ideas. However, the major challenge is to provideefficient method to perform
binary instrumentation and to insert minimal cheagkinstructions while bringing
down the performance overhead. TRUSS uses Dynam@RI@s implementation

platform.

DynamoRIO is a runtime code manipulation tool thatipports code
transformations in an application during the amilan’s execution. Its operating
procedure is illustrated in Figure 7. DynamoRIO m@ins a code cache where it
stores a copy of the application instructions. Ehiestructions are stored in units of
basic blocks such that each basic block ends witbrdrol transfer instruction. The
basic blocks in the code cache are used for exacutience, DynamoRIO constantly
transfers control between instrumentation of bésicks from the application code
and execution of the basic blocks. DynamoRIO inetudn important optimization
technique to improve the application’s performariteontains a cache that stores a
copy of contiguous sequences of basic blocks knasvinaces. These are basic blocks
that are executed more than a default number oéginThe control transfer
instructions in these blocks are replaced with destdly used targets of indirect
branches (inlined into the traces); these alsadela check to verify the target of the
branch instruction [11]. Traces improve the appia#s performance by allowing a

processor’s instruction decoder and a branch piadic work more efficiently.

27

START Basic block builder Trace selector

y Fy
L.

Dispatch

x [y

Econtext switch

BASIC BLOCK CACHE TRACE CACHE
Non-control-flow Non-control-flow)
.) . A A Indirect branch
instructions Indirect branch lookup instructions stays on trace?

I |

Figure 7: Operations of DynamoRIO [11]

4.1 Basic Block Cache

DynamoRIO begins its execution by copying the fivasic block of an application
into its basic block cache. This basic block extemdross unconditional branch
instructions and call instructions. The block emdh an indirect branch instruction
or a conditional instruction. This block is thereexted until the target address of the
indirect branch or conditional instruction is resal. Upon resolving the target
address, the cache is searched for basic blocksstétting address corresponding to
the target address. If a match is found, the taaddtess is replaced with the start of
that basic block. If no match is found, the targétiress is modified so as to return
control to DynamoRIO. DynamoRIO would then continaduild a new basic block,
starting at the target address. When this new bieadded to the cache, the target
address of the indirect branch or the conditionsiruction is modified to point to the

start of this basic block.

28

4.2 Trace Cache

Traces provide optimization within the DynamoRI@rfrework and also organize a
sequence of commonly executed basic blocks iniaglescontiguous piece of code.

This improves the efficiency of indirect branchesl aachieves a better code layout.
The creation of a trace begins by looking for d@ahle trace head. A trace head is
either the target basic block of a backward bramchn exit from an existing trace.

Each trace head is associated with a counter #dtatigcremented each time the block
is executed. When the counter exceeds a threshottber, the sequence of basic
blocks that follows the trace head is concatendatedhe trace head. The trace
terminates when a backward branch or a basic Wloakis part of another trace is
reached [11]. During execution, the trace cachee&ched first for matching traces

before the basic block cache is.

4.3 DynamoRIO Interface

DynamoRIO provides client hooks likedynamorio_basic_block() and
dynamorio_trace() , which are invoked whenever a basic block or eetria to be
added to the basic block cache or the trace cadpectively. It also incorporates a
set of APIs that allows the basic blocks in theheaand the traces in the trace cache
to be analyzed and manipulated. It also allowsea tesbuild a client program, using
the APIs, which can be attached to DynamoRIO g &gork on the application. The
client program is compiled as a shared library @&dbaded before DynamoRIO
begins its routines. Hence, the defensive mechamistine client program is able to

intercept the application at the appropriate instanAll these features come at a cost

29

ranging from zero to thirty percent of time and nogynoverhead on both Windows

and Linux [11].

30

Chapter 5

Security Modules

In this chapter, | discuss some common buffer déeerfexploits and the defensive
mechanisms incorporated in TRUSS to detect andewept such vulnerabilities and

their implementation details.

5.1 Return Address Defense

A common form of attack is by means of modifyingntol information in the
application address space and transferring theramogontrol to any malicious code.
The function return address is among the most vabie control information that
resides in the process stack. Its role is to fatdia function to continue executing the
correct instructions following a subroutine. It shplays a vital role in ensuring
correct control flow within an application. Howeyan form of protection is provided
by the application or the operating system in orttemprevent any unauthorized

modification of return addresses.

During a program execution, when a call instrucgets executed, the process will
evaluate the address of the instruction that fadldive subroutine. This evaluated
address will then be pushed into the process staalkowing this operation, most
subroutines will save the value of the frame paiimieo the stack and assign it to the
location pointed by the stack pointer register. sThocation is the start of the

subroutine’s active stack frame. Moreover, if thbrsutine requires arguments, they

31

are saved in the process stack before the retuhressl Figure 8 shows the layout of

the stack frame in the process stack.

ret addr High address

frame ptr

local variable

param #

param #

format string \/
ret addr
frame ptr Low address

Figure 8: Layout of an x86 process stack frame

Upon completion of the subroutine, the previousugais restored in the frame
pointer. This is usually performed explicitly by laave or pop instruction.
Consequently, the top of the stack now containsrétiern address. Hence, when a
return instruction is executed, the instructionnpei is replaced with the value of the

return address and execution control is passedtbatie caller.

5.1.1 Return Address Modification Exploit

The above described method of calling subroutimesb r@turning from subroutines
assumes that the integrity of the stored returrresddwas never violated. However,
this is a naive assumption because the subroutinie tiave altered the return address
illegally. This would in turn allow any maliciouode (to which the return address
was altered) to be executed when the subroutinen®tTo illustrate how this might

happen, consider the C function in Figure 9.

32

int foo(int a, int b)

{
char homedir[100];
éfrcpy(homedir,getenv(“HOM E");

return(l);

Figure 9: Vulnerable C function - 1

If the result fromgetenv() is of a size that is larger than the local vagabl
homedir , thenstrcpy() will overwrite the memory locations adjacenhtamedir |,
including the return address of the subroutfne() . Consequently, when the
subroutine is completed and it performs a returpdss control back to the caller
function, the execution flow will be passed to tlue that lies in the return address
storage location. Usually, such situations willulesn “segmentation fault” or “bus
error” messages. However, adversaries can placellecrafted value to replace the
return address in order to redirect execution ¢ddlsation of their choice.

A buffer overflow in a stack requires data thattaims executable code, followed
by enough repetitions of its address (in memorie purpose of this is to redirect the
program’s execution flow to the inserted code. Tikisvith the assumption that the
inserted code is small enough to fit into the locaffer. However, such an attack
requires the adversary to predetermine the exadirgj address of the inserted code
to replace the return address. Adversaries canagatnd this requirement by
appending a sequence NOPinstructions before the executable code. Conctitena
the sequence dflOPinstructions creates a ramp. The modified retutdress, by
pointing anywhere in the ramp, can enable a sufidesack. While it still takes
some effort to find the proper range, an adversaty needs to make a close guess.

A successful return address modification attackved| an adversary to execute

instructions with the same privileges as that &f tompromised program. If the

33

compromised program was running with the super-pseilege, the adversary can
inject code to spawn a super-user shell and subsdguake control of the machine.
In the case of worms, a copy of the worm program get installed with super-user

privilege and the system begins looking for moreiirges to infect [31].

5.1.2 Preventing Return Address Attack In TRUSS

TRUSS intercepts every call instruction and retastruction in a program to insert
protection code. It uses thliynamorio_basic_block() function to interrupt the
application. This is performed after DynamoRIO ¢esaa basic block and before the
block gets executed. In this function, TRUSS sdansugh every instruction in the
basic block to identify the call and return instrans. When call and return
instructions are encountered, TRUSS redirects thsicbblocks to two different

modules where additional instructions are insertemthem.

Following call instructions, TRUSS inserts instioos to calculate the return
address from the basic block and store it intopaissge memory segment. The return
address is calculated by adding the address dfathénstruction to the length of the
instruction. This addition will give the addresstbé instruction that follows the call
instruction in the caller function. The memory semt is dynamically allocated and
is known as thehadow_stack . TRUSS also stores the location of the return eskir
in the stack into thehadow_stack . Both the location and the value of the return
address are stored in the same memory segment place sefficiency. Upon
encountering return instructions, TRUSS insert¢ruicsions before these to retrieve
the return address and its locations. It also eed&s the corresponding addresses

stored in theshadow_stack, after which, it performs a comparison. The conguari

34

is to ensure that the return addresses and théidosamatch. Otherwise, an error

signal is raised and the application is terminated.

For instance, if an adversary attempts to overvaifeinction return address with
the start address of a malicious code, he will Havieject such a code into the stack
or the heap. When a subroutine is calkddow_stack will store a copy of both the
subroutine’s return address and its corresponddegtion. During the subroutine’s
execution, the adversary by some means modifiesetfuen address in the process
stack. In a native program, such a scenario wilkeathe instruction pointer to be set
to the modified return address in the process saacdkthis will result in the execution
of the malicious code. However, with TRUSS in plaoefore a return instruction is
executed, the return addresses in the process atatitheshadow_stack will be
compared. In a case where the locations matchhtenceturn addresses do not match,
an error will be signalled and the application vl terminated. In this way, TRUSS
protects every function return address used inptication. This technique is similar
to those discussed in other tools such as SmastG&ackShield and RAD.
However, TRUSS differs from these tools becauséearthe other tools which add
additional checking instructions during compilatioor through hardware
modification, TRUSS inserts the checking instruasi@t runtime. This is clearly an

advantage when protecting legacy applications witlsource code.

5.2 Base Pointer Defense

The base pointer (also known as frame pointer) nistteer piece of vulnerable
information that also resides in the process statlke main function of the frame

pointer is to represent the start of each staakdran x86 architecture, whenever a

35

subroutine is invoked, a new stack frame is alledain the process stack to the
subroutine and when the subroutine completes, theeps stack is freed. The frame
pointer is saved in the process stack during ewatl instruction and is restored
during each return instruction. This is illustrated Figure 8. The frame pointer
facilitates efficient access to current stack fraamal keeps track previous stack
frames. The value is maintained in a register fast faccess. In addition, when
applications are complied without the GCC optigiomit-frame-pointer ,

subroutine parameters and local variables are lysudierenced relative to the frame

pointer.

5.2.1 Base Pointer Modification Exploit

One technique to attack a system by compromisiagrdime pointer is via a dummy
stack frame. As illustrated in Figure 8, when action is invoked, the return address
of the function is pushed into the stack. Thisakofved by saving the frame pointer
value in the stack and then updating the frametpoiegister with the stack pointer
register. When an adversary attempts to modifyftame pointer, it will be rather
easy for the adversary to access the frame poihjgarameters are passed to the
function. In x86 machines, the frame pointer wid bt an offset of 8 bytes with

respect to the last parameter.

For instance, consider the vulnerable code fragmenfigure 9. The exploit
illustrated in Section 5.1.1 modifies a return &ddr to execute a sequence of
malicious instructions. Although it will be eastermodify the return address directly,
some protection techniques prevent direct modificabf return addresses. Hence,

using a dummy stack frame is a way to bypass tiposeections. The local buffer

36

(used in Figure 9) is overflowed up to and inclgdihe previous frame pointer. The
data used for overflowing will be constructed imanner resembling a stack frame. It
will contain the start address of a sequence ofawal instructions followed by a
memory location with an arbitrary stack addresse Tdurrent frame pointer is
overwritten with the address of the location of thbitrary stack address. The
purpose of such an action is for the frame poitudye replaced with modified frame
pointer when the subroutine completes and perfameturn. Consequently, when
another return instruction is executed, the addoéske malicious code will replace
the instruction pointer and in turn gets executidce none of the return addresses
are altered directly, protection techniques tha&vent return address modifications

will not be able to detect such an attack.

5.2.2 Preventing Base Pointer Attack In TRUSS

The protection of the frame pointers is similarthe technique carried out for the
return addresses. Following a call instruction, fifaene pointer is saved in a buffer
and before a return instruction, the frame pointalue is compared with the
corresponding value in the stack. The storage efftame pointer values is in fact

done with the samshadow_stack (as mentioned in Section 5.1.2) for efficiency.

5.3 Global Offset Table Defense

Dynamic linking is used by applications to resobdiared symbols. In order to carry
out dynamic linking, the dynamic linker primarilges two processor-specific tables,
the Global Offset Table (GOT) and the Procedur&adge Table (PLT) as mentioned

in Section 2.1. The dynamic linkers support pos#iedependent code through the

37

GOT in each shared library. The GOT contains atbsaddresses to all of the static
data referenced in the program and it providesctiexzcess to a shared symbol
without compromising position-independence. Sinoe éxecutable file and shared
objects have separate GOTs, a symbol may appesevieral tables. The dynamic
linker processes all the GOT relocations beforengivcontrol to any code in the

process image, thus ensuring that the absoluteesslels are available during
execution. The PLT is used to redirect functioriscaktween the executable and a
shared object or between different shared objdttsonverts position-independent

function calls to their absolute locations. The Rtdntains many entries and allows

procedure addresses to be resolved when they léed ta the first time.

Suppose, there is a call pointf() in an application, this will correspond to a
call to the PLT entry oprintf() in the executable. This call will then make an
indirect branch to therintf() entry in the GOT. If the GOT entry contains the
absolute address girintf() , the instructions oprintf() are executed. If the
GOT entry has not been resolved, the dynamic limkeéhen invoked to resolve the

absolute address pfintf()

PLTO: pushl GOT + 4
jmp *GOT + 8

PLTn: jmp *GOT + m
push #reloc_offset
jmp PLTO

Figure 10: Procedure linkage table

The GOT stores pointers to all the global data ihaddressed by the executable
file. At load time, the dynamic linker stores twalwes at the memory locations

*GOT + 4 and *GOT + 8. These two addresses, in, fafer to the second and third

38

word in the GOT respectively. In the second wohe, dynamic linker stores a code
that identifies a particular library. In the thimdord, the dynamic linker stores the

address of the symbol resolution routine.

As shown in Figure 10, the first entry in the PISTHLTO. This is a routine to call
the symbol resolution routine. In each of the ottries in the PLT, the instructions
begin with an indirect jump to the GOT. Before duagction is resolved, the target of
the GOT entry refers to the next instruction in #IeT entry. When a function is
called for the first time, the PLT routine is inveatkand because the actual address of
the function is yet to be resolved, the indirechjuexecutes the next instruction. The
push instruction saves an offset into the processks This offset value is obtained
from the executable’s relocation table and it idex# both the symbol to be resolved
and its corresponding GOT entry. The next jumprutdion calls PLTO. Here the
library identifier is pushed into the process stackl the dynamic linker's symbol
resolution routine is invoked. Upon resolving thgnbol, the linker stores the
function’s absolute address in the GOT entry. Hescdsequent calls to the PLT
entry will jump directly to the function itself wibut invoking the dynamic linker

[33].

5.3.1 Global Offset Table Modification Exploit

The GOT entry is a point where a transfer in thegpam’s execution flow occurs.
This information is not protected in the executadnhel is vulnerable to attacks. One
way to exploit the GOT entry is to overwrite thergrwith the address of a sequence

of malicious instructions. Thus, when the entryutdized by the application, the

39

malicious code gets executed. In this section]llexplain how such an attack can be

carried out. Consider the vulnerable code in Figure

int main(int argc, char* argv[]) {
int* ptr;
char homedir[100];
ptr = homedir;
éfrcpy(ptr,argv[l]);

éfrcpy(ptr,argv[Z]);
printf(“Hello World\n™);

return(1);

Figure 11: Vulnerable C function - 2

If the result fromargv[l] is of a size that is larger than the local varidtamedir ,
then, the firststrcpy() will overwrite the memory locations adjacenthomedir
including the integer pointeitr . However, before a successful attack can be carried

out, the adversary has to obtain some informatiomfthe system.

Firstly, the memory location of the GOT entry fointf() has to be determined.
It is relatively easy to deduce this informatioarfr an unstripped binary. Suppose an
executable is nameskamplel . Then, one can utilize thebjdump package in Linux

to dump the dynamic relocations of the binary digvs:
objdump --dynamic-reloc ./examplel | grep printf

This command will output the desired address. S#igpmalicious code appended
with NOPinstructions has to be prepared. This piece oficioals code is usually
referred to as shellcode. This data has to be waortetl in a manner such that it
overflowshomedir and overwrites the memory locationmf with GOT entry of

printf()

40

During the secondtrcpy() , an approximate start address of the shellcoddadhas
be provided. This will, hence, be written to thenmeey location pointed to bytr —
in this case, the GOT entry @fintf() . Therefore, when the program executes

printf() after thisstrcpy() , the malicious code will be executed.

5.3.2 Preventing Global Offset Table Attack In TRUS

TRUSS can protect applications that are vulnertblihe above-mentioned attack. It
directs the dynamic linker to resolve all GOT esdriduring the initial start-up
operations, after all the shared libraries havenbbeaded into the memory but before
transferring control to the main program. This shigeved by declaring the
environment variableD_BIND_NOWWhen DynamoRIO begins execution, it invokes
dynamorio_init() hook function. In this function, the applicatiorégecutable is
examined and the addresses and sizes of the GOPlaha@re extracted. Following
this, each entry of the GOT is stored into a sepabaffer, GOT_BUF with the
corresponding GOT address. When DynamoRIO copiesafiplication code into a
basic block, the basic block is scanned for atocadl PLT entry and an indirect branch
to a GOT entry following immediately. Upon deteatigdhe indirect branch target
address is used to retrieve the actual addreskeofuinction fromGOT_BUFand a
direct branch to the actual address replaces ttlieest branch instruction. In this
way, the application does not have to use the G@ing its execution and thus will
bypass any GOT modification attack. An example imwg a call toprintf() is
depicted in Figure 12. The basic block on theilefstrates the usual way of invoking

a printf() . The basic block on the right is one which hasbeedified by TRUSS.

41

It has to be noted that GOT attacks may be detettedther techniques as well

because it involves overflowing data buffers .

...... 999

call plt_printf call plt_printf
jmp *got_printf jmp printf

Figure 12: Copy of basic block in code cache

5.4 Format String Defense

The essence of the format string attacks utilibesvulnerability in some standard C
functions that use the format string argument. Irpr@gramming language, it is
possible to declare the functions that take in aabée number of arguments. A
format function is a special kind of C function itak in variable number of
arguments, of which one is a format string. Thisction evaluates the format string
argument by accessing the parameters that folldhwes& parameters, which could be
of varying types, are converted into a suitablenf@nd then, passed to the output

stream. The signatures of widely used format fumstiare as follows:
» int printf(const char* format, ...)
» int fprintf(FILE* stream, const char* format, ...)
» int sprintf(char* str, const char* format, ...)
» int snprintf(char* str, size_t size, const charfmat, ...)
» int vprintf(const char* format, va_list ap)

» int vfprintf(FILE* stream, const char* format, vast ap)

42

» int vsprintf(char* str, const char* format, va_legb)
» int vsnprintf(char* str, size_t size, const chasrhat, va_list ap)

The format string can contain additional informatibat determines the format of the

output. These include flag characters, field wigttecision and length modifiers.

The format string also carries information on themiber of parameters that
supposedly follow it. This information can be obset by counting the number of
format specifiers present in the format string argnt. Format functions become
vulnerable due to the fact that when the formatfioms evaluate the format string, it
has to access the parameters that follow. Howéwese functions do not ensure that
the parameters are indeed sent by the caller famcliheir evaluation is based on the
assumption that the caller function has pushedptdrameters into the process stack
and that the evaluation routine is accessing al\atjument. This lack of validation
on the memory locations accessed by format funstimight result in a series of

security breaches.

5.4.1 Reading The Stack

Many applications commonly use a user-supplied tirggi format string argument
when format functions are invoked. However, whera#l to a format function
contains format specifiers without the correspogdargument, the function will
continue to read values from the stack and prietho the output stream. The format
function will not check if the argument accessedtlo@ process stack is within a
caller’s stack frame. This makes the format functiolnerable because an adversary
can supply a bogus format string argument as inpotexample is illustrated in

Figure 13.

43

printf(*%08x.%608x.%608X.%08X.%608x.%08x\n");

Figure 13: Bogus format string

The printf() function in Figure 13 will not check whether argrameter is passed.
Instead, it will assume that all memory accessesvalid and will read values from
the stack. Hence, return addresses and other gsuttdalcvalues in the program

memory can be displayed.

Moreover, it is also possible to use of the forstang vulnerability to read values
from any arbitrary memory location in the text segiy data segment or the heap of
the process. When string arguments are passedubrautine, only a reference to the
string is pushed into the stack. The actual stoag be located in the heap, the text
segment or the data segment. Suppose an adveraaty i@ read a string stored at the
address (eg. Oxbfffff00), he has to start by fiigdihe location of the format string in
the process stack. Only a reference to the forimagss pushed into the stack; so the
adversary has to read down the stack to find theahtocation of the format string. A

number of %X specifiers can do this.

printf(*AAAA_%x_%x_%x_%x_%x_%x_%x);

Figure 14: Detecting position of format string in x86 psxstack

The printf() function shown in Figure 14 will output the corttestored in the

process stack. By adding sufficiertoX to the format string, the function will

44

eventually output the format string. When the otifgtarts with ‘41414141 _%it is

an indication that the format string argument hasrbreached. Now, the adversary
can read the data at the address Oxbfffff00 byap AAAA with \XxOO\XfA\xf\xbf
(little endian format) and the lagbX specifier with %s specifier in the format string

as illustrated in Figure 15.

printf(*"\xOO\xfAAXfi\xbf _%x_%x_%x_%x_%x_%x_%s);

Figure 15: Reading content at arbitrary memory location

5.4.2 Writing Into Arbitrary Memory Locations

The format string argument, moreover, gives thenfdrfunction the privilege to write
to memory locations with the use @bri format specifier. This format specifier writes
the number of bytes output by the format functionat memory location that is

specified in the argument. Figure 16 illustratas.th

int i
printf(*12345%n”", &i);

Figure 16: Proper use of ‘%n’ format specifier

The code fragment portrayed in Figure 16 will writee value 5 into the memory
location referred to by the integér However, the %ri format specifiers can be
abused to perform a write operation to any arbjittacation in memory. With such
capability, an adversary can overwrite critical ued like return addresses and

function pointers to refer to a location of his i@ The use of the code segment

41 is ascii code for ‘A’

45

illustrated in Figure 16 can achieve such an att8ely an adversary wants a memory
address (eg. Oxbfffff00) to contain the value 0X66ff, he has to execute the code
illustrated in Figure 14 to find the memory addresghe format string argument.
Subsequently, performing the code in Figure 17 wiérwrite the desired memory

location with the desired value.

printf(“\xOO\xfi\xff\xbf %0.4519518x_%n")

Figure 17: Overwriting content of desired memory location

The two underscores will be output in addition @49f65e symbols, which in total
will write the integer 0x44f660 to the memory ldoat Oxbfffff00. Thus, the %n

specifier can result in serious security implicasio

5.4.3 Format String Exploit

Format functions have the ability of reading andting into arbitrary memory
locations. This poses a threat to critical progiafarmation that resides in memory.
Format functions that accept user-supplied inpuindb have the ability to discern
between a normal input and a malicious input. Titeeace of such a check allows an
adversary to capitalize on this vulnerability. Amtaak using format strings is

described in Figure 18.

46

foo({

1.char text[200];
2.FILE *input;

3 input = stdin;
4. fgets(text,sizeof(text),input);
5. printf(text);

Figure 18: Vulnerable C function - 3

Consider the code fragment in Figure 18. Such & ¢mgment will usually be used
to print out the user inputs. The user input iglfeaviastdin and the input is copied
to a local buffer before it is displayed on theeser. The problem with this code

fragment is due to thaintf() function. The correct use will be as follows:
printf(“%s”, text);

However, by forgoing the format specifiers, the ggean can be compromised by

means of a format string attack.

When the program reaches line 3, it will wait foe tuser to provide it with some
input. An adversary can take advantage of suctuatgin and provide a bogus format
string to take control of the system. An exampleadiogus format string that will

work in this situation is as follows:

"%33\$344p%34\$n%33\$386p%35\8n%33\$277p%36\$n%33\$ 464p%37\$nA
A\X01\x00\x00\x00\xec\x98\x04\x08\xed\x98\x04\x08\x ee\x98\x04\

x08\xef\lx98\x04\x08"

The core idea of the attack is to save the shedldadan environment variable, A
(Oxbfefda58), and overwrite the starting addresthefDTOR deconstructor section —
found within all GNU compiled binaries — with theldress of A. In this case, the

address of DTOR is 0x080498ec.The DTOR sectionatosita pointer to a function

47

that will be called when the program exits. Thistem allows write operations.
Hence, when the program exits, the DTOR deconstrwell be invoked and thus the

shellcode will get executed. The beginning of tbgus format string —
%33\$344p%34\$n%33\$386p%35\$n%33\$277p%36\$n%33\$4 64p%37\$n

— is derived from the address of environment véeiah. The address of A is firstly
converted into little endian format. A saturatirguoter approach is then employed to
convert each byte of the address to a value suatiptintf() outputs the correct
number of bytes to leave the lower byte equal ® remory address of A. The
saturating counter approach is illustrated in Fégl®. The specifier, %33\$344p, will
print out the 3% argument irprintf() 's stack frame with padding that is of size
344 bytes and the specifier, %34\$n, will write tthmumber to the location of

printf) 's 34" argument.

memlp = meml + 256

mem2p = ((256 - mem1) + mem2)%256 + 256)
mem3p = ((256 - mem2) + mem3)%256 + 256)
mem4p = ((256 - mem3) + mem4)%256 + 256)

Figure 19: Saturating counter approach

Following the pairs of%pg and ‘%ri, the format string contains some padding. The
padding is necessary to ensure that the followelges and addresses get copied to
the 33" and subsequent arguments. The padding used htve &haracter ‘A’. The
value 0x00000001 follows the padding. This value@uded to represent a dummy
argument. This will be the $3argument. Following this value, the 4-byte addzess
of the DTOR deconstructor section is appendeds fteicessary to include all 4 byte-
addresses because th@i‘specifier writes to 1 byte memory. Consequeniliien the

bogus format string is passed as input, the addfetbe® DTOR deconstructor section

48

gets overwritten and when the program exits, thedlatde stored in the environment

variable A gets executed [43].

5.4.4 Preventing Format String Attack In TRUSS

In order to monitor an application, TRUSS passestrob to the user via the
dynamorio_init() function. This function is part of the client pragn that has to
be loaded before DynamoRIO begins execution. dymamorio_init() function
allows the user to set up the environment to fiatdi the monitoring of the
application. In TRUSS, thdynamorio_init() function resolves and stores the
addresses of the format functions even before #reyinvoked in the application.
These addresses are subsequently used to intenaaptinvocation of the functions.
The interception is done at the basic block levdie interception details are as
discussed in Section 5.1. Thiynamorio_basic_block() function allows the
manipulation of a newly created basic block befirés executed. Hence, every
instruction in the block is scanned for calls tonfiat functions. Each time a call to a
format function is identified, a call to a hook @tion is placed before the original
call. In this way, the hook function can check #rguments of the format function

before the format function uses them.

In addition, a parallel stack is maintained to kergrk of the previous frame
pointer values when a function is invoked. This issupdated dynamically at every
call and return instruction. A stack pointer addres pushed into the parallel stack
during a call and an entry is popped from the staefore a return instruction. For

efficiency, information in thehadow_stack is used.

49

During the execution of the application, the hoakdtions are called before the
format functions. The core idea in the hook funt$ias to prevent reading from or
writing to any memory location including and beyadhd current stack frame pointer.
The hook functions access the arguments (incluthiegformat string argument) of
the format functions from the process stack. Then&d string argument is parsed to
observe the number of format specifiers preseitt ihhis number must not be more
than the total memory space between the addressttivas the format string in the
process stack and the stack frame pointer. Thigypehsures that the safety of the
critical information such as the frame pointers aredurn addresses are not

compromised.

The above-mentioned technique will work fagrintf() ,vprintf() :
fprintf() and vfprintf() functions. The sprintf() ., vsprintf() ,
snprintf() and vsnprintf() functions, however, do more than just to access

arguments in the stack to evaluate the format gstrifhese functions store the
evaluated output in a buffer. If the output datdaiger than the buffer's size, the

buffer will be overflowed.

In order to prevent buffer overflow due teprintf() , vsprintf() ,
snprintf() andvsnprintf() functions, a separate parser is used to evalbate t
format string argument. This parser scans the fostrang for format specifiers and
accumulates the total size of the parameters amtefseger and double arguments
will respectively add four and eight to the accuatoi. String arguments, however,
will continuously increase the accumulator by omgilua /0 ° escape character is
encountered. In addition, the precision and thid fiedth options in the format string
have to be taken into account. While the precisigtion defines the maximum

number of characters to be printed to the outpet field width defines the minimum

50

number of characters. This value has to be add#uetaccumulator, which will then
be checked against the memory space between themdémoation (where the buffer
resides) and the stack frame pointer. This teclengnsures that calls $printf() :

vsprintf() , snprintf() andvsnprintf() functions are safely executed.

5.5 Vulnerable C Library Functions Defense

In the standard C library, there exist a few fumtsi (other than format functions) that
are vulnerable to buffer overflow as well. Thesadlions also handle buffers in an
insecure manner and they do not have any mechdaipnevent buffer overflow. The

signatures of the commonly used functions that farseproblem are as follows:
» char *strncat(char *, const char *, size_t)
» char *strcat(char *, const char *)
» char *stpcpy(char *dest, const char *src)
» char *strncpy(char *, const char *, size_t)
» char *strcpy(char *, const char *)
» void *memcpy(void *s1, const void *s2, size_t n)
» wchar_t *wcscpy(wchar_t *, const wchar_t *)
» wechar_t *wcscat(wchar_t *, const wchar_t *)
» wechar_t *wcpcpy(wchar_t *dest, const wchar _t *src)
» int*_ 10 _vfscanf(_IO_FILE *s, const char *f, |0_vhst argptr, int *errp)

In Section 5.1.1, | discussed a return addressogx@lthough, the target of the

exploit was the return address, it was through thdnerability of the

51

strcpy() function that such an exploit was possible. Heitdge,necessary to provide

some form of security mechanism to such standdh€tions.

5.5.1 Preventing Vulnerable C Library Functions Attack In TRUSS

The security mechanism for the list of functionsibally employs a technique similar
to the one used for the security sgrintf() , vsprintf() , snprintf() and
vsnprintf() . However, unlike those functions, this group ohdtions does not

have to handle any format string argument.

Functions likestrcpy() , stpcpy() ,wescpy() andwcpcpy() are invoked with
two buffers. These functions aim to copy the conteh a source buffer to a
destination buffer. To prevent any buffer overflalwe content of the input buffer is
measured using thstrlen() function. This size will be considered against the
memory space between the memory location wheredhkgnation buffer resides and
the stack frame pointer. If the size of the soubcéfer is larger than the space
allocated to the destination buffer, then an emmgssage is signalled and the

application will be terminated.

Functions such astrncpy() and memcpy() perform the same work as
strecpy() , stpepy() , wescpy() and wepepy() . But these functions accept an
additional argument that specifies the size ofdbetent that has to be copied from
the source buffer to the destination buffer. Herloere, the size comparison (as

mentioned earlier) is used again.

strcat() and wcscat() also copies the content of the source buffer ® th

destination buffer. However, for these functiort®e tontent of the source buffer is

52

appended to the destination buffer. Hence, to prtemay overflow, the size of the
destination buffer and the size of the source Ibuffast be less than the permissible
size.strncat() accepts an additional argument that specifiesittee of the source
buffer to be copied onto the destination buffer.b&gore, the size of the destination

buffer and the size passed by the application mmeisss than the permissible size.

Unlike the functions discussed up to this poing gbanf() family of functions
works in a different manner. It accepts the inpotf the user and then, writes the
received input to the corresponding arguments @hatpassed as parameters). These
functions cannot be intercepted before the routimXecution because the safety of
these functions depends on the user inputs. Funtrer, it can be observed that the
scanf() family of functions invokes thelO_vfscanf() subroutine to perform its
task. Thus, in order to check the functions forféwubverflows, these are intercepted
upon their return from the subroutine. Althoughthis time, the buffer might have
already overflowed, the effect can only be felt wiume of thescanf() family of

functions returns to the caller.

Before the subroutinelO_vfscanf() is invoked, the process stack content,
referred by the addresses stored in the paralieksis saved. Upon returning from
the subroutine, the content of the process stadomspared with the saved values.
Any mismatch would signal an error and terminate épplication. This technique
will effectively prevent any form of stack smashiatjacks. TRUSS is therefore able

to protect applications from being violated via afiesstandard C library calls.

53

5.5.2 Vulnerable C Library Functions BSS/DATA/HEAP Overflow Exploit

The techniques in Section 5.5.1 are effective dntllge buffer, handled by the unsafe
functions, is allocated in the stack. The defengehanism basically prevents any
data beyond the frame pointer to be modified. Iditazh to this, the buffers used in
the list of functions can be global buffers or leuff allocated in the heap. In this

section, | will describe one such instance - a feagpflow exploit.

The GNU standard C library employs a memory allocadlmalloc, implemented
by Doug Lea [32]. This memory allocator handlesl@pfions’ dynamic memory
requests and freed memory. dimalloc’s memory mamage is based on chunks —
memory blocks that consist of usable regions anditiadal information. The

structure of such a chunk is shown in Figure 20.

struct malloc_chunk {
INTERNAL_SIZE_T prev_size;
INTERNAL_SIZE T size;
struct malloc_chunk *bk;
struct malloc_chunk *fd;

Figure 20: Heap memory chunks

The additional information is stored at the begignof each chunk and it stores the
sizes of the current and the previous chunks. ififiiemation facilitates coalescing of
two sequential and unallocated chunks into oneelaohpunk. Moreover, all chunks

contain two pointers. These pointers are utilizégmvthe chunks are unallocated.

Memory chunks that are unallocated in the applicatire maintained in bins
according to their sizes. Bins that store chunksinés smaller than 512 bytes hold
chunks of exactly one size. Bins that store chuakger than 512 bytes hold chunks
of a size range that increase logarithmically. Wlheprocess requests for dynamic

memory, the search for the suitable chunk starteeatappropriate bin depending on

54

the memory size requested and then, it is proceissachallest-first, best-fit order.
Within each bin the chunks are maintained as algldirtked list known as free-list.
Two pointers — forward (fd) and backward (bk) — msed to traverse this list in both

directions.

However, the use of the fd and bk pointers to mkilable chunks in bins exposes
libc’'s memory management routines to security wahdity. If an adversary is able
to overflow a dynamically allocated block of memohe can effectively overwrite
the next contiguous chunk header in memory. Whenotrerflowed chunk is freed
and stored in a bin’s double-linked list, the adaey can control the values of that

chunk’s fd and bk pointers. Consider the macroigufe 21.

#define unlink(P, BK, FD) {\
[1] FD = P->fd; \
[2] BK = P->bk; \
[3] FD->bk = BK; \
[4] BK->fd = FD; \

Figure 21: Memory management macro

This macro is used to remove a chunk from thelfs¢eP is the chunk to be removed.
In order to carry out an attack, an adversary bastdre the address of a function
pointer in P»fd and the desired value in-Fbk. The function pointer is with a minus
12 bytes so that FBbk points to the function pointer. This macro widuse the
function pointer to point to the desired value. \Whiee function pointer is invoked in
the program, the code at the desired location @etsuted [50]. An analogous attack

is illustrated in Figure 22.

55

main(int argc, char* argv(]) {

1. char *buf0 = (char*)malloc(16);
. char *bufl = (char*)malloc(16);
. char *buf2;

2
3
4. ..
5. free(bufl);

6. ..

7. strcpy(bufO, argv[1]);
8
9
1

. buf2 = (char*)malloc(16);
0. printf("\bin\sh”);

Figure 22: Vulnerable C program - 4

In Figure 22, lines 1 and 2 allocate 2 buffershia heap. These buffers are of the
same size and hence, they will be allocated inigootis memory blocks. In line 5,
when the bufferbufl , is unallocated, it is placed back in its free. Gihestrcpy()
function in line 7 can overflowuf0 and overwrite the header information of chunk
bufl . For instance, if an adversary provides an ingubows —

“AAAAAAAAAAAAAAAAXOO\XO0\X00\X00\X00\X00
\x00\x10\x64\x96\x04\0x08\xb0\x65\x69\x00”

— the sequence of ‘A’ will overflow thieuf0 . The following values are 0 and 16 in 4
byte hexadecimal format. These values will ovemntite previous and current chunk
sizes respectively. Following these sizes is theTdGcation corresponding to
printf() . This address is subtracted by 12 bytes. The agdtess is the absolute
address okystem() . Hence, thebufl 's fd and bk pointers are overwritten with
these addresses respectively. When line 9 is exgéctihe macro in Figure 21 is
executed before the overflowed chunk is allocatéds macro will, therefore, copy
the address o$ystem() to the GOT location oprintf() . This will, in turn,
execute aystem(“\bin\sh”) instead oprintf(“\bin\sh”) and spawn a shell

with the privilege of the vulnerable program.

56

5.5.3 Preventing BSS/DATA/HEAP Overflow Attack In TRUSS

In Linux, initialized data buffers are allocated the .DATA segment and the
uninitialized data buffers are allocated in tBSS segments. These segments are
present in the ELF file. The symbol table presenthie ELF file holds an array of
symbols used in the executable. For each entrynainee, size, and section numbers

are stored. The data structure of the ELF symMméts shown in Figure 23.

typedef struct {
Elf32_Word st_name; /* Symbol name */
EIf32_Addr st value;/* Symbol value */
Elf32_Xword st_size; /* Size of object (e.g., common) */
unsigned char st_info; /* Type and Binding attri butes */
unsigned char st_other;/* Reserved */
ElIf32_Half st_shndx;/* Section table index */

} EIf32_Sym,;

Figure 23: Symbol structure

In order to ensure that the vulnerable C functidomsiot overflow BSS/DATA/HEAP
buffers, TRUSS maintains a list of global variablegh its corresponding sizes.
Whendynamorio_init() is invoked by DynamRIO, the binary file is analgz®e
retrieve the. DATA and.BSS sections. The limits for these sections and tloticse
numbers are then stored. The symbol table is tlvamred through for symbols
belonging to the.DATA and .BSS sections. The symbols’ addresses and the
respective sizes are saved in a global buffer inddyRIO. Thus, when a buffer from
either section is utilized by the vulnerable fuons, the size of the buffer can be
obtained from the global buffer and this aids irsweing that the limits of these

buffers are not overflowed.

Buffers allocated in the heap can also be usethdyulnerable functions. In order
to prevent the limits of these buffers from beinglated, the sizes of these buffers
have to be stored. It is safe to assume that lsuifiethe heap are allocated via calls to

malloc() , calloc() , realloc() and the memory is released via calfrt()

57

Hence, every call tealloc() , calloc() , realloc() andfree() are intercepted
using the technique that was used to interceptfdh@at functions. The requested
sizes are stored in a buffer and upon completiotheimalloc() , calloc() and
realloc() functions, the start address of the memory sploeated is stored in the
same buffer. During iee() call, the buffer is removed from the list. In thiay, |
maintain a list of buffer addresses and sizes. Ti$tisan be used to verify whether
any buffer in the heap is overflowed. In C++ pragrahe new operator can also
allocate heap buffers. In addition, functions sashrk() , sbrk() andmmap() can
be used to allocate memory in the heap. HenceRWOSS, | restrict the defense to

heap buffers allocated viaalloc() ,calloc() andrealloc()

This technique is only implemented in Linux and tpobion of buffers in the
.DATA and .BSS sections are only applicable if the executableas stripped. A
stripped executable will not contain the symboldalhus, it is impossible to retrieve
the information regarding the global buffers. Incktisoft PE files, the symbol
information is present in theOFFfile, .obj , and is not found in the executable,

.exe . Thus, it will be difficult to monitor these buffein Windows.

5.6 Longjmp Buffer Defense

Another avenue through which control transfer infation can be altered is via
setimp() andlongjmp() functions. These are standard C functions thatajly
provide a crude form of exception handlirgtimp() function stores the context
information for the current stack frame intgmg_buf buffer. By usindongjmp()
a program can jump out of many levels of nestedtfan calls. The data structure of

thejmp_buf buffer is shown in Figure 24.

58

#define _JBLEN 9
typedef struct { int _jb[JBLEN + 1]; } jmp_bu f[1];

jmb_buf[] = {ebx, esi, edi, ebp,
esp, eip, return_val}

Figure 24: Setjmp/Longjmp buffer

The context information of an application dependspletely on the contents of its
memory and the contents of its registers. The conté the registers includes the
stack pointer (esp), frame pointer (ebp), and pgrcounter (eip)setjimp()
essentially saves the contents of the registersenMalongjmp() function is
invoked and gmp_buf buffer is passed as a parameter, this functiotores the
context of the application to the state of the ppogwhersetjimp() was called. An

example of how a pair aetjimp() andlongjmp() works is depicted in Figure 25.

[* Global " environment" variable; thismust bein scopeif longimp isto be called. */
char buf [16];
jmp_buf g_env;

wnhE

4. [* Afunction that exits abnormally via longjmp */

5. void function(void){

6. printf("(calling longjmp)\n");

7 longimp(g_env,1);

8 printf("This is not reachable because of the lmpgabove.\n");
9

10. int main(int argc, char *argv[])

11. {

12. int i = setjimp(g_env);

13. /* Thisiswhere execution resumes when longjmp is called: */
14.

15. strepy(buf, argv[1]);

16.

17. /* setjmp returns 0 only when it isfirst called; never after alongjmp */
18. if(i==0)

19. printf("(calling function)\n");

20. function();

21. printf("This is never reached\n");

22. }

23. return O;

24. }

Figure 25: Setjmp/Longjmp example

59

In the code fragment in Figure 25, whemjmp() function is invoked in line 12, the
context information is saved m env . Thesetjmp() instruction returns a 0 when it
is called the first time. Subsequent callségmp() after alongjmp() will return

a non-zero value (which depends on the value pasdedgjmp()). The execution
follows from line 12 until line 20 wheré&nction() is invoked. The execution
continues until théongjmp() invocation. Here, the program context information,
which was stored in line 12, will be restored ané 12 will be executed again. Now,
setimp() will return a non-zero value (1 in this case) armlist the program

terminates after line 23.

5.6.1 Longjmp Buffer Modification Exploit

It is essential to note that tisetimp() function stores the program counter and the
frame pointer in thgmp_buf buffer. Thus, the integrity of the contentsjritp_buf

buffer is vital because these are the informatseduduring dongjmp()

In Figure 25, the code fragment containstrapy() function that accepts a user
input (in line 15). This is the program’s vulnemlploint. The technique used to attack
such a program is to save a shellcode in an envieom variable, A, and overwrite the
value of the program counter in tingp_buf buffer with the address of A. In order to
overwrite the program counter in timp_buf buffer, sufficient padding followed by
the address of the environment variable, A, hasdoprovided at line 15 by the
adversary. The padding is to fill puf and the other members of tirep_buf
buffer until the program counter. Following thiketprogram counter gets overwritten
with the value of A. Hence, whenlengjmp() function is invoked at line 7, the

shellcode gets executed.

60

5.6.2 Preventing Longjmp Buffer Modification Attack In TRUSS

An adversary can perform a return address modibicaby altering the program
counter information or perform a frame pointer nficdtion by altering the frame
pointer value in thgmp_buf buffer. In order to prevent such attacks, TRUSSest
the jmp_buf buffers in a buffer namedetjimp_buf in DynamoRIO. When the
application executes aetjmp() instruction, the addresgnp_buf buffer is

recorded. Upon completion of tletimp() function, the content of thenp_buf

buffer at the recorded address is storeskijmp_buf

When alongjmp() function is invoked, this function is intercepteding the
technique mentioned in Section 5.4. The addrefisegparameteijrop_buf buffer) is
retrieved from the stack and the current conterthefmp_buf buffer is compared
with the saved contents. Any alteration to contesit signal an error and the

application will be terminated.

5.7 Function Pointer Defense

A function pointer is a type of pointer in the Cda@++ programming languages. It
points to a function. Function pointers are useeliminate giant switch statements
and in addition, they allow a programmer to dynaiycmodify a function to be

called. Memory space for the function pointers barallocated in stack or heap. If an
adversary is able to identify a function pointeraiprogram, then he can modify the
address referenced by the function pointer to sonadicious code. The use of
function pointers can be identified in the assendagle by a special characteristic in
applications compiled with GCC. When a functionngoked via a function pointer,

the address referenced by the function pointevagéd to a general register followed

61

by a call instruction whose target address is the in the register. An example is
shown in Figure 26. Overflowing adjacent buffersl amodifying the address referred

to by the pointer can alter function pointers.

mov Oxbffffff0, Y%oeax //OxbffffffO is the targ et address
call %eax

Figure 26: Function pointer assembly code

5.7.1 Function Pointer Modification Exploit

Function pointers are used to store control trarniefermation and thus its credibility
is vital during a program execution. However, wHanction pointers are declared
adjacent to any buffers, it will be possible to wwete the location referenced by the

function pointer via overflowing the adjacent buff€&igure 27 illustrates such an

example.
main(int argc, char* argv[])
{
1. static char buf [16];
2. /ldeclare function pointer
3. static void (*funptr) (void);
4. ..
5. funptr = (void (*) (void)) goodfunction;
6. ..
7. strcpy(buf, argv[1]);
8. ..
9. (void) (*funptr) (void);
10. ...
}
void goodfunction()
{
}

Figure 27: Vulnerable C program - 5

62

In the code fragment depicted in Figure 27, a fiongpointer is declared adjacent to a
buffer. Similar to the exploit mentioned in Sect®16.1, a shellcode can be stored in
an environment variable, A. In order to carry e attack, a user-input consisting of
16 character ‘A’s followed by the address of Atiditendian format) has to be
provided. This will overwrite the address referahclky the function pointer.
Subsequently, when the function pointer is usetthénapplication, the shellcode will

get executed.

5.7.2 Preventing Function Pointer Modification Atteck In TRUSS

To prevent function pointer modifications, whenrthés an indirect call instruction
that uses a register, the checking function isrtegeprior to the call. The checking
function retrieves the address in the register emglres that this does not lie within
any data region. In this way, the malicious codedied into data buffers will not be
executed. This technique prevents any executiatatd. Currently, this technique is

only implemented for Linux.

63

Chapter 6

Security Evaluations

This chapter discusses the security tests that ewe used to evaluate TRUSS.

6.1 Security Evaluation With John Wilander's Testbel Of Twenty
Buffer Overflow Attacks

TRUSS'’s ability to prevent buffer overflow attackas been tested using John
Wilander’'s testbed of twenty buffer overflow attacf66]. This testbed of attacks
works on both Linux and Windows. Attacks illustditen the testbed will either
overflow the buffer all the way to the attack tdarge overflow a buffer to redirect a
pointer to the target. The attacks are targetethatstack, heapBSS and.DATA
sections. The main targets in the testbeds areethen addresses, old frame pointers,
function pointers and function parameters. The watédn of TRUSS is shown in

Table 1 and 2.

64

No | ATTACKS TRUSS
1 Buffer overflow on stack all the way to parameter fiomcpointer DETECTED
2 Buffer overflow on stack all the way to parameter longpufier DETECTED
3 Buffer overflow on stack all the way to return address ETECTED
4 Buffer overflow on stack all the way to old base paginte DETECTED
5 Buffer overflow on stack all the way to function pointer TBHETED
6 Buffer overflow on stack all the way to longjmp buffer DETEED
7 Buffer overflow on heap/BSS all the way to function pointer ETBECTED
8 Buffer overflow on heap/BSS all the way to longjmp buffer DETECTED
9 Buffer overflow of pointer on stack and point to paramitection pointer | DETECTED
Buffer overflow of pointer on stack and point to paramietegjmp buffer DETECTED
Buffer overflow of pointer on stack and point to return agslr DETECTED
Buffer overflow of pointer on stack and point to old basetpoi DETECTED
Buffer overflow of pointer on stack and point to functiompei DETECTED
Buffer overflow of pointer on stack and point to longjmpféuf DETECTED
Buffer overflow of pointer on heap/BSS and parameter fomgiointer DETECTED
Ellj:;srr overflow of pointer on heap/BSS and point to paranietejmp DETECTED
Buffer overflow of pointer on heap/BSS and point torreaddress DETECTED
Buffer overflow of pointer on heap/BSS and point to @deopointer DETECTED
Buffer overflow of pointer on heap/BSS and point to finmcpointer DETECTED
Buffer overflow of pointer on heap/BSS and point to joqmbuffer DETECTED

1: Security performance on John Wilander’s testbedamty buffer overflow attacks in Linux

N ATTACKS TRUSS

1 Buffer overflow on stack all the way to parameter fuorcpointer DETECTED

2 Buffer overflow on stack all the way to parameter longjmpdouf DETECTED

3 Buffer overflow on stack all the way to return address TBETED

4 Buffer overflow on stack all the way to function pointer URNIECTED
5 Sgifr:féroverﬂow of pointer on stack and point to parametaction UNDETECTED
6 EIIJJ]:‘]I:: overflow of pointer on stack and point to parameter lopgj DETECTED

7 Buffer overflow of pointer on stack and point to return addres DETECTED

8 Buffer overflow of pointer on stack and point to function perint UNDETECTED
9 Buffer overflow of pointer on stack and point to longjmp buffe DETECTED

1 return-to-libc system("echo Attack Successful") DETED

TRUSS for Windows.

6.2 Security Evaluation With BASS

Table 2: Security performance on John Wilander’s testbédféér overflow attacks in Windows

The undetected cases occur because function paemtaitoring is not included in

Moreover, | have also used the Benchmark Suit&¥aluating Architectural Security

Systems, BASS [43] to test TRUSS's ability to pravieuffer overflow attacks. The

65

attacks in this suite target the stack, heap, B#Sd#or sections. The main targets in
this suite are the return addresses, old frametgrsinfunction pointers and function
parameters. This test suite is implemented onlyLioux. The result of TRUSS’s

performance on these benchmarks is summarizeddle Ba

No. Benchmark Vulnerability | Attack / End Result Location | TRUSS
Program
1 Lottery Buffer overvyrlte fur)ct|on ppmter BSS DETECTED
overflow /manipulate instruction flow
Buffer overflow variable /
2. Lottery overflow modify bank account total BSS DETECTED
3. Message_wall Buffer overfIOV\{ f!le pointer / Heap DETECTED
overflow add malicious root account
4 Small_finger Buffer overflow return address / Stack DETECTED
overflow spawn root shell
5. Secure_log Format string read memory Iocatlc_)n/ Data DETECTED
access cryptographic key
6. Secure_log Format string ertg memory Iocat|.on / Data DETECTED
modify cryptographic key
7. Secure_log Format string overwrite deconstructor / Dtors DETECTED
spawn root shell

Table 3: Security performance on BASS in Linux

As it can be seen from Table 3, TRUSS is able twessfully detect and prevent all

the attacks in BASS.

6.3 Security Evaluation With Libsafe Exploits

In addition, TRUSS in Linux was tested with the lexpcode provided by Libsafe in

its distribution package. The test cases were dwetun the Libsafe package to verify
the functioning of Libsafe. Table 4 shows how TRUSHI Libsafe perform against
the test cases. It can be observed that TRUSS safattg detects all the attacks. The

surprising result is that Libsafe is unable to detis own exploit code.

Further inspection of Libsafe showed that the aagibn is based on the
assumption that every global C function will be dgmcally resolved via the PLT.

However, this is not the case at all times. Thisrsight can be observed during the

66

execution of canary-exploit . Libsafe protects theprintf() function by
intercepting thevfprintf() function. vprintf() is invoked byfprintf() . In
newer Linux versions, théprintf() functions make direct internal call to
vfprintf() without calling the PLT entry. Hence, Libsafe’srsien of safe
vfprintf() is never invoked. This is why theanary-exploit is successful on
Libsafe.t6 succeeds because of a similar reason. TRUSS dddaae this problem
because it intercepts the functitpmintf() only after the first basic block for the

function is built by DynamoRIO.

No | Attack TRUSS Libsafe

1 canary-exploit DETECTED UNDETECTED
2 exploit-non-exec-stack DETECTED DETECTED
3 |1 DETECTED DETECTED

4 | tlw DETECTED DETECTED

5 |3 DETECTED DETECTED

6 | t3w DETECTED DETECTED

7 | t4 DETECTED DETECTED

8 | tdw DETECTED DETECTED

9 |15 DETECTED DETECTED

10 | t6 DETECTED UNDETECTED

Table 4: Security performance on Libsafe exploit codeix

6.4 Security Evaluation With cOntext's GOT Attack

The GOT defense in TRUSS has been tested withxpleiecode depicted in [16].

This code attacks an application that contains
printf(“Array ...”);

The exploit creates an executable namedy , which contains one instruction:
system(“/bin/sh”);

This executable will invoke a new shell. The exptamde subsequently overwrites the

GOT entry ofprintf() with the absolute address sfstem() . Hence, when the

67

application is executed, theintf() statement will execute th&rray executable

and a new shell is invoked with the privilege of tipplication.

When the application is executed with TRUSS’s dséemm place, the attack does
not succeed because the modified entry in the GOfdever used. Thus, TRUSS is

able to thwart any attack that uses GOT modificatmexecute malicious code.

6.5 TRUSS vs Four Different Tricks To Bypass Stack8eld And
StackGuard Protection

StackShield and StackGuard, as reviewed earli@teprr applications against stack
smashing attacks. However, in [48], four technigthe can bypass the protection
provided (StackShield and StackGuard) have beearied. | will analyze these

techniques against TRUSS in this section.

» Technique 1

In standard compiled C code, functions’ argumemngspaished into the stack before
the return address as shown in Figure 8. When ck $tased buffer overflows, an

adversary may be able to control the function’suargnts and this can turn a
protected program into a vulnerable program. IEB&uard is used, the canary death
handler will be called and several library funcémsuch aspenlog() or _exit()

will be invoked. Overwriting these functions’ GOmMtaes will allow the adversary to

hook the execution flow.

68

TRUSS's solution

In TRUSS, the GOT technique as described in SecBdh will bypass any

modification made to the GOT entries and hencefwilllTechnique 1.

» Technique 2

This technique is one version of frame pointercikttdJpon a return instruction, the
frame pointer gets modified and before the secatdrm, control over the stack
pointer is gained. Hence, the adversary can coftitellocation where the function

returns.
TRUSS's solution

This technique attempts to modify both frame positand return addresses.
However, TRUSS can successfully detect any altaradi frame pointers and return

addresses and thus will thwart this kind of attacks

» Technique 3

In standard C code, compiled without the GNU-eqentof the-fomit-frame-

pointer option, all local variables are accessed relabvine frame pointer. Thus, if
an adversary has control over the frame pointerwitiebe able to manipulate the
caller’s local variables and arguments. In thiackt an ‘off-by-one’ overflow, where
the least significant byte of the saved frame puiig altered to O, is used. It then goes

on to overwrite the GOT entries.

69

TRUSS's solution

TRUSS can detect any alteration of frame pointixcs and GOT entries. Therefore,

it will prevent any attacks that utilize Techniggie

» Technique 4

This technique extends Technique 3 and performswadifferent kinds of attacks.
Firstly, it exploits aprintf() to show the memory content. It can make a pointer
refer to some critical data such as the environmaritibles or modify the content of
some variables. This is typically a format strinjaek. This technique can also

modify GOT entries.
TRUSS'’s solution

The format string protection provided by TRUSS wilt allow the adversary to
access any memory content beyond the stack frahitbeugh the local variables will
be vulnerable to alterations, this is unlikely tovh any serious effect. In addition, the

GOT protection will bypass any GOT entry modificati

70

Chapter 7

Experiments

This chapter discusses the performance tests dlvattbeen used to evaluate TRUSS.

7.1 Experimental Setup

All experiments were executed on a Dell OptiplexZ8® Pentium 4 530 running at
3.0 GHz with 1 GB RAM. The operating systems usedl Microsoft Windows XP

Professional SP2 and Linux Fedora Core 3.

7.2 Performance Test With DynamoRIO'’s Profiling

Firstly, profiling was carried out to measure theehead caused by the additional
protection code. Profiling facilities provided byyiamoRIO in Linux showed that
more than 95% of the time, the application code tedprotection code are being
executed. The execution of SPEC CINT2000 [53] mowcrafty , twolf and

parser with profiling showed that protection code wassert in 14%, 9% and 17%
of the profiling samples collected respectivelyisTimplies that TRUSS does incur

moderate overheads.

7.3 Performance Test With SPEC CINT2000 Benchmark ftégrams

SPEC CINT2000 programs were used on both WindowisLamux to examine the

performance of TRUSS. In order to evaluate thegoerance, | collected three sets of

71

execution times in each operating system. First, blenchmark programs were
executed natively with no modifications. These ltssserve as a baseline to measure
TRUSS'’s performance. Then, the benchmarks wereua@on DynamoRIO without
any client programs. This will measure the overhahte to DynamoRIO’s
instrumentations. Lastly, TRUSS is loaded and #sfggmance is recorded. The
results of the tests are shown in Figure 28 andrEig9. The overheads shown in the
results include the time for analysis of the biegyiinsertion of the protection code

and execution of the protection code.

BenchMark Native DynamoRIO TRUSS %overhead
Gzip 180.336 199.129 211.742 17.415
Vpr 207.795 218.077 241.471 16.206
Gce 80.929 208.766 287.211 254.893
Mcf 192.308 193.163 193.782 0.766
Crafty 118.144 169.434 209.785 77.567
Parser 218.046 268.165 326.996 49.967
Eon 212.979 261.007 369.775 73.620
Perlbmk 164.114 255.084 334.879 104.053
Gap 91.037 122.692 153.889 69.040
Vortex 159.618 317.307 363.284 127.596
Bzip 183.703 197.595 227.042 23.592
Twolf 329.834 372.113 411.403 24.730
AVERAGE 178.237 231.878 277.605 55.750

Table 5: Performance of SPEC CINT2000 benchmark programsar L

time(sec)

) o)) X Q N
R L ¢ © & & & & R
o © N oS Q,zs < o Q}\o o

@ Native m DynamoRIO (plain) 0O TRUSS

Figure 28: Performance of SPEC CINT2000 benchmark prograrhsox

72

BenchMark Native DynamoRIO TRUSS %overhead
Gzip 183.718 193.516 295.39 60.784
Vpr 192.515 197.538 365.765 89.993
Gce 84.077 179.104 308.781 267.26
Mcf 201.171 202.514 324.343 61.228
Crafty 125.453 189.406 410.156 226.94
Parser 221.812 258.468 738.015 232.721
Eon 141.952 168.937 474.5 234.268
Perlbmk 148.283 271.843 569.125 283.81
Gap 102.093 125.687 370.265 262.674
Vortex 141.218 217.64 602.86 326.9
Bzip 226.64 240.596 415.046 83.13
Twolf 332.187 362.622 520.781 56.773
AVERAGE 175.093 217.323 449.586 156.769

Table 6: Performance of SPEC CINT2000 benchmark progoantgindows

800
700 ~
_ 600 ~
%’u% 500 ~ —
T 400] T
£ 300 -
200 A =
100 ul In} Ins I8l IS
o .
. $ < & S S Q A Q N Q N
R R S O < & S & e e 48 S
o o N oS QQSO < e @&0) Aoé N
@ Native B DynamoRIO (plain) 0O TRUSS

Figure 29: Performance of SPEC CINT2000 benchmark pragoemwindows

In Windows, TRUSS incurs an average overhead oRd %6 execution time. In

Linux, TRUSS incurs an average overhead of 55%x&cetion time. One reason for
such a significant variation in Linux and Windowsthat in Linux the eflags were not
saved and restored at every check. The eflagstedlenontain the zero, carry, sign,
parity, adjust, trap, interrupt, direction and dl@w flags. In Linux the applications

can execute correctly without saving and restotiregeflags. However, in Windows,
few applications produced incorrect results when dfiags were ignored. Hence, in
Windows the eflags were saved and restored at esteggk. The SPEC CINT2000
benchmarksgcc, vortex and perlomk exhibited significant overheads in both

operating systems. But it has to be noted tjeat, vortex andperlomk perform

73

badly on DynamoRIO without TRUSS. These are prograrhich contribute to the

exceptionally high overhead in Windows.

7.4 Performance Test With Bapco Sysmark Benchmarki®grams

In addition, | have used 4 benchmarks from the BaBgsmark to evaluate the
performance in Windows. These 4 benchmarks use I@ogdicrosoft Office
applications such as WinWord, Excel, Access andePpaint. The results of these

tests are summarized in Figure 30.

Benchmark Native DynamoRIO TRUSS %overhead
Access 302.18 307.69 311.99 3.246
Excel 569.58 566.24 573.49 0.686
Powerpoint 365.22 364.25 369.9 1.281
WinWord 260.65 263.44 265.35 1.803
Average 374.407 375.405 380.182 1.542

Table 7: Performance of Sysmark benchmark programs on Windows

700
600
500
400
300 -

200 1
100 _—
0

Word

time(sec)

Access Excel Powerpoint

@ Native m DynamoRIO (plain) 0O TRUSS

Figure 30: Performance of Sysmark benchmark programs nddis

Figure 30 showed no significant slowdown due to B8Uon the Microsoft Office
benchmarks. One possible reason why the overheatideed so drastically between
the SPEC CINT2000 benchmarks and the Bapco Syshemkhmarks is that the
number of call and return instructions in the SREIBIT2000 benchmarks are very

much larger than those in Bapco Sysmark benchmarkiss means that fewer

74

instructions are added and executed for returnemddchecks and frame pointer
checks. The number of call and return instructiobserved in both benchmarks are
shown in Tables 8 and 9. Note that in the Micro$affice suite, calls and returns do

not match up well. Many of the returns were repdblog jump instructions.

Benchmark Call-return pairs
Gzip 1,970
Vpr 2,589
Gcece 1,393
Mcf 2,053
Crafty 3,958
Parser 4,021
Eon 5,320
Perlbmk 5,755
Gap 3,980
Vortex 6,747
Bzip 3,209
Twolf 2,308
Table 8: Number of call and return pairs (in milliomsSPEC CINT2000 benchmark programs for
Windows
Benchmarks call instructions return instructions
Access 1.81 1.72
Excel 4.76 4.25
Powerpoint 2.55 2.43
WinWord 1.27 1.20
Table 9: Number of call and return instructions (in milljoimsSysmark benchmark programs for
Windows

7.5 Performance Of LibSafe And StackShield With SPE CINT2000
Benchmark Programs

As a comparison, Table 10 shows the overhead dfafebon the SPEC CINT2000
benchmarks running in Linux. The average overheadrred is negligible. It is rather
obvious that Libsafe performs very much better thRWSS. This is because Libsafe
does not maintain a dynamic list of frame pointémstead, it invokes a GCC inbuilt

function,__builtin_frame_address . The signature of this function is:

void * __builtin_frame_address (unsigned int LEVEL)

75

This method accepts an integer input that repregaetlevel of the nested functions.
However, the method is not safe for checking puepdsecause it assumes that the
frame pointer will be in the memory location pooht® by the register %EBP. Some
applications do not save %EBP in the process dtatkather use this register for
their computational purposes. This means that theecking done using
does not guarantee that any buffer overflow wat n

__builtin_frame_address

exceed the frame pointer.

Table 11 shows the overhead of StackShield (thepdemapproach) on the SPEC
CINT2000 benchmarks running in Linux. The benchmamograms -—gcc,
perlomk , gap — crashed. Moreovegon could not be compiled withhieldg++
compiler as this program requires newer versiorgef compilers. The average
overhead was 60%. Furthermore, StackShield doesuygtort the GCC compiler

optimization options such asfomit-frame-pointer and -funroll-all-

loops .
Benchmarks Native Libsafe %overhead
Gzip 180.336 182.933 1.44
Vpr 207.795 205.523 -1.09
Gcce 80.929 81.864 1.155
Mcf 192.308 193.147 0.436
Crafty 118.144 119.092 0.802
Parser 218.046 220.82 1.272
Eon 212.979 214.884 0.894
Perlbmk 164.1136 165.937 1.111
Gap 91.037 91.388 0.386
Vortex 159.618 165.608 3.753
Bzip 183.703 184.258 0.302
Twolf 329.834 346.692 5.111
AVERAGE 178.237 181.012 1.557

Table 10: Performance of LibSafe with SPEC CINT2000 beracks in Linux

76

Benchmarks Native StackShield %overhead
Gzip 180.336 298.607 65.584
Vpr 207.795 287.484 38.350
Gcec 80.929 Crash -

Mcf 192.308 239.384 24.479
Crafty 118.144 180.9 53.118
Parser 218.046 233.191 6.946
Eon 212.979 Cannot compile -
Perlbmk 164.1136 Crash -

Gap 91.037 Crash -
Vortex 159.618 251.211 57.383
Bzip 183.703 315.318 71.646
Twolf 329.834 487.221 47.717
AVERAGE 178.237 286.6645 60.833

Table 11: Performance of StackShield-0.7 with SPECTRINO0 benchmarks in Linux

77

Chapter 8

Conclusion

Today’s world is at a stage where it cannot functidthout computer systems. And a
computer system loses its viability when its sdguis compromised. As such, the
field of computer security has attracted greatredts and investments. My work on
TRUSS adds on to current research in the area s&tTrity and specifically, in the

field of systems security.

The purpose of this thesis was to present a traespaefficient and unified
runtime solution for preventing a wide variety afiokn buffer overflow attacks,
namely the return address attacks, format stritagks, vulnerable C function attacks,
stack smashing attacks, heap overflows and GOT fioations. These attacks allow
adversaries to intrude into systems and eitherl steical information from the
systems illegally or take control of the systemspavileged levels to perform
unauthorized operations. Therefore, it is essefufatomputer systems to incorporate
a defensive mechanism to thwart such attacks. &umtbre, it will be ideal if the
mechanism makes minimal modification to the origiegecutable and allows the
application to execute normally. TRUSS is such @time security tool. It makes
minimal alteration to the binary to ensure safecaten of the application. TRUSS
has been implemented as a client program in Dynd®oRhe techniques
incorporated in TRUSS are simple, robust and furnttoee portable to other binary
rewriting tools. Working only with binary executakl TRUSS can protect code
running on both Linux and Windows without requiriagy special hardware, access

to the source code or even patches to the opersysigms.

78

The performance overhead involved is among the m@jocerns of any runtime
scheme. The performance evaluation of TRUSS hasvrshbat its overhead is
dependent on the application and operating sysémst is within a range that would

be deemed acceptable to most users.

8.1 Limitations

Nevertheless, no single method of security is owteipt. TRUSS, for instance, is not
effective against buffer overflow of local variablallocated in the stack. It is rather
difficult to extract the size of a local buffer frothe binary. Thus, monitoring such
buffers at runtime is not an easy task. Similattyy Windows PE files do not carry
information about the global variables. These asead stored in th€OFFfile,

which is usually not provided with the executablBlserefore, TRUSS does not have

sufficient information from the binary to monitdrese buffers as well.

Function pointer defense in TRUSS makes use of G@Cific code sequence
to identify function invocations via function poams. This is a limitation as this
technique will be effective only in applications ngpiled with GCC compilers.
Another limitation to be noted is that TRUSS does allow instructions that are
stored in the heap to be executed. Storing instmstin the heap and subsequently
executing them may be legal in some applicatiomsuich applications, TRUSS will

raise false alarm.

79

8.2 Future Research

Future research can focus on eliminating the ctinaitations that TRUSS faces. In
addition, more defense techniques can be includéal TRUSS to strengthen its
ability to protect applications. Such additionathiiriques can be incorporated into

TRUSS to make it a comprehensive runtime secuviy t

80

References

1. ANDREWS, M. HEAT: Runtime Interception of Win32 Fations. Technical

Report CS-2003-1, 2003.

2. ARORA, D., RAVI, S., RAGHUNATHAN, A., AND JHA, N. K. Secure
Embedded Processing through Hardware-Assisted Rue-TMonitoring. In
Proceedings of the Conference on Design, Automatind Test in Europe
Volume 1. Design, Automation, and Test in EurofeEE Computer Society,

Washington, DC, pages 178-183, 2005.

3. AV, K., GUPTA, P., AND GUPTA, D. TIED, LibsafeB$: Tools for runtime

buffer overflow protection. INSENIX Security Symposiupages 45-55, 2004.

4. BAIN, C., FAATZ, D. B., FAYAD, A., AND WILLIAMS, D. Diversity as a
defense strategy in information systems. Does ecilefrom previous events
support such an approach?. Pmoceedings of the IFIP TC11/WG11.5 Fourth
Working Conference on Integrity, Internal ContraidaSecurity in Information
Systems: Connecting Governance and Techngldgyember 15 - 16, 2001). M.
GERTZ, E. GULDENTOPS, AND L. STROUS, Eds. IFIP Cemince
Proceedings, Volume 211. KLUWER B.V., Deventer, Netherlands, pages 77-

94. 2001.

5. BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamoa transparent

dynamic optimization system. IfProceedings of the ACM SIGPLAN 2000

81

Conference on Programming Language Design and Img@igation(Vancouver,
British Columbia, Canada, June 18 - 21, 2000). PDDI ACM Press, New York,

NY, pages 1-12. 2000.

6. BARATLOO, A., SINGH, N., AND TSAI, T. Transparenum-time defense
against stack smashing attacks.Aroceedings of the 2000 USENIX Technical

ConferenceSan Diego, CA, June 2000.

7. BARRANTES, E. G., ACKLEY, D. H., PALMER, T. S., SHANOVIC, D.,
AND ZOVI, D. Randomized instruction set emulatiom disrupt binary code
injection attacks. IrProceedings of the 10th ACM Conference on Comparidr
Communications SecuriyVashington D.C., USA, October 27 - 30, 2003). CCS

'03. ACM Press, New York, NY, pages 281-289. 2003.

8. BERGER, D., E. HeapShield: Library-Based Heap QueerfProtection for Free.

UMass CS TR 06-28. 2006.

9. BHATKAR, S., DUVARNEY, D. AND SEKAR, R. Address ob$cation: an
efficient approach to combat a broad range of mgmemor exploits. In

Proceedings of the USENIX Security SymposW8ENIX. 2003.

10.BHATKAR, S., DUVARNEY, D. AND SEKAR, R. Efficient échniques for

comprehensive protection from memory error explditdProceedings of the 14th

USENIX Security SymposiuBaltimore, MD, August 2005.

82

11.BRUENING, D. Efficient, Transparent, and CompreliemsRuntime Code
Manipulation. PhD thesis, Massachusetts InstituteTechnology, September

2004 .http://www.cag.csail.mit.edu/rio/

12.Business Applications Performance Corporation. S¥%&2004 SE.

http://www.bapco.com/products/sysmark2004se

13.CERT/CC.CERT Advisories.

http://www.cert.org/stats/cert stats.html

14.CHIUEH, T. AND HSU, F.H. RAD: A compile-time solatn to buffer overflow
attacks. InProceedings of the 21st International Conference istributed

Computing Systemblesa, AZ, April 2001.

15.CIFUENTES, C., WADDINGTON, T., AND MIKE VAN EMMERIK Computer
Security Analysis through Decompilation and Highveke Debugging. In
Proceedings of the Eighth Working Conference oreRevEngineeringWcre'01)
(October 02 - 05, 2001). WCRE. IEEE Computer Sg¢cidlashington, DC, 375.

2001.

16.CONTEXT. How to hijack the global offset table wigointers for root shells,

September 200%ittp://www.opensecurity.org/texts/6

17.COWAN, C., BARRINGER, M., BEATTIE, S., KROAH-HARTMAN, G.,

FRANTZEN, M., LOKIER, J. FormatGuard: Automatic Rrotion From printf

83

Format String Vulnerabilities. IfProceedings of the 2001 USENIX Security

SymposiumWashington DC. 2001.

18.COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, RRointGuard:
Protecting pointers from buffer overflow vulneratiéls. In Proceedings of the

12th USENIX Security Symposiu2003.

19.COWAN, C., PU, C., MAIER, D., HINTON, H., BAKKE, P.BEATTIE, S.,
GRIER, A., WAGLE, P., AND ZHANG, Q. StackGuard: Awmatic adaptive
detection and prevention of buffer-overflow attadksProceedings of the Seventh

USENIX Security Conferenc8an Antonio, TX, January 1998.

20. Determina Inchttp://www.determina.com/

21.ENBODY, J., R. AND PIROMSOPA, K. Secure Bit: Tramspnt, Hardware
Buffer-Overflow Protection.IEEE Transactions on Dependable and Secure

ComputingVolume 3, No. 4. pages 365-376. October 2006.

22.ETOH, H. AND YODA, K. ProPolice: Improved stack-sshéng attack detect on.

IPSJ SIGNotes Computer Security 014(025), October 2001.

http://www.trl.ibm.com/projects/security/ssp

23.FORREST, S., SOMAYAJI, A., AND ACKLEY, D. Buildin@piverse Computer

Systems. IrProceedings of the 6th Workshop on Hot Topics ier@ng Systems

84

(Hotos-Vi) (May 05 - 06, 1997). HOTOS. IEEE CompuBnciety, Washington,

DC, 67. 1997.

24.FOSTER, J. C., VITALY, O., NISH, B., NIELS, H. Bf overflow attacks:

Detect, Exploit, Prevent. Syngress Publishing, WSA, 2005.

25.FRANTZEN, M. AND SHUEY, M. Stackghost: Hardware figated stack
protection. InProceedings of the 10th USENIX Security SympgsiMashington

D.C., August 2001.

26.HASTINGS, R. AND JOYCE, B. Purify: Fast detectioh memory leaks and
access errors. IrProceedings of the Winter USENIX Conferentgsenix

Association, pages 125-136, 1992

27.HUNT, G. AND BRUBACHER, D. Detours: Binary Intercégn of Win32

Functions. USENIX Technical Program - Windows NTrgpsium 99, 1999.

28.JESSE, R., ROGER, K., SCOTT, L., ROBERT, C. Detectof injected,
dynamically generated, and obfuscated maliciousecdd Proceedings of the
2003 ACM workshop on Rapid malcodectober 27, 2003, Washington, DC,

USA, 2003.

29.KIRIANSKY, V., BRUENING D., AMARASINGHE, S.P. SecaerExecution via

Program Shepherding. FAroceedings of the 11th USENIX Security Sympgsium

August 05-09, pages 191-206, 2002.

85

30.KOCHER, P., LEE, R., MCGRAW, G., AND RAGHUNATHAN, ASecurity as
a new dimension in embedded system desigiréceedings of the 41st Annual
Conference on Design Automati¢Ban Diego, CA, USA, June 07 - 11, 2004).

DAC '04. ACM Press, New York, NY, pages 753-760020

31.KUPERMAN, B. A., BRODLEY, C. E., OZDOGANOGLU, H.,NAYKUMAR,

T. N., AND JALOTE, A.. Detection and prevention sfack buffer overflow

attacks Communications of the ACK¥B, 11, pages 50-56. November 2005.

32.LEA, D. A memory allocator. http: /gee.cs.oswegaol/@l/html/malloc.html.

33.LEVINE, J. R. Linkers and Loaders. 1st. Morgan Kaahn Publishers Inc. 1999.

34.LIBENZI, D. Guarded Memory Move (GMM) Buffer Ovedilv Detection And

Analysis.http://www.infosecwriters.com/text resources/pdfigmdf

35.MOORE, D., SHANNON, C., AND CLAFFY, K. Code-Red:case study on the
spread and victims of an internet worm. Rroceedings of the 2nd ACM
SIGCOMM Workshop on internet Measurm@viarseille, France, November 06 -

08, 2002). IMW '02. ACM Press, New York, NY, 2734222002.

36. Microsoft Portable Executable and Common Obje@ Fidrmat Specification.

86

37.MYERS, D. AND BAZINET, A. Intercepting Arbitrary Fctions on Windows,

UNIX, and Macintosh OS X Platforms. Technical Rep@IS-TR-4585

38.NANCE, J. Product Review: Insure++. Linux J. 1998es, 14. July 1998.

39.NECULA G. C., MCPEAK, S., WEIMER, W. CCured: typafs retrofitting of
legacy code. IrProceedings of the 29th ACM SIGPLAN-SIGACT symposin
Principles of programming languagedanuary 16-18, 2002, Portland, Oregon,

pages 128-139, 2002.

40.0ZDOGANOGLU, H., BRODLEY, C., VIJAYKUMAR, T., JALOE, A., AND
KUPERMAN, B. SmashGuard: A Hardware Solution toverg Security Attacks
on the Function Return Address. Tech. Rep. TR-EGHJ) Purdue University
School of Electrical and Computer Engineering, Nober 2003.

www.smashguard.org/

41.PIROMSOPA, K. AND ENBODY, R. Buffer-Overflow Proteen: The Theory.
In Proceedings of the 6th IEEE International Conferion Electro/Information

TechnologyEast Lansing, Michigan, 2006.

42.PIROMSOPA, K. AND ENBODY, R. Arbitrary Copy: Bypasg Buffer-

Overflow Protections. IfProceedings of the 6th IEEE International Confernc

on Electro/Information Technologiast Lansing, Michigan, 2006.

87

43.POE, J. AND LI, T. BASS: A benchmark suite for enating architectural
security systemsSIGARCH Computer Architecture Newgolume 34, No. 4,

pages 26-33. September 2006.

44.PRASAD, M. AND CHIUEH, T. A binary rewriting defeasagainst stack-based
buffer overflow attacks. IProceedings of the 2003 USENIX Annual Technical

ConferenceSan Antonio, TX, June 2003.

45.PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, .CINOUYE, J.,
KETHANA, L., WALPOLE, J., AND ZHANG, K. Optimisticincremental
specialization: streamlining a commercial operatiggtem. InProceedings of the
Fifteenth ACM Symposium on Operating Systems Biee{Copper Mountain,
Colorado, United States, December 03 - 06, 1995)BMJones, Ed. SOSP '95.

ACM Press, New York, NY, pages 314-321. 1995.

46.PU, C., BLACK, A., COWAN, C., AND WALPOLE, J. A spalization toolkit
to increase the diversity of operating system$roceedings of the 1996 ICMAS

Workshop on Immunity-Based SysteNera, Japan, December 1996.

47.RABEK, J. C., KHAZAN, R. 1, LEWANDOWSKI, S. M., AR
CUNNINGHAM, R. K. Detection of injected, dynamicgllgenerated, and
obfuscated malicious code. Rroceedings of the 2003 ACM Workshop on Rapid
Malcode (Washington, DC, USA, October 27 - 27, 2003). WORN. ACM

Press, New York, NY, pages 76-82. 2003.

88

48.RICHARTE, G., Four different tricks to bypass Stahleld and StackGuard

protection. 2002. Tech. rep., Core Security Teabmiel, April 2002.

49.RINGENBURG, M.F. AND GROSSMAN, D. Preventing forrrsting attacks
via automatic and efficient dynamic checking.Rroceedings of the 12th ACM
conference on Computer and communications secuMibwember 07-11, 2005,

Alexandria, VA, USA, 2005.

50.ROBERTSON, W., KRUEGEL, C., MUTZ, D., AND VALEUR,.FRun-time
detection of heap-based overflows.Rroceedings of the 17th Large Installation
Systems Administrators Conferencgan Diego, California, U.S.A., USENIX

Association. pages 51-60, Oct. 2003.

51.RUWASE, O. AND LAM, M. A practical dynamic bufferverflow detector. In
Network and Distributed System Security SympogNBDSS), pages 159-169,

February 2004.

52.SHANKAR, U., TALWAR, K., FOSTER, J. S., WAGNER D.decting format

string vulnerabilities with type qualifiers. IRroceedings of the 10th USENIX

Security SymposiundSENIX, Washington, DC, pages 201-220. 2001.

53. Standard Performance Evaluation Corporation. SPEG2D00 benchmark suite.

http://www.spec.org/osg/cpu2000/.

89

54.TSAI, T. AND SINGH, N. Libsafe 2.0: Detection ofrfoat string vulnerability

exploits. White paper, Avaya Labs, February 2001.

55.VENDICATOR. Stackshield: A "stack smashing" techrégprotection tool for

Linux. http://www.angelfire.com/sk/stackshield/.

56.WILANDER, J. AND KAMKAR, M. A Comparison of Publigl Available Tools
for Dynamic Buffer Overflow Prevention, Proceedings of the 10th Network and
Distributed System Security Symposiusan Diego, California, February 6-7,

2003. Reston, VA: Internet Society, pages 149-26D3.

57.XU, J., KALBARCZYK, Z., PATEL, S., AND IYER, R. Arhitecture support for
defending against buffer overflow attacks.Rroceedings of the 2002 Workshop
on Evaluating and Architecting System dependahji4SY-2002) University of

lllinois at Urbana-Champaign, October 2002.

58.XU, J., KALBARCZYK, Z., AND IYER, R. K. Transparentruntime
randomization for security. Technical report, Centter Reliable and Higher

Performance Computing, University of lllinois atdana-Champaign, May 2003.

59.XU, J. AND NAKKA, N. Defeating Memory Corruption fdcks via Pointer
Taintedness Detection. IRroceedings of the 2005 international Conference on
Dependable Systems and Netwo(Bsn'05) - Volume 00 (June 28 - July 01,

2005). DSN. IEEE Computer Society, Washington, p&yes 378-387, 2005.

90

60. YOUNANA, Y., POZZAB, D., PIESSENSA, F. AND JOOSENAY. Extended
Protection against Stack Smashing Attacks withoetfdPmance Loss. In
Proceedings of the 22nd Annual Computer Securitpliégtions Conference

(ACSAC'06). Miami, pages. 429-438, December 2006.

61.ZHANG, C. AND JACOBSEN, H. A. Tiny€ - towards a dynamic weaving
aspect language based on CFoundation of Aspect Oriented Languages (FOAL)
jointly held with the 2nd International Conferenoa Aspect Oriented Systems

and DesignBoston, MA, March 2003.

62.ZHIVICH, M., LEEK, T. AND LIPPMANN, R. Dynamic Bufér Overflow

Detection.Workshop on the Evaluation of Software Defect Dieted ools 2005.

91

