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Summary 

 

Exploitation of buffer overflow vulnerabilities constitutes a significant portion of 

security attacks in computer systems. Common buffer overflow attacks include return 

address attacks, format string attacks, vulnerable C function attacks, stack-smashing 

attacks, heap overflows and GOT modifications. The aim of these attacks is typically 

to hijack critical information in the process address space so as to redirect the 

program’s control flow to any malicious code injected into the process memory. 

Previous solutions to these problems are based either on hardware or compiler. The 

former requires special hardware while the latter requires the source code of the 

application. 

In this thesis, I have introduced a runtime security mechanism - Transparent 

RUntime Security Suite (TRUSS) - that can protect applications against common 

buffer overflow attacks. The objective of TRUSS is to protect applications against 

buffer overflow attacks during execution. TRUSS works with the binaries of the 

applications and it does not require the applications’ source code. Furthermore, 

TRUSS does not require any modification to the system that executes the 

applications. Many previous tools in this area focused their security effort on some 

specific vulnerability. Unlike such tools, TRUSS consolidates a number of techniques 

that can monitor various parts of the memory to detect, prevent and protect against 

buffer overruns. Additionally, TRUSS includes a few novel techniques to thwart 

attacks on the Global Offset Table entries and heap memory.   

TRUSS is built as a client program in DynamoRIO, a dynamic binary rewriting 

framework. DynamoRIO is implemented on both Windows and Linux. Hence, this 



 vii  

scheme is able to protect applications on both operating systems. TRUSS has been 

successfully tested on the SPEC CINT2000 benchmark programs (on both Windows 

and Linux), on John Wilander’s “Dynamic testbed for twenty buffer overflow 

attacks”, on James Poe’s and Tao Li’s “BASS - A Benchmarking suite for evaluating 

Architectural Security Systems” as well as on Microsoft Access, PowerPoint, Excel 

and Word 2002. This thesis includes the implementation details of TRUSS. It also 

provides a performance evaluation, which will show that TRUSS is able to operate 

with an average overhead factor of up to 0.5 in Linux and 1.5 in Windows. 
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Chapter 1 

Introduction  

 

Computer security is a field in computer science that is concerned with the control of 

menace associated with computer use. It is essential that any application that is 

executed in computer systems is safe and does not compromise with the security of 

the systems. The widespread viruses, worms and Trojan horses have the ability to 

intrude into systems and either steal critical information from the systems illegally or 

take control of the systems at privileged levels to perform unauthorized operations. It 

is therefore extremely imperative to protect computer systems from these malwares.  

The rapid development of the Internet has further spawned a sharp increase in the 

number of computer systems being violated by malicious attacks. From the time of 

the infamous Internet Worm written by Robert T. Morris in 1988 [35], several 

security breaches causing much damage to systems have been reported. On 4th May 

2000, a virus known as “I Love You” spread through Asia, Europe and the US within 

five hours via e-mails. It was estimated that the damage caused by the virus resulted 

in a loss of nearly one billion dollars [30]. In the following year, “Code Red Worm” 

spread over the Internet and more than 359,000 computers connected to the Internet 

were infected with the worm in less than 14 hours. The damage caused by this worm 

was estimated to be $2.6 billion [35].  

Software vulnerabilities have been prevalent in applications since 1960s [14]. 

Figure 1 shows the number of security alerts reported by CERT between 1995 and 

2005. A total of 22,716 vulnerabilities were reported within the 10-year period [13]. 
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Figure 1: Software vulnerabilities reported to CERT 

 

One common technique employed by these malwares is known as buffer 

overflows. The core of this security vulnerability lies in the use of programming 

languages such as C and C++. These programming languages tend to compromise 

safety of the application for efficiency. For instance, it is essential for any application 

to ensure that every access to an element in an array is safe. However, the compilers 

in these languages do not perform such checks automatically. In addition, the notions 

between arrays and pointers to data structures are used interchangeably. This makes it 

more difficult to monitor the violation of buffer limits in programs. Yet, due to legacy 

as well as the continued popularity of these programming languages, the problem 

cannot be solved easily by abandoning them in favour of safer ones. 

Buffer overflow occurs when buffers allocated in a program overflow upon 

copying data into the buffer of a size larger than its capacity. This results in the excess 

data overwriting the adjacent memory locations. In this way, if critical control 

information was stored in the adjacent memory locations, a well-crafted data can 

overwrite the memory locations and cause the program to deviate from its execution 

flow and in turn, execute any malicious code. Return addresses, frame pointers, 
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Global Offset Table (GOT) entries, longjmp()  buffer and function pointers are such 

vulnerable critical information that resides in the process memory. 

A variant of buffer overflow attack is the format string attack. Format string 

vulnerability is based on the lack of safety checks by the C compilers (as mentioned 

earlier) and on the implementation of some functions in the standard C library. The 

standard C library provides a list of functions known as format functions, which 

accept a variable number of arguments. One of these arguments is the format string. 

These functions evaluate the format string and convert the arguments following the 

format string into a suitable form to be passed into the output stream. However, these 

functions do not check the attributes of the arguments. Moreover, they do not validate 

if the function parameters are indeed passed by the caller. There is also a lack of 

control mechanism to prevent any procedure that evaluates the format string from 

accessing erroneous memory locations. This vulnerability is manifested mainly in 

interactive computer systems. Apart from format functions, a number of other 

functions implemented in the standard C library are also vulnerable to buffer overflow 

attacks.  

This situation raises a serious cause of concern because applications that utilize 

these library functions become vulnerable to attacks and this in turn compromises the 

security of the computer system, which executes these applications. Hence, methods 

that protect computer systems from becoming vulnerable because of such applications 

are vital. This research paper introduces a runtime security mechanism, which I refer 

to as Transparent RUntime Security Suite (henceforth, TRUSS). TRUSS provides a 

set of techniques to protect computer systems against common types of buffer 

overflow attacks and format string attacks in both Linux and Windows.  
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1.1 Background 

Buffer overflow attacks fundamentally aim to achieve two goals. Firstly, an adversary 

has to inject a malicious code into the process memory. This is usually a small 

sequence of instructions that can invoke a shell on the system and pass control to the 

adversary with the privilege of the user. Secondly, the adversary has to change the 

execution flow to point to the start of the malicious code residing in memory. An 

attack is successful only when both the goals are achieved [57]. There is no major 

security concern if only one of the goals is pulled off by the adversary. Malicious 

code residing in the computer system does not cause any damage to the system unless 

it is invoked. 

There are five main types of buffer overflow attacks. The most common way to 

perform a buffer overflow attack is by modifying return addresses. These addresses 

are usually modified via stack smashing – a method to overwrite a buffer with data 

more than the size of the buffer itself. Overflowed buffers will usually cause the 

program to crash. However, adversaries can use well-crafted data to modify specific 

location in the memory where the return address resides. This can change the 

execution flow of the program and make the program counter (also known as 

instruction pointer) to point to the start of the malicious code. 

The second type of attack targets the stack frame pointer. This attack uses the 

stack-smashing technique as well.  The adversary has to insert a fake stack frame into 

the process stack with a return address pointing to the start of the malicious code. The 

overflowing data has to overwrite the value of a stored frame pointer with the address 

of the fake stack frame. Hence, when a subroutine returns, control will be passed on to 

the fake stack frame and it will perform a return again directing the flow of control to 

the attack code.  
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The next type of attack aims to redirect a function pointer in the program to point 

to the attack code. This function pointer can be allocated in the stack or heap for the 

attack to succeed. A buffer is overflowed until the memory location of the function 

pointer is reached. The start address of malicious code is then copied to the function 

pointer. Thus, when the function pointer is used in the program, it will direct the 

execution flow to execute the attack code. 

The fourth type of attack targets the GOT entries. The GOT is used by applications 

in Linux to redirect function calls between the executable and a shared object or 

between different shared objects. This is a point of control flow transfer and if an 

adversary manages to hijack this data and overwrite it with the start address of any 

malware, the malware will be successfully executed. 

The last type of attack uses the setjmp() /longjmp()  buffers. A setjmp() call 

saves the environment information in a buffer. This data includes the contents of the 

program counter, the stack pointer and the frame pointer. The program counter 

contains the address of the instruction to be executed next. If an adversary manages to 

modify the program counter to point to the start of attack code, control will be 

transferred to the attack code when longjmp()  restores the environment information 

[14]. 

 

1.2  Objective 

This paper presents TRUSS, which is to be used on applications that execute on Intel 

x86 architecture. The main objective of TRUSS is to provide a defensive mechanism 

that makes minimal modification to the original executable and incur low overheads 

during runtime. In order to efficiently work on an application, TRUSS employs 
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DynamoRIO, a binary instrumentation tool. DynamoRIO is a runtime code 

manipulation system and TRUSS functions within this system. DynamoRIO is an IA-

32 implementation of the original PA-RISC based Dynamo Project [5]. It supports 

efficient, transparent and comprehensive manipulation of applications running on 

Windows or Linux operating systems. DynamoRIO provides APIs to hook each basic 

block in the application before the block gets executed. This provides ideal opening to 

analyze the instructions and to implement defensive measures. 

The suite of safety techniques presented in this research paper is to provide 

efficient runtime protection for applications, inclusive of those without any source 

code. The primary aim of this research paper is to present a defense suite that protects 

existing applications from return address modification attacks, format string attacks, 

stack smashing attacks, GOT attacks, heap buffer attacks, longjmp()  buffer attacks 

and attacks that take advantage of the vulnerable functions in the standard C library 

with considerably low overhead. 

 

1.3  Roadmap 

In Chapter 2, I will look at the two different types of executable file formats used in 

Linux and Windows operating systems. Chapter 3 will review some of the related 

work in this field. In Chapter 4, I will look at the underlying tool, DynamoRIO, upon 

which TRUSS is built. Chapter 5 will explain the security modules included in 

TRUSS. In Chapters 6 and 7, I will analyze the security performance and overhead 

incurred by TRUSS respectively and I will conclude in Chapter 8. 
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Chapter 2  

Executable File Formats 

 

In this chapter, I will briefly describe the Executable and Linkable File (ELF) format 

and the Microsoft Portable Executable (PE) file format utilized by binaries in Linux 

and Windows respectively. Understanding these formats is essential as most of the 

information used by TRUSS is extracted from the binaries.  

 

2.1 Executable And Linkable File (ELF) Format 

ELF [33] defines a binary interface that allows the linking of several object files and 

creates a process image during execution. There are three main types of object files. 

� A relocatable file stores code and data suitable for linking with other object 

files in order to create an executable or a shared object file. 

� An executable file contains a program suitable for execution. 

� A shared object file stores code and data suitable for two functions:  

o First, the link editor may process it with other relocatable and shared 

object files to create another object file.  

o Second, the dynamic linker may combine it with an executable file and 

other shared objects to create a process image. 

The ELF object file provides a dual view of the file’s contents - linking view and 

execution view. While linking view is required to build the program and it divides the 
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file content into sections that contain the text, data and other information such as the 

symbol tables and relocation tables; execution view is needed to form the program 

image. It describes how the various parts of the file should be mapped into the 

memory to form the process image. Execution view divides the content into segments 

with differing permissions (e.g. read/write/executable) assigned to them.  

 The ELF file stores the ELF header at the beginning of the file and this header 

holds a roadmap that describes the file's organization. In addition, the ELF file 

contains a program header table and a section header table. The program header 

describes the ELF file’s execution view while the section headers describe the ELF 

file’s link view. The program header instructs the system on creating a process image. 

Only ELF files that are used to build a process image have a program header table. 

Relocatable ELF files do not need one. Each program header describes a segment in 

the ELF file. A segment can contain one or more sections. Sections with similar 

access permissions can be grouped into the same segments. Each segment 

corresponds to a segment in the virtual address space. The process image is made up 

of segments of memory that hold code, data and stack. 

 The section header table is an array of section header structures. Each section 

header contains information describing the file's sections. Every section in the ELF 

file occupies a contiguous block of memory and no two sections overlap. The sections 

in ELF are pre-defined and hold program and control information. These sections are 

used by the operating system and have different types and attributes for different 

operating systems. An illustration of the dual view of an ELF file is depicted in 

Figures 2 and 3. 
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ELF Header 
Program Header Table 

Optional 
Section 1 

… 
Section n 

… 
… 

Section Header Table 
Figure 2: Linking view of the ELF file 

ELF Header 
Program Header Table 

Segment 1 
 

Segment 2 
 

… 
Section Header Table 

Optional 
Figure 3: Execution view of the ELF file

 

Linking two files essentially means to resolve the symbols defined in one object file 

and used in another. This process uses a number of sections. To facilitate linking, the 

ELF file contains two symbol tables that store a list of all the symbols used or 

globally defined in an object file. The dynamic linker exclusively uses the dynamic 

symbol table and the static linker uses the other symbol table. Each symbol entry 

contains information regarding the name, value and section index as depicted in 

Figure 4. 

typedef struct { 
Elf32_Word st_name; 
Elf32_Addr st_value; 
Elf32_Word st_size; 
unsigned char st_info; 
unsigned char st_other; 
Elf32_Half st_shndx; 

} Elf32_Sym;  

st_name This member holds an index into the object file's 
symbol strin g table, which holds the character 
representations of the symbol names. 

st_value This member gives the value of the associated symbo l. 
Depending on the context, this may be an absolute 
value, an address, and so on. 

st_size Many symbols have associated si zes. For example, a data 
object's size is the number of bytes contained in t he 
object. This member holds 0 if the symbol has no si ze 
or an unknown size. 

st_info This member specifies the symbol's type and binding  
attributes. 

st_other This member currentl y holds 0 and has no defined 
meaning. 

st_shndx Every symbol table entry is defined in relation to some 
section. This member holds the relevant section hea der 
table index.  

Figure 4: Symbol table entry information 
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Relocation is the process of connecting symbolic references to symbolic 

definitions. For example, when a program calls a function, the associated call 

instruction must transfer control to the proper destination address during execution. In 

other words, relocatable files must contain information that describes how to modify 

their section contents, thus allowing executable and shared object files to hold the 

right information for a process's program image. In the ELF file, relocations are 

needed because the virtual address of all the symbols is only available at runtime. The 

virtual address of a function or a data item inside a shared library is not known until 

the program starts to execute. The ELF file thus makes use of the GOT to store all the 

symbols that have to be resolved at runtime. Each entry in the GOT specifies a 

symbol and the first time a symbol is used in the program, the dynamic linker is 

invoked to go through all the loaded libraries and to perform the specified relocation 

[3].  

 

2.1.1 Accessing Symbols In Shared Library 

In Linux, instructions in dynamically linked libraries are not bound to the executable 

at link time. Dynamic linking defers much of the linking process until a program 

starts running. Therefore, it is not possible to know the addresses of functions defined 

in shared libraries before the program begins execution. In Linux, however, a 

programming interface is provided to dynamic linking loader. This interface allows 

shared libraries to be loaded explicitly via the dlopen()  call.  

dlopen()  loads a dynamic library and returns a handle for it. If the absolute path 

for the library is not provided, the library is searched for in the following locations: 

� A list of directories in the user's LD_LIBRARY_PATH environment variable.  
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� The list of libraries cached in /etc/ld.so.cache.  

� /lib directory, followed by /usr/lib directory.  

If library filename is a NULL pointer, a handle for the main program is returned.  

External references in the library are resolved using the libraries in the library's 

dependency list and any other libraries previously opened with the RTLD_GLOBAL 

flag. If the executable was linked with the flag -rdynamic , the global symbols in the 

executable will also be used to resolve references in a dynamically linked library.  

dlopen()  has to load the dynamic library with the flag RTLD_NOW. This will 

resolve all undefined symbols before dlopen()  returns. Optionally, RTLD_GLOBAL 

may be added to flag, in which case, the external symbols defined in the library will 

be made available to subsequently loaded libraries. dlsym() accepts the handle of a 

dynamic library returned by dlopen()  and the symbol name. It returns the address 

where that symbol is loaded. If the symbol is not found, dlsym()  returns a null 

value. TRUSS employs this technique to obtain the address of functions defined in 

shared libraries in order to intercept them. 

 

2.2 Microsoft Portable Executable (PE) Format  

Microsoft PE files [36] are intended for a paged environment. Pages from a PE file 

are usually mapped directly into memory and executed, similar to an ELF executable. 

There are two types of PE files. 

�  EXE programs 

� DLL shared libraries (known as dynamic-link library) 
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The format of the two files is the same. Only a status bit differentiates the two PEs. 

Both types of files can contain a list of exported functions and data that can be used 

by other PE files loaded into the same address space. A list of imported functions and 

data that has to be resolved from other PEs at load time can also be found in the PE 

files. However, the EXE files do not export functions.  

 In addition, there exists another type of file known as COFF. COFF is the Common 

Object File Format. This is the type of an object file under Microsoft Windows. The 

structure of the COFF is similar to the ELF relocatable file. The layouts of the 

Microsoft PE file and COFF file are illustrated in Figures 5 and 6. 

 Figure 5: PE file layout 

 

 Figure 6: COFF file layout 

The PE file header consists of a Microsoft MS-DOS stub, the PE signature, the COFF 

file header and an optional header. A COFF object file header consists of a COFF file 

header and an optional header. In both cases, the section table follows the file headers 

immediately. Each row of the section table is a section header, which describes a 

particular section. Each section is physically aligned on a disk block boundary and 

MS-DOS 2.0 Compatible 
EXE Header 

unused 

OEM Identifier 
OEM Information 

Offset to PE Header 

MS-DOS 2.0 Stub Program 
 and 

Relocation Table 
Unused 

PE Header 
(aligned on 8-byte boundary) 

Section Headers 
Image Pages: 
import info 
export info 

base relocations 
resource info 

Microsoft COFF Header 
 
 

Section Headers 
 
 

 
Raw Data: 

code 
data 

debug info 
relocations 
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logically aligned on a memory page boundary (4096 on the x86). The linker creates a 

PE file for a specific target address at which the file will be mapped [36].  

 

2.2.1 Accessing Symbols In Shared Library 

Unlike Linux, Microsoft Windows does not provide an interface that can be used to 

retrieve the address of imported functions. However, the PE file does contain an 

imported function table that stores the names of imported functions and the libraries 

where the functions are defined. This table is known as the Import Address Table 

(IAT). I will now explain the process of accessing the addresses of functions from the 

IAT. 

In order to work with the Microsoft PE, a handle to the executable has to be 

obtained. The Win32 API provides a GetModuleHandle()  call to retrieve a module 

handle, known as HMODULE, for the specified module. This function returns a handle 

to the file used to create the calling process when parameter is NULL. The base of the 

module, which contains the DOS header is then retrieved from the HMODULE handle. 

The optional header in the PE is then accessed to obtain the data directory, which 

contains the various sections in the PE. The import descriptor entry is then accessed 

from the data directory. This is the section that contains the information about the 

imported libraries. 

The import descriptor entry contains two data thunks - OriginalFirstThunk  

and FirstThunk . The import information is in fact stored in two tables. The 

OriginalFirstThunk  contains a reference to the Import Name Table for the 

module and FirstThunk  contains a reference to the Import Address Table for the 

module. The two tables contain entries of IMPORT_BY_NAME structure. This structure 
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contains both the address and the name of the imported function and hence, the 

desired function address can be retrieved from the PE once the program is loaded. The 

Import Name Table and the Import Address Table are merely two copies of the same 

table. The PE loader, which maps the function names to addresses when loading the 

PE, uses these two tables. Since the addresses of the various functions are unknown at 

compile time, the loader performs the resolution and replaces each entry in the Import 

Address Table with the actual address of the function. If there arises a need to know 

which function an address corresponds to, the Import Name Table can then be used. 

TRUSS employs this technique to obtain the address of standard C functions defined 

in shared libraries in Windows. 
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Chapter 3 

Previous Work 

Security modules that provide protection to applications can be employed at three 

different levels in computer systems. Firstly, it is possible to modify the hardware of 

the existing systems or add hardware modules to the systems to monitor applications. 

Some systems include an additional processor solely to perform security checks. This 

is a fast but rather expensive method. Secondly, security measures can be included 

into compilers. Compilers can insert additional instructions into the applications to 

perform checks and prevent any violations. This would require recompilation of the 

source code but to most legacy applications, the source code is not available. Thirdly, 

defensive measures can be applied simultaneously on the applications that are 

executed in the system. This, however, requires additional tools to decode and analyze 

the instructions in the applications and it is likely to incur higher time overhead than 

the earlier methods.  

In this chapter, I will briefly review the currently available tools that claim to 

protect systems against the attacks under discussion.  

 

3.1 Techniques 

I will review tools built for Linux operating system followed by tools built for 

Windows operating system. I will then review tools that are able to operate on both 

Linux and Windows. 
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3.1.1 Tools For Linux 

SmashGuard [40] is a hardware solution that protects function return addresses in the 

process stack from buffer overflow attacks. This technique modifies the semantics of 

call and return instructions in the instruction set architecture. This modification 

enables functions to store a copy of the return addresses in a memory segment during 

calls and to perform comparison with the stored return addresses upon return 

instructions. In an event where the return address in the stack does not match with the 

stored copy, the processor raises a hardware exception and terminates the execution. 

Modern CPUs contain a considerable amount of memory on the chip itself. 

SmashGuard utilizes this memory space to create a data stack. This is used for storing 

function return addresses. Hence, by modifying the instruction set architecture, 

SmashGuard is able to provide protection to applications without modifying the 

application.  

StackGuard [19] is a compiler extension that enhances the executable produced by 

the compiler so that the executable is protected against stack-based buffer overflow 

attacks. This technique specifically targets the return addresses of the functions in the 

stack. StackGuard can detect changes to active return addresses before a function 

returns. In order to prevent changes to active return addresses, StackGuard stores a 

canary (known 4-byte value) adjacent to the return address in the stack. When the 

function returns, checks are carried out to ensure that the canary is unaltered. The 

values of the canary are selected randomly so that adversaries will not be able to skip 

or simulate the canary. In addition, StackGuard uses of MemGuard to prevent any 

modification to the return address. MemGuard write-protects pages and generates 

exceptions when protected pages are accessed. Thus, StackGuard write-protects pages 
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containing the stack but restores write privilege to the topmost page to allow the 

program to access  the stack variables.   

StackShield [55] is a compiler extension implemented by Vendicator.  It can work 

with GCC compiler to provide protection for applications that are compiled with it. 

During compilation, StackShield inserts instructions into the program to make copies 

of function return addresses and saves them in a data segment known as 

Global_Ret_Stack . These instructions are inserted after call instructions and 

before return instructions. During execution of the program, when a function call is 

invoked, the function return address is stored into Global_Ret_Stack  and before a 

return instruction is executed, the return address in the process stack and the copy in 

the data segment are compared. An alert is raised if the addresses do not match. 

StackShield, however, will only protect an application if the application is compiled 

with it. Hence, the source code of the application is necessary in order to utilize 

StackShield. This, however, is not possible for many legacy applications where only 

the binaries are available. 

Return Address Defender (RAD) [14] is another compiler extension which 

provides a compile-time solution to buffer overflow attacks targeting return addresses. 

Like StackShield, RAD automatically adds instructions into applications that are 

compiled with it. Protection code is inserted into the function prologues and 

epilogues. Hence, when a program is executed, any function invocation will copy the 

return address to a memory segment called Return Address Repository . When 

return instructions are executed, the return address on the process stack is compared 

against the stored copy. A mismatch would raise an exception. In addition, RAD 

marks the Return Address Repository  as read-only to ensure the credibility of 

the return addresses stored in the memory segment. It also has the option of marking 
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only the neighbouring pages of the Return Address Repository  as read-only; 

this causes less performance degradation compared to the previous method. However, 

like StackShield, RAD too requires the source code of the program in order to provide 

protection.  

Libsafe [54] uses a technique that can intercept invocations of most standard C 

functions and performs safety checks on the arguments. If the checks pass, either the 

original functions or the equivalent alternatives get executed. Suppose the check fails, 

the Libsafe will log the necessary information and terminate the application. Libsafe 

functions as a dynamically linked library that is activated by explicitly specifying 

itself in the LD_PRELOAD environment variable. By doing so, the library is loaded 

even before the program begins execution. When Libsafe intercepts a C library 

function, it performs frame pointer checks and frame span checks. Frame pointer 

check ensures that “%n” format specifier does not modify any return addresses or 

frame pointers. Frame span check ensures that no buffer is overflowed beyond the 

current frame pointer in the process stack. The advantage of Libsafe is that it does not 

require the source code of the application; neither does it modify any part of the 

application. 

Guarded Memory Move (GMM) [34] is a technique that functions in a similar way 

to Libsafe. GMM also functions as a dynamically linked library that is activated by 

explicitly specifying itself in the LD_PRELOAD environment variable. During dynamic 

symbol resolution, the loader checks libraries in the LD_PRELOAD variable and the 

functions found in GMM library are executed instead of the C library functions. 

GMM’s alternative C functions store content of some memory locations above the 

current stack frame and three previous return addresses into private location during a 

call instruction. When the subroutine returns, the existing memory content is 



 19

compared with the stored data. A violation is signalled if a mismatch is found.  In this 

way, the safety of the application is assured. Just like Libsafe, GMM does not require 

source code and it does not modify any part of the application. Both LibSafe and 

GMM provide safe versions of format functions. Hence, these applications can also be 

considered as format string defense tools. 

Libverify [6] is a proposed solution that works on binaries at runtime to provide 

protection against buffer overflow attacks that target function return addresses. It 

works on Linux operating system. Libverify works as a dynamically linked library 

that is activated by explicitly specifying it in the LD_PRELOAD environment variable. 

By doing so, the library is loaded even before the program begins execution. The 

_init()  function in Libverify will modify the application such that every function 

invocation and return instruction will invoke the checking functions in its library. 

Libverify copies every function instruction to the heap and appends a branch 

instruction to an entry wrapper function. This entry wrapper function stores a copy of 

the return address in a canary stack (which resides in the heap memory) and then 

branches back to the original function. Likewise, the return instructions are replaced 

with an exit wrapper function, which in turn verifies the return address in the process 

stack with the corresponding value stored in the canary stack. Upon a match, the 

process will execute the return instruction and continue with its execution flow. Any 

mismatch will create a syslog entry, output an error message and terminate the 

process. Libverify provides dynamic protection to executables. Its ability to work on 

binaries without the source code is a major advantage. However, this software has not 

been released.  

FormatGuard [17] employs a defense mechanism that prevents exploitations due to 

format strings. In order to prevent format string attacks, FormatGuard compares the 
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number of actual arguments provided for format functions against the number of 

arguments specified in the format string. If the number of arguments called for were 

more than the number of arguments passed to the functions, FormatGuard would 

classify the case as an attack. It will log the attempt and abort the program. Counting 

the actual number of arguments that are passed to format functions is a difficult task. 

This is because the arguments are passed as a variable list that does not provide any 

counting mechanism. FormatGuard counters this problem by using CPP variable 

argument syntax for argument counting and this function is inserted into the stdio.h 

file. FormatGuard is packaged as a modified implementation of glibc 2.2  libraries. 

Thus, applications have to be complied with the modified libraries to utilize 

FormatGuard’s protection. In addition, the CPP syntax deployed in FormatGuard may 

cause compatibility problems when executing some C programs. 

White listing [49] is a technique used to control memory modification via format 

functions. It maintains a list of memory address ranges that allow memory 

modification. This list is referred to as the white list. During runtime, the technique 

inserts and removes memory address ranges to the white list and from it. Hence, a 

format function can check with the white list to verify whether a valid integer pointer 

is being modified, when handling a ‘%n’ format specifier. The white listing scheme 

proves to be  rather flexible in that it is possible to enforce different policies - one at a 

time - using the same technique. Firstly, removing all memory addresses from the 

white list can enforce a ‘no memory write’ scheme. Secondly, ‘write anywhere’ can 

be put in place by specifying all possible address ranges in the white list. Lastly, 

adding a user specified range of addresses into the white list can enforce a ‘restricted 

write’. White listing can automatically register the address range before a format 

function and unregister it after the function. Hence, when a format function 
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encounters a ‘%n’ specifier, it will always scan the white list to check if the memory 

addresses to be written to is safe for a write operation. White listing uses the C 

Intermediate Language System (CIL) to implement its defense mechanism. CIL 

provides the tools that permit easy analysis and source-to-source transformation of C 

programs. Hence, the C program is transformed into the intermediate language, after 

which the additional instructions for protection are inserted. As such, this technique 

requires the source code of the application.  

C Range Error Detector (CRED) [51] is a safe C compiler. It uses an object tree, 

containing the memory ranges occupied by all the buffers used in a program. When an 

object is created, it is added to the tree and when it is destroyed or goes out of scope, 

it is removed from the tree. A pointer operation is considered illegal if a memory 

location that is not within the tree is accessed. Moreover, CRED does not change the 

representation of pointers within the application. As such the instrumented code can 

interoperate with the unchecked code. Limitations in CRED include interchangeable 

use of structures and arrays and unverified accesses within library functions. 

LibSafePlus [3] is a dynamically loadable library and it is an extension to LibSafe. 

LibSafePlus includes heap protection in addition to LibSafe’s stack protection. It 

contains wrapper functions for unsafe standard C functions. These wrapper functions 

determine the target buffer sizes in any operation that writes to a buffer and ensures 

that the operation does not result in an overflow. Type Information Extractor and 

Depositor (TIED) is a tool that can extract debugging information from a program and 

can enhance the program with additional information regarding the sizes of all the 

buffers used in the program. LibSafePlus uses TIED to prevent buffer overflows. 

LibSafePlus requires the program to be compiled with the debugging option ‘-g ’. 

This provides the executable with additional debugging sections. TIED can thus 
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examine this debugging information and extract the starting addresses and sizes of 

buffers used in the program. The wrapper function in LibSafePlus uses this 

information to protect the unsafe functions in standard C library so as to buffer 

overflows. 

Transparent Runtime Randomization (TRR) [58] proposes an idea to randomize 

runtime locations of critical data in the application in order to make it difficult for an 

adversary to determine the location of the data through experimentation. TRR 

essentially modifies the dynamic loader to relocate the user stack, shared libraries, 

user heap and the GOT to different memory locations. This technique handles both 

position dependent memory region and position independent memory region. User 

stack, user heap and shared libraries are position independent, as these regions do not 

have complex inherent relationship with other parts of the application. The GOT is a 

position dependent region because this region is fixed inside the program’s data 

segment and any uncoordinated relocation will break references within the 

application. The random offsets used to relocate the critical data regions are chosen in 

a way that the memory regions do not overlap but have sufficient space to grow. The 

randomizations in this technique do make it more difficult for attacks to succeed but 

do not completely thwart attacks because the relocated memory regions are not 

protected in any way. 

PointGuard [18] is a pointer protection technique that encrypts pointers when they 

are stored in memory and decrypts them when they are loaded into CPU registers. 

PointGuard is implemented as a compiler extension that modifies the intermediate 

syntax tree to insert encryption and decryption code. However, encryption only 

provides confidentiality. It does not guarantee the integrity of the encrypted values. In 

addition, although PointGuard imposes very small performance overhead for most 
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applications, it only protects the code pointers (function pointers and pointers in 

longjmp()  buffers) and data pointers. It does not offer any protection for other 

program objects.  

Propolice [22] is a compiler extension that can protect executables from stack 

smashing attacks. It places canaries in memory location between the frame pointers 

and local variables and ensures that the memory locations adjacent to the canary are 

not altered. In addition, Propolice reorders the location of stack variables. It places 

local pointers below arrays. Pointers from the arguments are placed before the local 

variables. Having local pointers placed below arrays prevents attacks that attempt to 

overflow the arrays in order to modify the pointers. Placing pointers from the 

arguments before the local variables makes it more likely for the buffer overflow 

attacks to be detected.  

One point to note is that GCC 4.1 incorporates a modified version of IBM ‘s 

ProPolice Stack Detector. This version includes more run-time and compile-time 

optimizations and function analysis. Hence, applications compiled with GCC 4.1 will 

include stack protection instructions by default.    

Another class of defense techniques include those which support non-executable 

mappings on platforms. These techniques assign data segments such as the stack and 

heap as non-executable. In this way, any malicious code that resides in these data 

region will be denied execution privileges. Examples of such techniques are the 

Solaris/SPARC Non-Executable Stack Protection and NetBSD 2.0 Non-executable 

Stack and Heap Protection.    

 



 24

3.1.2 Tools For Windows 

DOME [47] is a technique for detecting several classes of malicious code in 

applications. It uses static analysis to identify and to store locations of Win32 API 

calls within the application. It then monitors the executable to verify that all API calls 

are made from the observed addresses. DOME utilizes Detours [27] to intercept every 

API functions in an application. Detours is a library for intercepting Win32 functions 

on x86 machines. It intercepts functions by inserting additional code into the binary 

during execution. It can divert calls to Win32 functions so as to pass control to the 

user. It can also allow the original function to be invoked if needed. The underlying 

idea is to prevent any Win32 API invocation from unverified location, thus preventing 

the malicious code from invoking any API function. 

Binary rewriting defense [44] is a binary level solution to foil buffer overflow 

attacks. This technique does not require the source code of the application. It protects 

the function return addresses by adding protection code at every function invocation 

in the binaries. This is done by static analysis without disturbing the procedure’s 

execution flow. This technique requires tools to analyze the binary in order to identify 

each instruction. Binary rewriting method uses dissemblers to accurately trace the 

location of function invocations in the binary. In order to store copies of the return 

addresses, the binary rewriting method employs similar technique used in RAD. 

Function return addresses are stored in a repository upon function calls and a 

comparison is done before return instructions are executed. However, in contrast to 

previously mentioned techniques, binary rewriting method inserts additional 

protection code only for ‘interesting functions’; these functions contain instructions to 

allocate and to free the memory for local variables. Thus, functions that do not contain 

any local variables are considered safe functions as stack based buffer overflow 
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cannot succeed in functions without local variables. However, static analysis of 

binaries cannot provide protection for dynamically linked libraries and Position 

Independent Code (PIC). Moreover, static analysis of binaries using dissemblers is 

not 100% accurate and it is still possible to miss vulnerable functions even after using 

it. 

 

3.1.3 Tools That Operate In Linux And Windows 

HeapShield [8] is a memory management approach that can prevent heap overflows. 

It basically modifies the free-list based heap as typically used in Linux and Windows 

to segregated-fits ‘Big Bag of Pages’ (BiBOP) style heap. The heap allocator divides 

memory into chunks that are multiples of the system page size.  Objects of different 

sizes are allocated in different chunks. Object sizes and other metadata are stored 

either at the beginning of the chunks or in a page directory. This type of heap 

organization allows efficient calculation of available free space in allocated buffers 

and thus thwarts heap overflow attacks.    

Secure execution via program shepherding [29] is a software technique that thwarts 

all attempts to hijack a program’s control flow using security policies and binary 

rewriting techniques. It monitors control flow transfers during program execution. It 

employs the use of three techniques to enforce security policies. Program shepherding 

can restrict execution privileges based on code origins. It can restrict control transfer 

based on instruction class, source and target. In addition, program shepherding can 

place a sandbox on any type of application. Program shepherding has been built as an 

extension to a dynamic optimizer called RIO. RIO is built upon an IA32 version of 
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Dynamo. RIO is implemented for both Linux and Windows and it can execute large 

desktop applications and multi-threaded applications. 

The No eXecute (NX) bit is a technology used to distinguish areas of memory for 

instructions storage and data storage. Any memory segment assigned with the NX bit 

will mean that it can only be used for storing data. No instructions can be executed 

from regions assigned with the NX bit. The general technique is known as executable 

space protection. It is used to prevent malicious software from taking over computers 

by inserting their code into another program's data storage area and running their own 

code from within this section.  

In this thesis, I am introducing a new tool called TRUSS. TRUSS is a software 

technique that operates in both Windows and Linux. It aims to thwart common forms 

of buffer overflow attacks and it includes novel techniques to protect the GOT and 

heap buffers without modifying any part of the application. I employ a dynamic 

binary rewriting tool, DynamoRIO, to implement TRUSS. It is to be noted that this is 

the same tool that has been used in Program Shepherding. However,  the DynamoRIO 

application used in this project has been modified to support self-modifying code.  
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Chapter 4 

DynamoRIO Operations 

 

The protection provided by TRUSS consists essentially of rather straightforward 

ideas. However, the major challenge is to provide an efficient method to perform 

binary instrumentation and to insert minimal checking instructions while bringing 

down the performance overhead. TRUSS uses DynamoRIO as its implementation 

platform. 

DynamoRIO is a runtime code manipulation tool that supports code 

transformations in an application during the application’s execution. Its operating 

procedure is illustrated in Figure 7. DynamoRIO maintains a code cache where it 

stores a copy of the application instructions. These instructions are stored in units of 

basic blocks such that each basic block ends with a control transfer instruction. The 

basic blocks in the code cache are used for execution. Hence, DynamoRIO constantly 

transfers control between instrumentation of basic blocks from the application code 

and execution of the basic blocks. DynamoRIO includes an important optimization 

technique to improve the application’s performance. It contains a cache that stores a 

copy of contiguous sequences of basic blocks known as traces. These are basic blocks 

that are executed more than a default number of times. The control transfer 

instructions in these blocks are replaced with frequently used targets of indirect 

branches (inlined into the traces); these also include a check to verify the target of the 

branch instruction [11]. Traces improve the application’s performance by allowing a 

processor’s instruction decoder and a branch predictor to work more efficiently.  
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Figure 7: Operations of DynamoRIO [11] 

 

4.1 Basic Block Cache 

DynamoRIO begins its execution by copying the first basic block of an application 

into its basic block cache. This basic block extends across unconditional branch 

instructions and call instructions. The block ends with an indirect branch instruction 

or a conditional instruction. This block is then executed until the target address of the 

indirect branch or conditional instruction is resolved. Upon resolving the target 

address, the cache is searched for basic blocks with starting address corresponding to 

the target address. If a match is found, the target address is replaced with the start of 

that basic block. If no match is found, the target address is modified so as to return 

control to DynamoRIO. DynamoRIO would then continue to build a new basic block, 

starting at the target address. When this new block is added to the cache, the target 

address of the indirect branch or the conditional instruction is modified to point to the 

start of this basic block.  
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4.2 Trace Cache 

Traces provide optimization within the DynamoRIO framework and also organize a 

sequence of commonly executed basic blocks into a single contiguous piece of code. 

This improves the efficiency of indirect branches and achieves a better code layout. 

The creation of a trace begins by looking for a suitable trace head. A trace head is 

either the target basic block of a backward branch or an exit from an existing trace. 

Each trace head is associated with a counter that gets incremented each time the block 

is executed. When the counter exceeds a threshold number, the sequence of basic 

blocks that follows the trace head is concatenated to the trace head. The trace 

terminates when a backward branch or a basic block that is part of another trace is 

reached [11]. During execution, the trace cache is searched first for matching traces 

before the basic block cache is. 

  

4.3 DynamoRIO Interface 

DynamoRIO provides client hooks like dynamorio_basic_block()  and 

dynamorio_trace() , which are invoked whenever a basic block or a trace is to be 

added to the basic block cache or the trace cache respectively. It also incorporates a 

set of APIs that allows the basic blocks in the cache and the traces in the trace cache 

to be analyzed and manipulated. It also allows a user to build a client program, using 

the APIs, which can be attached to DynamoRIO so as to work on the application. The 

client program is compiled as a shared library and is loaded before DynamoRIO 

begins its routines. Hence, the defensive mechanism in the client program is able to 

intercept the application at the appropriate instances. All these features come at a cost 
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ranging from zero to thirty percent of time and memory overhead on both Windows 

and Linux [11]. 
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Chapter 5 

Security Modules 

In this chapter, I discuss some common buffer overflow exploits and the defensive 

mechanisms incorporated in TRUSS to detect and to prevent such vulnerabilities and 

their implementation details. 

 

5.1 Return Address Defense  

A common form of attack is by means of modifying control information in the 

application address space and transferring the program control to any malicious code. 

The function return address is among the most vulnerable control information that 

resides in the process stack. Its role is to facilitate a function to continue executing the 

correct instructions following a subroutine. It thus plays a vital role in ensuring 

correct control flow within an application. However, no form of protection is provided 

by the application or the operating system in order to prevent any unauthorized 

modification of return addresses.  

 During a program execution, when a call instruction gets executed, the process will 

evaluate the address of the instruction that follows the subroutine. This evaluated 

address will then be pushed into the process stack. Following this operation, most 

subroutines will save the value of the frame pointer into the stack and assign it to the 

location pointed by the stack pointer register. This location is the start of the 

subroutine’s active stack frame. Moreover, if the subroutine requires arguments, they 
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are saved in the process stack before the return address.  Figure 8 shows the layout of 

the stack frame in the process stack.  

ret addr 

frame ptr 

local variable 

… 

… 

param # 

param # 

format string 

ret addr 

frame ptr 

Figure 8: Layout of an x86 process stack frame 

 

Upon completion of the subroutine, the previous value is restored in the frame 

pointer. This is usually performed explicitly by a leave  or pop  instruction. 

Consequently, the top of the stack now contains the return address. Hence, when a 

return instruction is executed, the instruction pointer is replaced with the value of the 

return address and execution control is passed back to the caller. 

 

5.1.1 Return Address Modification Exploit 

The above described method of calling subroutines and returning from subroutines 

assumes that the integrity of the stored return address was never violated. However, 

this is a naive assumption because the subroutine could have altered the return address 

illegally. This would in turn allow any malicious code (to which the return address 

was altered) to be executed when the subroutine returns. To illustrate how this might 

happen, consider the C function in Figure 9. 

High address 

Low address 
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int foo(int a, int b)  
{ 

char homedir[100]; 
... 
strcpy(homedir,getenv(“HOME”)); 
... 
return(1); 

    }  
Figure 9: Vulnerable C function - 1 

 

If the result from getenv()  is of a size that is larger than the local variable 

homedir , then strcpy()  will overwrite the memory locations adjacent to homedir , 

including the return address of the subroutine foo() .  Consequently, when the 

subroutine is completed and it performs a return to pass control back to the caller 

function, the execution flow will be passed to the value that lies in the return address 

storage location. Usually, such situations will result in “segmentation fault” or “bus 

error” messages. However, adversaries can place a well-crafted value to replace the 

return address in order to redirect execution to the location of their choice.  

A buffer overflow in a stack requires data that contains executable code, followed 

by enough repetitions of its address (in memory). The purpose of this is to redirect the 

program’s execution flow to the inserted code. This is with the assumption that the 

inserted code is small enough to fit into the local buffer. However, such an attack 

requires the adversary to predetermine the exact starting address of the inserted code 

to replace the return address. Adversaries can get around this requirement by 

appending a sequence of NOP instructions before the executable code. Concatenating 

the sequence of NOP instructions creates a ramp. The modified return address, by 

pointing anywhere in the ramp, can enable a successful attack. While it still takes 

some effort to find the proper range, an adversary only needs to make a close guess.  

A successful return address modification attack allows an adversary to execute 

instructions with the same privileges as that of the compromised program. If the 
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compromised program was running with the super-user privilege, the adversary can 

inject code to spawn a super-user shell and subsequently take control of the machine. 

In the case of worms, a copy of the worm program can get installed with super-user 

privilege and the system begins looking for more machines to infect [31]. 

  

5.1.2 Preventing Return Address Attack In TRUSS   

TRUSS intercepts every call instruction and return instruction in a program to insert 

protection code. It uses the dynamorio_basic_block()  function to interrupt the 

application. This is performed after DynamoRIO creates a basic block and before the 

block gets executed. In this function, TRUSS scans through every instruction in the 

basic block to identify the call and return instructions. When call and return 

instructions are encountered, TRUSS redirects the basic blocks to two different 

modules where additional instructions are inserted into them. 

Following call instructions, TRUSS inserts instructions to calculate the return 

address from the basic block and store it into a separate memory segment. The return 

address is calculated by adding the address of the call instruction to the length of the 

instruction. This addition will give the address of the instruction that follows the call 

instruction in the caller function.  The memory segment is dynamically allocated and 

is known as the shadow_stack . TRUSS also stores the location of the return address 

in the stack into the shadow_stack . Both the location and the value of the return 

address are stored in the same memory segment for space efficiency. Upon 

encountering return instructions, TRUSS inserts instructions before these to retrieve 

the return address and its locations. It also retrieves the corresponding addresses 

stored in the shadow_stack,  after which, it performs a comparison. The comparison 
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is to ensure that the return addresses and the locations match. Otherwise, an error 

signal is raised and the application is terminated. 

For instance, if an adversary attempts to overwrite a function return address with 

the start address of a malicious code, he will have to inject such a code into the stack 

or the heap. When a subroutine is called, shadow_stack  will store a copy of both the 

subroutine’s return address and its corresponding location. During the subroutine’s 

execution, the adversary by some means modifies the return address in the process 

stack. In a native program, such a scenario will cause the instruction pointer to be set 

to the modified return address in the process stack and this will result in the execution 

of the malicious code. However, with TRUSS in place, before a return instruction is 

executed, the return addresses in the process stack and the shadow_stack  will be 

compared. In a case where the locations match and the return addresses do not match, 

an error will be signalled and the application will be terminated. In this way, TRUSS 

protects every function return address used in an application. This technique is similar 

to those discussed in other tools such as SmashGuard, StackShield and RAD. 

However, TRUSS differs from these tools because unlike the other tools which add 

additional checking instructions during compilation or through hardware 

modification, TRUSS inserts the checking instructions at runtime. This is clearly an 

advantage when protecting legacy applications without source code. 

 

5.2 Base Pointer Defense  

The base pointer (also known as frame pointer) is another piece of vulnerable 

information that also resides in the process stack. The main function of the frame 

pointer is to represent the start of each stack frame. In x86 architecture, whenever a 
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subroutine is invoked, a new stack frame is allocated in the process stack to the 

subroutine and when the subroutine completes, the process stack is freed. The frame 

pointer is saved in the process stack during every call instruction and is restored 

during each return instruction. This is illustrated in Figure 8. The frame pointer 

facilitates efficient access to current stack frame and keeps track previous stack 

frames. The value is maintained in a register for fast access. In addition, when 

applications are complied without the GCC option -fomit-frame-pointer , 

subroutine parameters and local variables are usually referenced relative to the frame 

pointer.  

 

5.2.1 Base Pointer Modification Exploit 

One technique to attack a system by compromising the frame pointer is via a dummy 

stack frame. As illustrated in Figure 8, when a function is invoked, the return address 

of the function is pushed into the stack. This is followed by saving the frame pointer 

value in the stack and then updating the frame pointer register with the stack pointer 

register. When an adversary attempts to modify the frame pointer, it will be rather 

easy for the adversary to access the frame pointer if parameters are passed to the 

function. In x86 machines, the frame pointer will be at an offset of 8 bytes with 

respect to the last parameter.  

For instance, consider the vulnerable code fragment in Figure 9. The exploit 

illustrated in Section 5.1.1 modifies a return address to execute a sequence of 

malicious instructions. Although it will be easier to modify the return address directly, 

some protection techniques prevent direct modification of return addresses. Hence, 

using a dummy stack frame is a way to bypass those protections. The local buffer 
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(used in Figure 9) is overflowed up to and including the previous frame pointer. The 

data used for overflowing will be constructed in a manner resembling a stack frame. It 

will contain the start address of a sequence of malicious instructions followed by a 

memory location with an arbitrary stack address. The current frame pointer is 

overwritten with the address of the location of the arbitrary stack address. The 

purpose of such an action is for the frame pointer to be replaced with modified frame 

pointer when the subroutine completes and performs a return. Consequently, when 

another return instruction is executed, the address of the malicious code will replace 

the instruction pointer and in turn gets executed. Since none of the return addresses 

are altered directly, protection techniques that prevent return address modifications 

will not be able to detect such an attack.  

 

5.2.2 Preventing Base Pointer Attack In TRUSS 

The protection of the frame pointers is similar to the technique carried out for the 

return addresses. Following a call instruction, the frame pointer is saved in a buffer 

and before a return instruction, the frame pointer value is compared with the 

corresponding value in the stack. The storage of the frame pointer values is in fact 

done with the same shadow_stack  (as mentioned in Section 5.1.2) for efficiency. 

 

5.3 Global Offset Table Defense 

Dynamic linking is used by applications to resolve shared symbols. In order to carry 

out dynamic linking, the dynamic linker primarily uses two processor-specific tables, 

the Global Offset Table (GOT) and the Procedure Linkage Table (PLT) as mentioned 

in Section 2.1. The dynamic linkers support position-independent code through the 
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GOT in each shared library. The GOT contains absolute addresses to all of the static 

data referenced in the program and it provides direct access to a shared symbol 

without compromising position-independence. Since the executable file and shared 

objects have separate GOTs, a symbol may appear in several tables. The dynamic 

linker processes all the GOT relocations before giving control to any code in the 

process image, thus ensuring that the absolute addresses are available during 

execution. The PLT is used to redirect function calls between the executable and a 

shared object or between different shared objects. It converts position-independent 

function calls to their absolute locations. The PLT contains many entries and allows 

procedure addresses to be resolved when they are called for the first time. 

Suppose, there is a call to printf()  in an application, this will correspond to a 

call to the PLT entry of printf()  in the executable. This call will then make an 

indirect branch to the printf()  entry in the GOT. If the GOT entry contains the 

absolute address of printf() , the instructions of printf()  are executed. If the 

GOT entry has not been resolved, the dynamic linker is then invoked to resolve the 

absolute address of printf() .  

PLT0:  pushl GOT + 4 

  jmp *GOT + 8 

 

  PLTn:  jmp *GOT + m 

  push #reloc_offset  

  jmp PLT0  

Figure 10: Procedure linkage table 

 

The GOT stores pointers to all the global data that is addressed by the executable 

file. At load time, the dynamic linker stores two values at the memory locations 

*GOT + 4 and *GOT + 8. These two addresses, in fact, refer to the second and third 
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word in the GOT respectively. In the second word, the dynamic linker stores a code 

that identifies a particular library. In the third word, the dynamic linker stores the 

address of the symbol resolution routine. 

As shown in Figure 10, the first entry in the PLT is PLT0. This is a routine to call 

the symbol resolution routine. In each of the other entries in the PLT, the instructions 

begin with an indirect jump to the GOT. Before any function is resolved, the target of 

the GOT entry refers to the next instruction in the PLT entry. When a function is 

called for the first time, the PLT routine is invoked and because the actual address of 

the function is yet to be resolved, the indirect jump executes the next instruction. The 

push instruction saves an offset into the process stack. This offset value is obtained 

from the executable’s relocation table and it identifies both the symbol to be resolved 

and its corresponding GOT entry. The next jump instruction calls PLT0. Here the 

library identifier is pushed into the process stack and the dynamic linker’s symbol 

resolution routine is invoked. Upon resolving the symbol, the linker stores the 

function’s absolute address in the GOT entry. Hence, subsequent calls to the PLT 

entry will jump directly to the function itself without invoking the dynamic linker 

[33].    

 

5.3.1 Global Offset Table Modification Exploit 

The GOT entry is a point where a transfer in the program’s execution flow occurs. 

This information is not protected in the executable and is vulnerable to attacks. One 

way to exploit the GOT entry is to overwrite the entry with the address of a sequence 

of malicious instructions. Thus, when the entry is utilized by the application, the 
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malicious code gets executed. In this section, I will explain how such an attack can be 

carried out. Consider the vulnerable code in Figure 11. 

int main(int argc, char* argv[]) { 
      int* ptr; 

char homedir[100]; 
...   
ptr = homedir; 
... 
strcpy(ptr,argv[1]); 
... 
strcpy(ptr,argv[2]); 
printf(“Hello World!\n”); 
... 
return(1); 

     }  
Figure 11: Vulnerable C function - 2 

 

If the result from argv[1]  is of a size that is larger than the local variable homedir , 

then, the first strcpy()  will overwrite the memory locations adjacent to homedir  

including the integer pointer ptr .  However, before a successful attack can be carried 

out, the adversary has to obtain some information from the system. 

 Firstly, the memory location of the GOT entry for printf()  has to be determined. 

It is relatively easy to deduce this information from an unstripped binary. Suppose an 

executable is named example1 . Then, one can utilize the objdump  package in Linux 

to dump the dynamic relocations of the binary as follows: 

   objdump --dynamic-reloc ./example1 | grep printf 

This command will output the desired address. Secondly, malicious code appended 

with NOP instructions has to be prepared. This piece of malicious code is usually 

referred to as shellcode. This data has to be constructed in a manner such that it 

overflows homedir and overwrites the memory location of ptr  with GOT entry of 

printf() .  
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 During the second strcpy() , an approximate start address of the shellcode has to 

be provided. This will, hence, be written to the memory location pointed to by ptr  – 

in this case, the GOT entry of printf() . Therefore, when the program executes 

printf()  after this strcpy() , the malicious code will be executed.   

 

5.3.2 Preventing Global Offset Table Attack In TRUSS 

TRUSS can protect applications that are vulnerable to the above-mentioned attack. It 

directs the dynamic linker to resolve all GOT entries during the initial start-up 

operations, after all the shared libraries have been loaded into the memory but before 

transferring control to the main program. This is achieved by declaring the 

environment variable LD_BIND_NOW. When DynamoRIO begins execution, it invokes 

dynamorio_init()  hook function. In this function, the application’s executable is 

examined and the addresses and sizes of the GOT and PLT are extracted. Following 

this, each entry of the GOT is stored into a separate buffer, GOT_BUF, with the 

corresponding GOT address. When DynamoRIO copies the application code into a 

basic block, the basic block is scanned for a call to a PLT entry and an indirect branch 

to a GOT entry following immediately. Upon detection, the indirect branch target 

address is used to retrieve the actual address of the function from GOT_BUF and a 

direct branch to the actual address replaces the indirect branch instruction. In this 

way, the application does not have to use the GOT during its execution and thus will 

bypass any GOT modification attack. An example involving a call to printf()  is 

depicted in Figure 12. The basic block on the left illustrates the usual way of invoking 

a printf() . The basic block on the right is one which has been modified by TRUSS.  
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 …… 
…… 
…… 

call plt_printf 

jmp *got_printf   

� � � 

 …… 
…… 
…… 

call plt_printf 

jmp  printf   

It has to be noted that GOT attacks may be detected via other techniques as well 

because it involves overflowing data buffers . 

 

 

 

 

 

Figure 12: Copy of basic block in code cache 

 

5.4 Format String Defense 

The essence of the format string attacks utilizes the vulnerability in some standard C 

functions that use the format string argument. In C programming language, it is 

possible to declare the functions that take in a variable number of arguments. A 

format function is a special kind of C function taking in variable number of 

arguments, of which one is a format string. This function evaluates the format string 

argument by accessing the parameters that follow. These parameters, which could be 

of varying types, are converted into a suitable form and then, passed to the output 

stream. The signatures of widely used format functions are as follows: 

� int printf(const char* format, ...) 

� int fprintf(FILE* stream, const char* format, ...) 

� int sprintf(char* str, const char* format, ...) 

� int snprintf(char* str, size_t size, const char* format, ...) 

� int vprintf(const char* format, va_list ap) 

� int vfprintf(FILE* stream, const char* format, va_list ap) 
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� int vsprintf(char* str, const char* format, va_list ap) 

� int vsnprintf(char* str, size_t size, const char* format, va_list ap) 

The format string can contain additional information that determines the format of the 

output. These include flag characters, field width, precision and length modifiers. 

The format string also carries information on the number of parameters that 

supposedly follow it. This information can be observed by counting the number of 

format specifiers present in the format string argument. Format functions become 

vulnerable due to the fact that when the format functions evaluate the format string, it 

has to access the parameters that follow. However, these functions do not ensure that 

the parameters are indeed sent by the caller function. Their evaluation is based on the 

assumption that the caller function has pushed the parameters into the process stack 

and that the evaluation routine is accessing a valid argument. This lack of validation 

on the memory locations accessed by format functions might result in a series of 

security breaches. 

 

5.4.1 Reading The Stack   

Many applications commonly use a user-supplied input as format string argument 

when format functions are invoked. However, when a call to a format function 

contains format specifiers without the corresponding argument, the function will 

continue to read values from the stack and print them to the output stream. The format 

function will not check if the argument accessed on the process stack is within a 

caller’s stack frame. This makes the format function vulnerable because an adversary 

can supply a bogus format string argument as input. An example is illustrated in 

Figure 13. 
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printf(“%08x.%08x.%08x.%08x.%08x.%08x\n”); 

 

Figure 13: Bogus format string 

  

The printf()  function in Figure 13 will not check whether any parameter is passed. 

Instead, it will assume that all memory accesses are valid and will read values from 

the stack. Hence, return addresses and other such critical values in the program 

memory can be displayed.  

Moreover, it is also possible to use of the format string vulnerability to read values 

from any arbitrary memory location in the text segment, data segment or the heap of 

the process. When string arguments are passed to a subroutine, only a reference to the 

string is pushed into the stack. The actual string can be located in the heap, the text 

segment or the data segment. Suppose an adversary wants to read a string stored at the 

address (eg. 0xbfffff00), he has to start by finding the location of the format string in 

the process stack. Only a reference to the format string is pushed into the stack; so the 

adversary has to read down the stack to find the actual location of the format string. A 

number of ‘%x’ specifiers can do this. 

 

printf(“AAAA_%x_%x_%x_%x_%x_%x_%x); 

 

Figure 14: Detecting position of format string in x86 process stack 

 

The printf()  function shown in Figure 14 will output the content stored in the 

process stack. By adding sufficient ‘%x’ to the format string, the function will 
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eventually output the format string. When the output starts with ‘41414141_...’1, it is 

an indication that the format string argument has been reached. Now, the adversary 

can read the data at the address 0xbfffff00 by replacing AAAA with \x00\xff\xff\xbf 

(little endian format) and the last ‘%x’ specifier with ‘%s’ specifier in the format string 

as illustrated in Figure 15.  

  

printf(“\x00\xff\xff\xbf _%x_%x_%x_%x_%x_%x_%s); 

 

Figure 15: Reading content at arbitrary memory location 

 

5.4.2 Writing Into Arbitrary Memory Locations  

The format string argument, moreover, gives the format function the privilege to write 

to memory locations with the use of ‘%n’ format specifier. This format specifier writes 

the number of bytes output by the format function to a memory location that is 

specified in the argument. Figure 16 illustrates this.    

    

  int i; 

  printf(“12345%n”, &i);  

 

Figure 16: Proper use of ‘%n’ format specifier 

 

The code fragment portrayed in Figure 16 will write the value 5 into the memory 

location referred to by the integer i . However, the ‘%n’ format specifiers can be 

abused to perform a write operation to any arbitrary location in memory. With such 

capability, an adversary can overwrite critical values like return addresses and 

function pointers to refer to a location of his choice. The use of the code segment 

                                                 
1 41 is ascii code for ‘A’ 
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illustrated in Figure 16 can achieve such an attack. Say an adversary wants a memory 

address (eg. 0xbfffff00) to contain the value 0x44f660, he has to execute the code 

illustrated in Figure 14 to find the memory address of the format string argument. 

Subsequently, performing the code in Figure 17 will overwrite the desired memory 

location with the desired value.   

 

  printf(“\x00\xff\xff\xbf_%.4519518x_%n”)      

   

Figure 17: Overwriting content of desired memory location 

 

The two underscores will be output in addition to 0x44f65e symbols, which in total 

will write the integer 0x44f660 to the memory location 0xbfffff00. Thus, the ‘%n’ 

specifier can result in serious security implications.   

 

5.4.3 Format String Exploit 

Format functions have the ability of reading and writing into arbitrary memory 

locations. This poses a threat to critical program information that resides in memory. 

Format functions that accept user-supplied input do not have the ability to discern 

between a normal input and a malicious input. The absence of such a check allows an 

adversary to capitalize on this vulnerability. An attack using format strings is 

described in Figure 18.  
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foo(){ 
  
     1.char text[200];     
 2.FILE *input;  
  
        ... 
 3. input = stdin; 
 4. fgets(text,sizeof(text),input); 
 5. printf(text); 
        ...    

     }  
Figure 18: Vulnerable C function - 3 

 

Consider the code fragment in Figure 18. Such a code fragment will usually be used 

to print out the user inputs. The user input is read-in via stdin  and the input is copied 

to a local buffer before it is displayed on the screen. The problem with this code 

fragment is due to the printf()  function. The correct use will be as follows: 

printf(“%s”, text);  

However, by forgoing the format specifiers, the program can be compromised by 

means of a format string attack. 

When the program reaches line 3, it will wait for the user to provide it with some 

input. An adversary can take advantage of such a situation and provide a bogus format 

string to take control of the system. An example of a bogus format string that will 

work in this situation is as follows: 

"%33\$344p%34\$n%33\$386p%35\$n%33\$277p%36\$n%33\$ 464p%37\$nA

A\x01\x00\x00\x00\xec\x98\x04\x08\xed\x98\x04\x08\x ee\x98\x04\

x08\xef\x98\x04\x08" 

The core idea of the attack is to save the shellcode in an environment variable, A 

(0xbfefda58), and overwrite the starting address of the DTOR deconstructor section – 

found within all GNU compiled binaries – with the address of A. In this case, the 

address of DTOR is 0x080498ec.The DTOR section contains a pointer to a function 
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that will be called when the program exits. This section allows write operations. 

Hence, when the program exits, the DTOR deconstructor will be invoked and thus the 

shellcode will get executed. The beginning of the bogus format string – 

   %33\$344p%34\$n%33\$386p%35\$n%33\$277p%36\$n%33\$4 64p%37\$n  

– is derived from the address of environment variable, A. The address of A is firstly 

converted into little endian format. A saturating counter approach is then employed to 

convert each byte of the address to a value such that printf()  outputs the correct 

number of bytes to leave the lower byte equal to the memory address of A. The 

saturating counter approach is illustrated in Figure 19. The specifier, %33\$344p, will 

print out the 33rd argument in printf() ’s stack frame with padding that is of size 

344 bytes and the specifier, %34\$n, will write that number to the location of  

printf() ’s 34th argument.  

mem1p =  mem1 + 256 
mem2p = ((256 - mem1) + mem2)%256 + 256) 
mem3p = ((256 - mem2) + mem3)%256 + 256) 
mem4p = ((256 - mem3) + mem4)%256 + 256)  

Figure 19: Saturating counter approach 

  

Following the pairs of ‘%p’ and ‘%n’, the format string contains some padding. The 

padding is necessary to ensure that the following values and addresses get copied to 

the 33rd and subsequent arguments. The padding used here is the character ‘A’. The 

value 0x00000001 follows the padding. This value is included to represent a dummy 

argument. This will be the 33rd argument. Following this value, the 4-byte addresses 

of the DTOR deconstructor section is appended. It is necessary to include all 4 byte-

addresses because the ‘%n’ specifier writes to 1 byte memory. Consequently, when the 

bogus format string is passed as input, the address of the DTOR deconstructor section 
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gets overwritten and when the program exits, the shellcode stored in the environment 

variable A gets executed [43].  

 

5.4.4 Preventing Format String Attack In TRUSS 

In order to monitor an application, TRUSS passes control to the user via the 

dynamorio_init()  function. This function is part of the client program that has to 

be loaded before DynamoRIO begins execution. The dynamorio_init()  function 

allows the user to set up the environment to facilitate the monitoring of the 

application. In TRUSS, the dynamorio_init()  function resolves and stores the 

addresses of the format functions even before they are invoked in the application. 

These addresses are subsequently used to intercept every invocation of the functions. 

The interception is done at the basic block level. The interception details are as 

discussed in Section 5.1. The dynamorio_basic_block()  function allows the 

manipulation of a newly created basic block before it is executed. Hence, every 

instruction in the block is scanned for calls to format functions. Each time a call to a 

format function is identified, a call to a hook function is placed before the original 

call. In this way, the hook function can check the arguments of the format function 

before the format function uses them.     

In addition, a parallel stack is maintained to keep track of the previous frame 

pointer values when a function is invoked. This list is updated dynamically at every 

call and return instruction. A stack pointer address is pushed into the parallel stack 

during a call and an entry is popped from the stack before a return instruction. For 

efficiency, information in the shadow_stack is used.  
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During the execution of the application, the hook functions are called before the 

format functions. The core idea in the hook functions is to prevent reading from or 

writing to any memory location including and beyond the current stack frame pointer. 

The hook functions access the arguments (including the format string argument) of 

the format functions from the process stack. The format string argument is parsed to 

observe the number of format specifiers present in it. This number must not be more 

than the total memory space between the address that stores the format string in the 

process stack and the stack frame pointer. This policy ensures that the safety of the 

critical information such as the frame pointers and return addresses are not 

compromised.    

The above-mentioned technique will work for printf() , vprintf() , 

fprintf()  and vfprintf()  functions. The sprintf() , vsprintf() , 

snprintf()  and vsnprintf()  functions, however, do more than just to access 

arguments in the stack to evaluate the format string. These functions store the 

evaluated output in a buffer. If the output data is larger than the buffer’s size, the 

buffer will be overflowed.    

In order to prevent buffer overflow due to sprintf() , vsprintf() , 

snprintf()  and vsnprintf()  functions, a separate parser is used to evaluate the 

format string argument. This parser scans the format string for format specifiers and 

accumulates the total size of the parameters accessed. Integer and double arguments 

will respectively add four and eight to the accumulator. String arguments, however, 

will continuously increase the accumulator by one until a ‘/0 ’ escape character is 

encountered. In addition, the precision and the field width options in the format string 

have to be taken into account. While the precision option defines the maximum 

number of characters to be printed to the output, the field width defines the minimum 
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number of characters. This value has to be added to the accumulator, which will then 

be checked against the memory space between the memory location (where the buffer 

resides) and the stack frame pointer. This technique ensures that calls to sprintf() , 

vsprintf() , snprintf()  and vsnprintf() functions are safely executed. 

 

5.5 Vulnerable C Library Functions Defense   

In the standard C library, there exist a few functions (other than format functions) that 

are vulnerable to buffer overflow as well. These functions also handle buffers in an 

insecure manner and they do not have any mechanism to prevent buffer overflow. The 

signatures of the commonly used functions that face this problem are as follows:  

� char *strncat(char *, const char *, size_t) 

� char *strcat(char *, const char *) 

� char *stpcpy(char *dest, const char *src) 

� char *strncpy(char *, const char *, size_t) 

� char *strcpy(char *, const char *) 

� void *memcpy(void *s1, const void *s2, size_t n) 

� wchar_t *wcscpy(wchar_t *, const wchar_t *) 

� wchar_t *wcscat(wchar_t *, const wchar_t *) 

� wchar_t *wcpcpy(wchar_t *dest, const wchar_t *src) 

� int *_IO_vfscanf(_IO_FILE *s, const char *f, _IO_va_list argptr, int *errp) 

In Section 5.1.1, I discussed a return address exploit. Although, the target of the 

exploit was the return address, it was through the vulnerability of the 
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strcpy() function that such an exploit was possible. Hence, it is necessary to provide 

some form of security mechanism to such standard C functions.  

 

5.5.1 Preventing Vulnerable C Library Functions Attack In TRUSS 

The security mechanism for the list of functions basically employs a technique similar 

to the one used for the security of sprintf() , vsprintf() , snprintf()  and 

vsnprintf() . However, unlike those functions, this group of functions does not 

have to handle any format string argument. 

Functions like strcpy() , stpcpy() , wcscpy()  and wcpcpy()  are invoked with 

two buffers. These functions aim to copy the content of a source buffer to a 

destination buffer. To prevent any buffer overflow, the content of the input buffer is 

measured using the strlen()  function. This size will be considered against the 

memory space between the memory location where the destination buffer resides and 

the stack frame pointer. If the size of the source buffer is larger than the space 

allocated to the destination buffer, then an error message is signalled and the 

application will be terminated. 

Functions such as strncpy()  and memcpy()  perform the same work as 

strcpy() , stpcpy() , wcscpy()  and wcpcpy() . But these functions accept an 

additional argument that specifies the size of the content that has to be copied from 

the source buffer to the destination buffer. Hence, here, the size comparison (as 

mentioned earlier) is used again.  

strcat()  and wcscat()  also copies the content of the source buffer to the 

destination buffer. However, for these functions, the content of the source buffer is 
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appended to the destination buffer. Hence, to prevent any overflow, the size of the 

destination buffer and the size of the source buffer must be less than the permissible 

size. strncat()  accepts an additional argument that specifies the size of the source 

buffer to be copied onto the destination buffer. As before, the size of the destination 

buffer and the size passed by the application must be less than the permissible size. 

Unlike the functions discussed up to this point, the scanf()  family of functions 

works in a different manner. It accepts the input from the user and then, writes the 

received input to the corresponding arguments (that are passed as parameters). These 

functions cannot be intercepted before the routine’s execution because the safety of 

these functions depends on the user inputs. Furthermore, it can be observed that the 

scanf()  family of functions invokes the _IO_vfscanf()  subroutine to perform its 

task. Thus, in order to check the functions for buffer overflows, these are intercepted 

upon their return from the subroutine. Although by this time, the buffer might have 

already overflowed, the effect can only be felt when one of the scanf()  family of 

functions returns to the caller.  

Before the subroutine _IO_vfscanf() is invoked, the process stack content, 

referred by the addresses stored in the parallel stack, is saved. Upon returning from 

the subroutine, the content of the process stack is compared with the saved values. 

Any mismatch would signal an error and terminate the application. This technique 

will effectively prevent any form of stack smashing attacks. TRUSS is therefore able 

to protect applications from being violated via unsafe standard C library calls.  
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5.5.2 Vulnerable C Library Functions BSS/DATA/HEAP Overflow Exploit 

The techniques in Section 5.5.1 are effective only if the buffer, handled by the unsafe 

functions, is allocated in the stack. The defense mechanism basically prevents any 

data beyond the frame pointer to be modified. In addition to this, the buffers used in 

the list of functions can be global buffers or buffers allocated in the heap. In this 

section, I will describe one such instance - a heap overflow exploit. 

The GNU standard C library employs a memory allocator, dlmalloc, implemented 

by Doug Lea [32]. This memory allocator handles applications’ dynamic memory 

requests and freed memory. dlmalloc’s memory management is based on chunks –  

memory blocks that consist of usable regions and additional information. The 

structure of such a chunk is shown in Figure 20. 

 struct malloc_chunk { 
            INTERNAL_SIZE_T prev_size; 
            INTERNAL_SIZE_T size; 
            struct malloc_chunk *bk; 
            struct malloc_chunk *fd; 
      };  

Figure 20: Heap memory chunks 

 

The additional information is stored at the beginning of each chunk and it stores the 

sizes of the current and the previous chunks. This information facilitates coalescing of 

two sequential and unallocated chunks into one larger chunk. Moreover, all chunks 

contain two pointers. These pointers are utilized when the chunks are unallocated. 

Memory chunks that are unallocated in the application are maintained in bins 

according to their sizes. Bins that store chunks of sizes smaller than 512 bytes hold 

chunks of exactly one size. Bins that store chunks larger than 512 bytes hold chunks 

of a size range that increase logarithmically. When a process requests for dynamic 

memory, the search for the suitable chunk starts at the appropriate bin depending on 
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the memory size requested and then, it is processed in smallest-first, best-fit order. 

Within each bin the chunks are maintained as a doubly linked list known as free-list. 

Two pointers – forward (fd) and backward (bk) – are used to traverse this list in both 

directions. 

However, the use of the fd and bk pointers to link available chunks in bins exposes 

libc’s memory management routines to security vulnerability. If an adversary is able 

to overflow a dynamically allocated block of memory, he can effectively overwrite 

the next contiguous chunk header in memory. When the overflowed chunk is freed 

and stored in a bin’s double-linked list, the adversary can control the values of that 

chunk’s fd and bk pointers. Consider the macro in Figure 21. 

                #define unlink(P, BK, FD) { \ 
                        [1] FD = P->fd;  \ 
                        [2] BK = P->bk;  \ 
                        [3] FD->bk = BK; \ 
                        [4] BK->fd = FD; \ 
                 }  

Figure 21: Memory management macro 

 

This macro is used to remove a chunk from the free list. P is the chunk to be removed. 

In order to carry out an attack, an adversary has to store the address of a function 

pointer in P→fd and the desired value in P→bk. The function pointer is with a minus 

12 bytes so that FD→bk points to the function pointer. This macro will cause the 

function pointer to point to the desired value. When the function pointer is invoked in 

the program, the code at the desired location gets executed [50]. An analogous attack 

is illustrated in Figure 22. 
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          main(int argc, char* argv[]) { 
1.  char *buf0 = (char*)malloc(16); 
2.  char *buf1 = (char*)malloc(16); 
3.  char *buf2; 

 
4.  ... 
5.  free(buf1); 
6.  ... 
7.  strcpy(buf0, argv[1]); 
8.  ...  
9.  buf2 = (char*)malloc(16); 
10.  printf(“\bin\sh”);  

     }  
Figure 22: Vulnerable C program - 4 

 

In Figure 22, lines 1 and 2 allocate 2 buffers in the heap. These buffers are of the 

same size and hence, they will be allocated in contiguous memory blocks. In line 5, 

when the buffer, buf1 , is unallocated, it is placed back in its free bin. The strcpy()  

function in line 7 can overflow buf0  and overwrite the header information of chunk 

buf1 . For instance, if an adversary provides an input as follows –  

“AAAAAAAAAAAAAAAA\x00\x00\x00\x00\x00\x00         

   \x00\x10\x64\x96\x04\0x08\xb0\x65\x69\x00” 

– the sequence of ‘A’ will overflow the buf0 . The following values are 0 and 16 in 4 

byte hexadecimal format. These values will overwrite the previous and current chunk 

sizes respectively. Following these sizes is the GOT location corresponding to 

printf() . This address is subtracted by 12 bytes. The next address is the absolute 

address of system() . Hence, the buf1 ’s fd and bk pointers are overwritten with 

these addresses respectively. When line 9 is executed, the macro in Figure 21 is 

executed before the overflowed chunk is allocated. This macro will, therefore, copy 

the address of system()  to the GOT location of printf() . This will, in turn, 

execute a system(“\bin\sh”)  instead of printf(“\bin\sh”)  and spawn a shell 

with the privilege of the vulnerable program. 
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5.5.3 Preventing BSS/DATA/HEAP Overflow Attack In TRUSS   

In Linux, initialized data buffers are allocated in the .DATA segment and the 

uninitialized data buffers are allocated in the .BSS  segments. These segments are 

present in the ELF file. The symbol table present in the ELF file holds an array of 

symbols used in the executable. For each entry, the name, size, and section numbers 

are stored. The data structure of the ELF symbol table is shown in Figure 23. 

typedef struct { 
   Elf32_Word    st_name; /* Symbol name */ 
   Elf32_Addr    st_value;/* Symbol value */ 
   Elf32_Xword   st_size; /* Size of object (e.g., common) */ 
   unsigned char st_info; /* Type and Binding attri butes */ 
   unsigned char st_other;/* Reserved */ 
   Elf32_Half    st_shndx;/* Section table index */  
} Elf32_Sym;  

Figure 23: Symbol structure 

 

In order to ensure that the vulnerable C functions do not overflow BSS/DATA/HEAP 

buffers, TRUSS maintains a list of global variables with its corresponding sizes. 

When dynamorio_init()  is invoked by DynamRIO, the binary file is analyzed to 

retrieve the .DATA and .BSS  sections. The limits for these sections and the section 

numbers are then stored. The symbol table is then scanned through for symbols 

belonging to the .DATA and .BSS  sections. The symbols’ addresses and the 

respective sizes are saved in a global buffer in DynamRIO. Thus, when a buffer from 

either section is utilized by the vulnerable functions, the size of the buffer can be 

obtained from the global buffer and this aids in ensuring that the limits of these 

buffers are not overflowed. 

Buffers allocated in the heap can also be used by the vulnerable functions. In order 

to prevent the limits of these buffers from being violated, the sizes of these buffers 

have to be stored. It is safe to assume that buffers in the heap are allocated via calls to 

malloc() , calloc() , realloc()  and the memory is released via call to free() . 
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Hence, every call to malloc() , calloc() , realloc()  and free()  are intercepted 

using the technique that was used to intercept the format functions. The requested 

sizes are stored in a buffer and upon completion of the malloc() , calloc()  and 

realloc()  functions, the start address of the memory space allocated is stored in the 

same buffer. During a free()  call, the buffer is removed from the list. In this way, I 

maintain a list of buffer addresses and sizes. This list can be used to verify whether 

any buffer in the heap is overflowed. In C++ program, the new operator can also 

allocate heap buffers. In addition, functions such as brk() , sbrk()  and mmap()  can 

be used to allocate memory in the heap. Hence, in TRUSS, I restrict the defense to 

heap buffers allocated via malloc() , calloc()  and realloc() . 

This technique is only implemented in Linux and protection of buffers in the 

.DATA and .BSS  sections are only applicable if the executable is not stripped. A 

stripped executable will not contain the symbol table. Thus, it is impossible to retrieve 

the information regarding the global buffers. In Microsoft PE files, the symbol 

information is present in the COFF file, .obj , and is not found in the executable, 

.exe . Thus, it will be difficult to monitor these buffers in Windows. 

  

5.6 Longjmp Buffer Defense 

Another avenue through which control transfer information can be altered is via 

setjmp()  and longjmp()  functions. These are standard C functions that typically 

provide a crude form of exception handling. setjmp()  function stores the context 

information for the current stack frame into a jmp_buf  buffer. By using longjmp() , 

a program can jump out of many levels of nested function calls. The data structure of 

the jmp_buf  buffer is shown in Figure 24.  
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     #define _JBLEN  9 
     typedef struct { int _jb[_JBLEN + 1]; } jmp_bu f[1]; 
 
     jmb_buf[] = {ebx, esi, edi, ebp,  
                  esp, eip, return_val} 
 

Figure 24: Setjmp/Longjmp buffer 

 

The context information of an application depends completely on the contents of its 

memory and the contents of its registers. The content of the registers includes the 

stack pointer (esp), frame pointer (ebp), and program counter (eip). setjmp()  

essentially saves the contents of the registers. When a longjmp()  function is 

invoked  and a jmp_buf  buffer is passed as a parameter, this function restores the 

context of the application to the state of the program when setjmp()  was called. An 

example of how a pair of setjmp()  and longjmp()  works is depicted in Figure 25. 

 

1. /* Global "environment" variable; this must be in scope if longjmp is to be called. */ 
2. char buf [16]; 
3. jmp_buf g_env;  
 

 
4. /* A function that exits abnormally via longjmp */ 
5. void function(void){ 
6.        printf("(calling longjmp)\n"); 
7.        longjmp(g_env,1); 
8.        printf("This is not reachable because of the longjmp above.\n"); 
9. } 

 
10. int main(int argc, char *argv[]) 
11. { 
12.        int i = setjmp(g_env); 
13.        /* This is where execution resumes when longjmp is called: */ 
14.        ... 
15.        strcpy(buf, argv[1]); 
16.        ... 
17.        /* setjmp returns 0 only when it is first called; never after a longjmp */ 
18.        if( i = = 0 ){ 
19.                  printf("(calling function)\n"); 
20.                  function(); 
21.                  printf("This is never reached!\n"); 
22.        } 
23.        return 0; 
24. }  

Figure 25: Setjmp/Longjmp example 
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In the code fragment in Figure 25, when setjmp()  function is invoked in line 12, the 

context information is saved in g_env . The setjmp()  instruction returns a 0 when it 

is called the first time. Subsequent calls to setjmp()  after a longjmp()  will return 

a non-zero value (which depends on the value passed to longjmp() ). The execution 

follows from line 12 until line 20 where function()  is invoked. The execution 

continues until the longjmp()  invocation. Here, the program context information, 

which was stored in line 12, will be restored and line 12 will be executed again. Now, 

setjmp() will return a non-zero value (1 in this case) and thus the program 

terminates after line 23. 

 

5.6.1 Longjmp Buffer Modification Exploit 

It is essential to note that the setjmp()  function stores the program counter and the 

frame pointer in the jmp_buf  buffer. Thus, the integrity of the contents in jmp_buf  

buffer is vital because these are the information used during a longjmp() .  

In Figure 25, the code fragment contains a strcpy()  function that accepts a user 

input (in line 15). This is the program’s vulnerable point. The technique used to attack 

such a program is to save a shellcode in an environment variable, A, and overwrite the 

value of the program counter in the jmp_buf  buffer with the address of A. In order to 

overwrite the program counter in the jmp_buf  buffer, sufficient padding followed by 

the address of the environment variable, A, has to be provided at line 15 by the 

adversary. The padding is to fill up buf  and the other members of the jmp_buf  

buffer until the program counter. Following this, the program counter gets overwritten 

with the value of A. Hence, when a longjmp()  function is invoked at line 7, the 

shellcode gets executed. 
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5.6.2 Preventing Longjmp Buffer Modification Attack In TRUSS 

An adversary can perform a return address modification by altering the program 

counter information or perform a frame pointer modification by altering the frame 

pointer value in the jmp_buf  buffer. In order to prevent such attacks, TRUSS stores 

the jmp_buf  buffers in a buffer named setjmp_buf  in DynamoRIO. When the 

application executes a setjmp()  instruction, the address jmp_buf  buffer is 

recorded. Upon completion of the setjmp()  function, the content of the jmp_buf  

buffer at the recorded address is stored in setjmp_buf . 

When a longjmp()  function is invoked, this function is intercepted using the 

technique mentioned in Section 5.4. The address of the parameter (jmp_buf  buffer) is 

retrieved from the stack and the current content of the jmp_buf  buffer is compared 

with the saved contents. Any alteration to content will signal an error and the 

application will be terminated.  

 

5.7 Function Pointer Defense 

A function pointer is a type of pointer in the C and C++ programming languages. It 

points to a function. Function pointers are used to eliminate giant switch statements 

and in addition, they allow a programmer to dynamically modify a function to be 

called. Memory space for the function pointers can be allocated in stack or heap. If an 

adversary is able to identify a function pointer in a program, then he can modify the 

address referenced by the function pointer to some malicious code. The use of 

function pointers can be identified in the assembly code by a special characteristic in 

applications compiled with GCC. When a function is invoked via a function pointer, 

the address referenced by the function pointer is loaded to a general register followed 
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by a call instruction whose target address is the one in the register. An example is 

shown in Figure 26. Overflowing adjacent buffers and modifying the address referred 

to by the pointer can alter function pointers. 

 
     mov  0xbffffff0, %eax //0xbffffff0 is the targ et address  
     call %eax  

 

Figure 26: Function pointer assembly code 

 

5.7.1 Function Pointer Modification Exploit 

Function pointers are used to store control transfer information and thus its credibility 

is vital during a program execution. However, when function pointers are declared 

adjacent to any buffers, it will be possible to overwrite the location referenced by the 

function pointer via overflowing the adjacent buffer. Figure 27 illustrates such an 

example.  

main(int argc, char* argv[]) 
     { 

1.  static char buf [16]; 
2.  //declare function pointer 
3.  static void (*funptr) (void);  

 
4.  ... 
5.  funptr = ( void (*) (void)) goodfunction; 
6.  ... 
7.  strcpy(buf, argv[1]); 
8.  ... 
9.  (void) (*funptr) (void); 
10. ... 

} 
 
void goodfunction() 
{ 

     ... 
     }  

Figure 27: Vulnerable C program - 5 
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In the code fragment depicted in Figure 27, a function pointer is declared adjacent to a 

buffer. Similar to the exploit mentioned in Section 5.6.1, a shellcode can be stored in 

an environment variable, A. In order to carry out the attack, a user-input consisting of 

16 character ‘A’s followed by the address of A (little endian format) has to be 

provided. This will overwrite the address referenced by the function pointer. 

Subsequently, when the function pointer is used in the application, the shellcode will 

get executed. 

 

5.7.2 Preventing Function Pointer Modification Attack In TRUSS 

To prevent function pointer modifications, when there is an indirect call instruction 

that uses a register, the checking function is inserted prior to the call. The checking 

function retrieves the address in the register and ensures that this does not lie within 

any data region. In this way, the malicious code injected into data buffers will not be 

executed. This technique prevents any execution of data. Currently, this technique is 

only implemented for Linux. 



 64

Chapter 6 

Security Evaluations   

This chapter discusses the security tests that have been used to evaluate TRUSS. 

 

6.1 Security Evaluation With John Wilander’s Testbed Of Twenty 

Buffer Overflow Attacks 

TRUSS’s ability to prevent buffer overflow attacks has been tested using John 

Wilander’s testbed of twenty buffer overflow attacks [56]. This testbed of attacks 

works on both Linux and Windows. Attacks illustrated in the testbed will either 

overflow the buffer all the way to the attack target or overflow a buffer to redirect a 

pointer to the target. The attacks are targeted at the stack, heap, .BSS  and .DATA 

sections. The main targets in the testbeds are the return addresses, old frame pointers, 

function pointers and function parameters. The evaluation of TRUSS is shown in 

Table 1 and 2. 
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No ATTACKS TRUSS 
1 Buffer overflow on stack all the way to parameter function pointer DETECTED 
2 Buffer overflow on stack all the way to parameter longjmp buffer DETECTED 
3 Buffer overflow on stack all the way to return address DETECTED 
4 Buffer overflow on stack all the way to old base pointer DETECTED 
5 Buffer overflow on stack all the way to function pointer DETECTED 
6 Buffer overflow on stack all the way to longjmp buffer DETECTED 
7 Buffer overflow on heap/BSS all the way to function pointer DETECTED 
8 Buffer overflow on heap/BSS all the way to longjmp buffer DETECTED 
9 Buffer overflow of pointer on stack and point to parameter function pointer DETECTED 
10 Buffer overflow of pointer on stack and point to parameter longjmp buffer DETECTED 
11 Buffer overflow of pointer on stack and point to return address DETECTED 
12 Buffer overflow of pointer on stack and point to old base pointer DETECTED 
13 Buffer overflow of pointer on stack and point to function pointer DETECTED 
14 Buffer overflow of pointer on stack and point to longjmp buffer DETECTED 
15 Buffer overflow of pointer on heap/BSS and parameter function pointer DETECTED 

16 
Buffer overflow of pointer on heap/BSS and point to parameter longjmp 
buffer 

DETECTED 

17 Buffer overflow of pointer on heap/BSS and point to return address DETECTED 
18 Buffer overflow of pointer on heap/BSS and point to old base pointer DETECTED 
19 Buffer overflow of pointer on heap/BSS and point to function pointer DETECTED 
20 Buffer overflow of pointer on heap/BSS and point to longjmp buffer DETECTED 

Table 1: Security performance on John Wilander’s testbed of twenty buffer overflow attacks in Linux 

 

No ATTACKS TRUSS 
1 Buffer overflow on stack all the way to parameter function pointer DETECTED 
2 Buffer overflow on stack all the way to parameter longjmp buffer DETECTED 
3 Buffer overflow on stack all the way to return address DETECTED 
4 Buffer overflow on stack all the way to function pointer UNDETECTED 

5 
Buffer overflow of pointer on stack and point to parameter function 
pointer 

UNDETECTED 

6 
Buffer overflow of pointer on stack and point to parameter longjmp 
buffer 

DETECTED 

7 Buffer overflow of pointer on stack and point to return address DETECTED 
8 Buffer overflow of pointer on stack and point to function pointer UNDETECTED 
9 Buffer overflow of pointer on stack and point to longjmp buffer DETECTED 
10 return-to-libc system("echo Attack Successful") DETECTED 

Table 2: Security performance on John Wilander’s testbed of buffer overflow attacks in Windows 

 

The undetected cases occur because function pointer monitoring is not included in 

TRUSS for Windows. 

 

6.2 Security Evaluation With BASS 

Moreover, I have also used the Benchmark Suite for Evaluating Architectural Security 

Systems, BASS [43] to test TRUSS’s ability to prevent buffer overflow attacks. The 
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attacks in this suite target the stack, heap, BSS and dtor sections. The main targets in 

this suite are the return addresses, old frame pointers, function pointers and function 

parameters. This test suite is implemented only for Linux. The result of TRUSS’s 

performance on these benchmarks is summarized in Table 3. 

No. Benchmark 
Program Vulnerability Attack / End Result Location TRUSS 

1. Lottery 
Buffer 
overflow 

overwrite function pointer 
/manipulate instruction flow 

BSS DETECTED 

2. Lottery 
Buffer 
overflow 

overflow variable / 
modify bank account total 

BSS DETECTED 

3. Message_wall 
Buffer 
overflow 

overflow file pointer / 
add malicious root account 

Heap DETECTED 

4. Small_finger 
Buffer 
overflow 

overflow return address / 
spawn root shell 

Stack DETECTED 

5. Secure_log Format string 
read memory location / 
access cryptographic key 

Data DETECTED 

6. Secure_log Format string 
write memory location / 
modify cryptographic key 

Data DETECTED 

7. Secure_log Format string 
overwrite deconstructor / 
spawn root shell 

Dtors DETECTED 

Table 3: Security performance on BASS in Linux 

 

As it can be seen from Table 3, TRUSS is able to successfully detect and prevent all 

the attacks in BASS. 

 

6.3 Security Evaluation With Libsafe Exploits 

In addition, TRUSS in Linux was tested with the exploit code provided by Libsafe in 

its distribution package. The test cases were included in the Libsafe package to verify 

the functioning of Libsafe. Table 4 shows how TRUSS and Libsafe perform against 

the test cases. It can be observed that TRUSS successfully detects all the attacks. The 

surprising result is that Libsafe is unable to detect its own exploit code.  

Further inspection of Libsafe showed that the application is based on the 

assumption that every global C function will be dynamically resolved via the PLT. 

However, this is not the case at all times. This oversight can be observed during the 
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execution of canary-exploit . Libsafe protects the fprintf()  function by 

intercepting the vfprintf()  function. vprintf()  is invoked by fprintf() . In 

newer Linux versions, the fprintf()  functions make direct internal call to 

vfprintf()  without calling the PLT entry. Hence, Libsafe’s version of safe 

vfprintf()  is never invoked. This is why the canary-exploit  is successful on 

Libsafe. t6  succeeds because of a similar reason. TRUSS does not face this problem 

because it intercepts the function fprintf()  only after the first basic block for the 

function is built by DynamoRIO.  

No Attack TRUSS Libsafe 
1 canary-exploit DETECTED UNDETECTED 
2 exploit-non-exec-stack DETECTED DETECTED 
3 t1 DETECTED DETECTED 
4 t1w DETECTED DETECTED 
5 t3 DETECTED DETECTED 
6 t3w DETECTED DETECTED 
7 t4 DETECTED DETECTED 
8 t4w DETECTED DETECTED 
9 t5 DETECTED DETECTED 
10 t6 DETECTED UNDETECTED 

Table 4: Security performance on Libsafe exploit code in Linux 

 

6.4 Security Evaluation With cOntext’s GOT Attack 

The GOT defense in TRUSS has been tested with the exploit code depicted in [16]. 

This code attacks an application that contains  

 printf(“Array …”); 

The exploit creates an executable named Array , which contains one instruction: 

 system(“/bin/sh”); 

This executable will invoke a new shell. The exploit code subsequently overwrites the 

GOT entry of printf()  with the absolute address of system() . Hence, when the 
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application is executed, the printf()  statement will execute the Array  executable 

and a new shell is invoked with the privilege of the application. 

When the application is executed with TRUSS’s defense in place, the attack does 

not succeed because the modified entry in the GOT is never used. Thus, TRUSS is 

able to thwart any attack that uses GOT modification to execute malicious code.   

 

6.5 TRUSS vs Four Different Tricks To Bypass StackShield And 

StackGuard Protection  

StackShield and StackGuard, as reviewed earlier, protect applications against stack 

smashing attacks. However, in [48], four techniques that can bypass the protection 

provided (StackShield and StackGuard) have been described. I will analyze these 

techniques against TRUSS in this section. 

 

� Technique 1 

In standard compiled C code, functions’ arguments are pushed into the stack before 

the return address as shown in Figure 8. When a stack based buffer overflows, an 

adversary may be able to control the function’s arguments and this can turn a 

protected program into a vulnerable program. If StackGuard is used, the canary death 

handler will be called and several library functions such as openlog()  or _exit()  

will be invoked. Overwriting these functions’ GOT entries will allow the adversary to 

hook the execution flow. 
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TRUSS’s solution 

In TRUSS, the GOT technique as described in Section 5.3 will bypass any 

modification made to the GOT entries and hence will foil Technique 1. 

 

� Technique 2 

This technique is one version of frame pointer attack. Upon a return instruction, the 

frame pointer gets modified and before the second return, control over the stack 

pointer is gained. Hence, the adversary can control the location where the function 

returns. 

TRUSS’s solution 

This technique attempts to modify both frame pointers and return addresses. 

However, TRUSS can successfully detect any alteration of frame pointers and return 

addresses and thus will thwart this kind of attacks. 

 

� Technique 3 

In standard C code, compiled without the GNU-equivalent of the -fomit-frame-

pointer  option, all local variables are accessed relative to the frame pointer. Thus, if 

an adversary has control over the frame pointer, he will be able to manipulate the 

caller’s local variables and arguments. In this attack, an ‘off-by-one’ overflow, where 

the least significant byte of the saved frame pointer is altered to 0, is used. It then goes 

on to overwrite the GOT entries. 
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TRUSS’s solution 

TRUSS can detect any alteration of frame pointer attacks and GOT entries. Therefore, 

it will prevent any attacks that utilize Technique 3. 

 

� Technique 4 

This technique extends Technique 3 and performs a few different kinds of attacks. 

Firstly, it exploits a printf()  to show the memory content. It can make a pointer 

refer to some critical data such as the environment variables or modify the content of 

some variables. This is typically a format string attack. This technique can also 

modify GOT entries.  

TRUSS’s solution 

The format string protection provided by TRUSS will not allow the adversary to 

access any memory content beyond the stack frames. Although the local variables will 

be vulnerable to alterations, this is unlikely to have any serious effect. In addition, the 

GOT protection will bypass any GOT entry modification.  
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Chapter 7 

Experiments 

This chapter discusses the performance tests that have been used to evaluate TRUSS. 

 

7.1 Experimental Setup    

All experiments were executed on a Dell Optiplex GX280 Pentium 4 530 running at 

3.0 GHz with 1 GB RAM. The operating systems used are Microsoft Windows XP 

Professional SP2 and Linux Fedora Core 3. 

 

7.2 Performance Test With DynamoRIO’s Profiling 

Firstly, profiling was carried out to measure the overhead caused by the additional 

protection code. Profiling facilities provided by DynamoRIO in Linux showed that 

more than 95% of the time, the application code and the protection code are being 

executed. The execution of SPEC CINT2000 [53] programs crafty , twolf  and 

parser  with profiling showed that protection code was present in 14%, 9% and 17% 

of the profiling samples collected respectively. This implies that TRUSS does incur 

moderate overheads. 

 

7.3 Performance Test With SPEC CINT2000 Benchmark Programs 

SPEC CINT2000 programs were used on both Windows and Linux to examine the 

performance of TRUSS. In order to evaluate the performance, I collected three sets of 
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execution times in each operating system. First, the benchmark programs were 

executed natively with no modifications. These results serve as a baseline to measure 

TRUSS’s performance. Then, the benchmarks were executed on DynamoRIO without 

any client programs. This will measure the overhead due to DynamoRIO’s 

instrumentations. Lastly, TRUSS is loaded and its performance is recorded. The 

results of the tests are shown in Figure 28 and Figure 29. The overheads shown in the 

results include the time for analysis of the binaries, insertion of the protection code 

and execution of the protection code. 

BenchMark Native DynamoRIO TRUSS %overhead 
Gzip 180.336 199.129 211.742 17.415 
Vpr 207.795 218.077 241.471 16.206 
Gcc 80.929 208.766 287.211 254.893 
Mcf 192.308 193.163 193.782 0.766 
Crafty 118.144 169.434 209.785 77.567 
Parser 218.046 268.165 326.996 49.967 
Eon 212.979 261.007 369.775 73.620 
Perlbmk 164.114 255.084 334.879 104.053 
Gap 91.037 122.692 153.889 69.040 
Vortex 159.618 317.307 363.284 127.596 
Bzip 183.703 197.595 227.042 23.592 
Twolf 329.834 372.113 411.403 24.730 
AVERAGE 178.237 231.878 277.605 55.750 

Table 5: Performance of SPEC CINT2000 benchmark programs on Linux 
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Figure 28: Performance of SPEC CINT2000 benchmark programs on Linux 
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BenchMark Native DynamoRIO TRUSS %overhead 
Gzip 183.718 193.516 295.39 60.784 
Vpr 192.515 197.538 365.765 89.993 
Gcc 84.077 179.104 308.781 267.26 
Mcf 201.171 202.514 324.343 61.228 
Crafty 125.453 189.406 410.156 226.94 
Parser 221.812 258.468 738.015 232.721 
Eon 141.952 168.937 474.5 234.268 
Perlbmk 148.283 271.843 569.125 283.81 
Gap 102.093 125.687 370.265 262.674 
Vortex 141.218 217.64 602.86 326.9 
Bzip 226.64 240.596 415.046 83.13 
Twolf 332.187 362.622 520.781 56.773 
AVERAGE 175.093 217.323 449.586 156.769 

Table 6: Performance of SPEC CINT2000 benchmark programs on Windows 
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Figure 29: Performance of SPEC CINT2000 benchmark programs on Windows 

 

In Windows, TRUSS incurs an average overhead of 156% in execution time. In 

Linux, TRUSS incurs an average overhead of 55% in execution time. One reason for 

such a significant variation in Linux and Windows is that in Linux the eflags were not 

saved and restored at every check. The eflags essentially contain the zero, carry, sign, 

parity, adjust, trap, interrupt, direction and overflow flags. In Linux the applications 

can execute correctly without saving and restoring the eflags. However, in Windows, 

few applications produced incorrect results when the eflags were ignored. Hence, in 

Windows the eflags were saved and restored at every check. The SPEC CINT2000 

benchmarks gcc , vortex  and perlbmk  exhibited significant overheads in both 

operating systems. But it has to be noted that gcc , vortex  and perlbmk  perform 
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badly on DynamoRIO without TRUSS. These are programs which contribute to the 

exceptionally high overhead in Windows.  

 

7.4 Performance Test With Bapco Sysmark Benchmark Programs 

In addition, I have used 4 benchmarks from the Bapco Sysmark to evaluate the 

performance in Windows. These 4 benchmarks use popular Microsoft Office 

applications such as WinWord, Excel, Access and Powerpoint.  The results of these 

tests are summarized in Figure 30. 

Benchmark Native DynamoRIO TRUSS %overhead 
Access 302.18 307.69 311.99 3.246 
Excel  569.58 566.24 573.49 0.686 

Powerpoint 365.22 364.25 369.9 1.281 
WinWord 260.65 263.44 265.35 1.803 
Average 374.407 375.405 380.182 1.542 

Table 7: Performance of Sysmark benchmark programs on Windows 
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Figure 30: Performance of Sysmark benchmark programs on Windows 

 

Figure 30 showed no significant slowdown due to TRUSS on the Microsoft Office 

benchmarks. One possible reason why the overheads differed so drastically between 

the SPEC CINT2000 benchmarks and the Bapco Sysmark benchmarks is that the 

number of call and return instructions in the SPEC CINT2000 benchmarks are very 

much larger than those in Bapco Sysmark benchmarks. This means that fewer 
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instructions are added and executed for return address checks and frame pointer 

checks. The number of call and return instructions observed in both benchmarks are 

shown in Tables 8 and 9. Note that in the Microsoft Office suite, calls and returns do 

not match up well. Many of the returns were replaced by jump instructions. 

Benchmark Call-return pairs 
Gzip 1,970 
Vpr 2,589 
Gcc 1,393 
Mcf 2,053 
Crafty 3,958 
Parser 4,021 
Eon 5,320 
Perlbmk 5,755 
Gap 3,980 
Vortex 6,747 
Bzip 3,209 
Twolf 2,308 

Table 8: Number of call and return pairs (in millions) in SPEC CINT2000 benchmark programs for 
Windows 

 
Benchmarks call instructions return instructions 
Access 1.81 1.72 
Excel  4.76 4.25 
Powerpoint 2.55 2.43 
WinWord  1.27 1.20 

Table 9: Number of call and return instructions (in millions) in Sysmark benchmark programs for 
Windows 

 

7.5 Performance Of LibSafe And StackShield With SPEC CINT2000 

Benchmark Programs 

As a comparison, Table 10 shows the overhead of Libsafe on the SPEC CINT2000 

benchmarks running in Linux. The average overhead incurred is negligible. It is rather 

obvious that Libsafe performs very much better than TRUSS. This is because Libsafe 

does not maintain a dynamic list of frame pointers. Instead, it invokes a GCC inbuilt 

function, __builtin_frame_address . The signature of this function is: 

void * __builtin_frame_address (unsigned int LEVEL) 
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This method accepts an integer input that represents the level of the nested functions. 

However, the method is not safe for checking purposes because it assumes that the 

frame pointer will be in the memory location pointed to by the register %EBP. Some 

applications do not save %EBP in the process stack but rather use this register for 

their computational purposes. This means that the checking done using 

__builtin_frame_address  does not guarantee that any buffer overflow will not 

exceed the frame pointer. 

Table 11 shows the overhead of StackShield (the compiler approach) on the SPEC 

CINT2000 benchmarks running in Linux. The benchmark programs – gcc ,  

perlbmk ,  gap  – crashed. Moreover, eon  could not be compiled with shieldg++  

compiler as this program requires newer version of g++ compilers. The average 

overhead was 60%. Furthermore, StackShield does not support the GCC compiler 

optimization options such as –fomit-frame-pointer  and -funroll-all-

loops .  

Benchmarks Native Libsafe %overhead 
Gzip 180.336 182.933 1.44 
Vpr 207.795 205.523 -1.09 
Gcc 80.929 81.864 1.155 
Mcf 192.308 193.147 0.436 
Crafty 118.144 119.092 0.802 
Parser 218.046 220.82 1.272 
Eon 212.979 214.884 0.894 
Perlbmk 164.1136 165.937 1.111 
Gap 91.037 91.388 0.386 
Vortex 159.618 165.608 3.753 
Bzip 183.703 184.258 0.302 
Twolf 329.834 346.692 5.111 
AVERAGE 178.237 181.012 1.557 

Table 10: Performance of LibSafe with SPEC CINT2000 benchmarks in Linux 
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Benchmarks Native StackShield %overhead 
Gzip 180.336 298.607 65.584 
Vpr 207.795 287.484 38.350 
Gcc 80.929 Crash - 
Mcf 192.308 239.384 24.479 
Crafty 118.144 180.9 53.118 
Parser 218.046 233.191 6.946 
Eon 212.979 Cannot compile - 
Perlbmk 164.1136 Crash - 
Gap 91.037 Crash - 
Vortex 159.618 251.211 57.383 
Bzip 183.703 315.318 71.646 
Twolf 329.834 487.221 47.717 
AVERAGE 178.237 286.6645 60.833 

Table 11: Performance of StackShield-0.7 with SPEC CINT2000 benchmarks in Linux 

 



 78

Chapter 8 

Conclusion  

Today’s world is at a stage where it cannot function without computer systems. And a 

computer system loses its viability when its security is compromised. As such, the 

field of computer security has attracted great interests and investments. My work on 

TRUSS adds on to current research in the area of IT security and specifically, in the 

field of systems security.  

The purpose of this thesis was to present a transparent, efficient and unified 

runtime solution for preventing a wide variety of known buffer overflow attacks, 

namely the return address attacks, format string attacks, vulnerable C function attacks, 

stack smashing attacks, heap overflows and GOT modifications. These attacks allow 

adversaries to intrude into systems and either steal critical information from the 

systems illegally or take control of the systems at privileged levels to perform 

unauthorized operations. Therefore, it is essential for computer systems to incorporate 

a defensive mechanism to thwart such attacks. Furthermore, it will be ideal if the 

mechanism makes minimal modification to the original executable and allows the 

application to execute normally. TRUSS is such a runtime security tool.  It makes 

minimal alteration to the binary to ensure safe execution of the application. TRUSS 

has been implemented as a client program in DynamoRIO. The techniques 

incorporated in TRUSS are simple, robust and furthermore portable to other binary 

rewriting tools. Working only with binary executables, TRUSS can protect code 

running on both Linux and Windows without requiring any special hardware, access 

to the source code or even patches to the operating systems.  
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The performance overhead involved is among the major concerns of any runtime 

scheme. The performance evaluation of TRUSS has shown that its overhead is 

dependent on the application and operating systems and it is within a range that would 

be deemed acceptable to most users. 

 

8.1 Limitations 

Nevertheless, no single method of security is omnipotent. TRUSS, for instance, is not 

effective against buffer overflow of local variables allocated in the stack. It is rather 

difficult to extract the size of a local buffer from the binary. Thus, monitoring such 

buffers at runtime is not an easy task. Similarly, the Windows PE files do not carry 

information about the global variables. These are instead stored in the COFF file, 

which is usually not provided with the executables. Therefore, TRUSS does not have 

sufficient information from the binary to monitor these buffers as well.  

 Function pointer defense in TRUSS makes use of GCC specific code sequence 

to identify function invocations via function pointers. This is a limitation as this 

technique will be effective only in applications compiled with GCC compilers. 

Another limitation to be noted is that TRUSS does not allow instructions that are 

stored in the heap to be executed. Storing instructions in the heap and subsequently 

executing them may be legal in some applications. In such applications, TRUSS will 

raise false alarm.    
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8.2 Future Research 

Future research can focus on eliminating the current limitations that TRUSS faces. In 

addition, more defense techniques can be included into TRUSS to strengthen its 

ability to protect applications. Such additional techniques can be incorporated into 

TRUSS to make it a comprehensive runtime security tool. 
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