
RUNTIME BINARY ANALYSIS FOR SECURITY

SARAVANAN SINNADURAI S/O GUNACHILAN

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48630943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RUNTIME BINARY ANALYSIS FOR SECURITY

SARAVANAN SINNADURAI S/O GUNACHILAN
(B.Comp.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

 i

Acknowledgements

I am greatly indebted to A/P Wong Weng Fai for his invaluable assistance and

guidance in the course of this project. I would also like to acknowledge Mr Zhao Qin,

to whom I am thankful for all help rendered. I am also thankful to Mr Timothy Tsai’s

useful insights and to Mr John Wilander for providing the testbed program.

 ii

Table of Contents

Acknowledgements ...i

Table of Contents ...ii

Summary..vi

List of Tables .. viii

List of Figures..ix

Chapter 1 Introduction..1

1.1 Background ..4

1.2 Objective..5

1.3 Roadmap ..6

Chapter 2 Executable File Formats..7

2.1 Executable And Linkable File (ELF) Format ..7

2.1.1 Accessing Symbols In Shared Library..10

2.2 Microsoft Portable Executable (PE) Format..11

2.2.1 Accessing Symbols In Shared Library..13

Chapter 3 Previous Work ...15

3.1 Techniques ...15

3.1.1 Tools For Linux ..16

3.1.2 Tools For Windows...24

3.1.3 Tools That Operate In Linux And Windows ..25

 iii

Chapter 4 DynamoRIO Operations ...27

4.1 Basic Block Cache ...28

4.2 Trace Cache ...29

4.3 DynamoRIO Interface..29

Chapter 5 Security Modules ...31

5.1 Return Address Defense ..31

5.1.1 Return Address Modification Exploit...32

5.1.2 Preventing Return Address Attack In TRUSS..34

5.2 Base Pointer Defense ...35

5.2.1 Base Pointer Modification Exploit..36

5.2.2 Preventing Base Pointer Attack In TRUSS ..37

5.3 Global Offset Table Defense ...37

5.3.1 Global Offset Table Modification Exploit..39

5.3.2 Preventing Global Offset Table Attack In TRUSS.....................................41

5.4 Format String Defense ...42

5.4.1 Reading The Stack ..43

5.4.2 Writing Into Arbitrary Memory Locations ...45

5.4.3 Format String Exploit ...46

5.4.4 Preventing Format String Attack In TRUSS ..49

5.5 Vulnerable C Library Functions Defense ..51

5.5.1 Preventing Vulnerable C Library Functions Attack In TRUSS..................52

5.5.2 Vulnerable C Library Functions BSS/DATA/HEAP Overflow Exploit54

5.5.3 Preventing BSS/DATA/HEAP Overflow Attack In TRUSS......................57

 iv

5.6 Longjmp Buffer Defense ...58

5.6.1 Longjmp Buffer Modification Exploit..60

5.6.2 Preventing Longjmp Buffer Modification Attack In TRUSS.....................61

5.7 Function Pointer Defense...61

5.7.1 Function Pointer Modification Exploit ...62

5.7.2 Preventing Function Pointer Modification Attack In TRUSS63

Chapter 6 Security Evaluations..64

6.1 Security Evaluation With John Wilander’s Testbed Of Twenty Buffer Overflow

Attacks ...64

6.2 Security Evaluation With BASS..65

6.3 Security Evaluation With Libsafe Exploits..66

6.4 Security Evaluation With cOntext’s GOT Attack ...67

6.5 TRUSS vs Four Different Tricks To Bypass StackShield And StackGuard

Protection ...68

Chapter 7 Experiments..71

7.1 Experimental Setup..71

7.2 Performance Test With DynamoRIO’s Profiling ..71

7.3 Performance Test With SPEC CINT2000 Benchmark Programs..........................71

7.4 Performance Test With Bapco Sysmark Benchmark Programs74

7.5 Performance Of LibSafe And StackShield With SPEC CINT2000 Benchmark

Programs ..75

 v

Chapter 8 Conclusion ..78

8.1 Limitations ...79

8.2 Future Research ...80

References...81

 vi

Summary

Exploitation of buffer overflow vulnerabilities constitutes a significant portion of

security attacks in computer systems. Common buffer overflow attacks include return

address attacks, format string attacks, vulnerable C function attacks, stack-smashing

attacks, heap overflows and GOT modifications. The aim of these attacks is typically

to hijack critical information in the process address space so as to redirect the

program’s control flow to any malicious code injected into the process memory.

Previous solutions to these problems are based either on hardware or compiler. The

former requires special hardware while the latter requires the source code of the

application.

In this thesis, I have introduced a runtime security mechanism - Transparent

RUntime Security Suite (TRUSS) - that can protect applications against common

buffer overflow attacks. The objective of TRUSS is to protect applications against

buffer overflow attacks during execution. TRUSS works with the binaries of the

applications and it does not require the applications’ source code. Furthermore,

TRUSS does not require any modification to the system that executes the

applications. Many previous tools in this area focused their security effort on some

specific vulnerability. Unlike such tools, TRUSS consolidates a number of techniques

that can monitor various parts of the memory to detect, prevent and protect against

buffer overruns. Additionally, TRUSS includes a few novel techniques to thwart

attacks on the Global Offset Table entries and heap memory.

TRUSS is built as a client program in DynamoRIO, a dynamic binary rewriting

framework. DynamoRIO is implemented on both Windows and Linux. Hence, this

 vii

scheme is able to protect applications on both operating systems. TRUSS has been

successfully tested on the SPEC CINT2000 benchmark programs (on both Windows

and Linux), on John Wilander’s “Dynamic testbed for twenty buffer overflow

attacks”, on James Poe’s and Tao Li’s “BASS - A Benchmarking suite for evaluating

Architectural Security Systems” as well as on Microsoft Access, PowerPoint, Excel

and Word 2002. This thesis includes the implementation details of TRUSS. It also

provides a performance evaluation, which will show that TRUSS is able to operate

with an average overhead factor of up to 0.5 in Linux and 1.5 in Windows.

 viii

List of Tables

Table 1: Security performance on John Wilander’s testbed of twenty buffer overflow

attacks in Linux..65

Table 2: Security performance on John Wilander’s testbed of buffer overflow attacks

in Windows ..65

Table 3: Security performance on BASS in Linux ..66

Table 4: Security performance on Libsafe exploit code in Linux67

Table 5: Performance of SPEC CINT2000 benchmark programs on Linux72

Table 6: Performance of SPEC CINT2000 benchmark programs on Windows73

Table 7: Performance of Sysmark benchmark programs on Windows74

Table 8: Number of call and return pairs (in millions) in SPEC CINT2000 benchmark

programs for Windows ..75

Table 9: Number of call and return instructions (in millions) in Sysmark benchmark

programs for Windows ..75

Table 10: Performance of LibSafe with SPEC CINT2000 benchmarks in Linux.......76

Table 11: Performance of StackShield-0.7 with SPEC CINT2000 benchmarks in

Linux ..77

 ix

List of Figures

Figure 1: Software vulnerabilities reported to CERT..2

Figure 2: Linking view of the ELF file..9

Figure 3: Execution view of the ELF file ..9

Figure 4: Symbol table entry information..9

Figure 5: PE file layout ..12

Figure 6: COFF file layout...12

Figure 7: Operations of DynamoRIO ..28

Figure 8: Layout of a x86 process stack frame..32

Figure 9: Vulnerable C function - 1...33

Figure 10: Procedure linkage table ..38

Figure 11: Vulnerable C function - 2...40

Figure 12: Copy of basic block in code cache ...42

Figure 13: Bogus format string ..44

Figure 14: Detecting position of format string in x86 process stack44

Figure 15: Reading content at arbitrary memory location ...45

Figure 16: Proper use of ‘%n’ format specifier ...45

Figure 17: Overwriting content of desired memory location.......................................46

Figure 18: Vulnerable C function - 3...47

Figure 19: Saturating counter approach...48

Figure 20: Heap memory chunks...54

Figure 21: Memory management macro..55

Figure 22: Vulnerable C program - 4...56

Figure 23: Symbol structure...57

 x

Figure 24: Setjmp/Longjmp buffer ..59

Figure 25: Setjmp/Longjmp example ..59

Figure 26: Function pointer assembly code...62

Figure 27: Vulnerable C program - 5...62

Figure 28: Performance of SPEC CINT2000 benchmark programs on Linux............72

Figure 29: Performance of SPEC CINT2000 benchmark programs on Windows73

Figure 30: Performance of Sysmark benchmark programs on Windows....................74

 1

Chapter 1

Introduction

Computer security is a field in computer science that is concerned with the control of

menace associated with computer use. It is essential that any application that is

executed in computer systems is safe and does not compromise with the security of

the systems. The widespread viruses, worms and Trojan horses have the ability to

intrude into systems and either steal critical information from the systems illegally or

take control of the systems at privileged levels to perform unauthorized operations. It

is therefore extremely imperative to protect computer systems from these malwares.

The rapid development of the Internet has further spawned a sharp increase in the

number of computer systems being violated by malicious attacks. From the time of

the infamous Internet Worm written by Robert T. Morris in 1988 [35], several

security breaches causing much damage to systems have been reported. On 4th May

2000, a virus known as “I Love You” spread through Asia, Europe and the US within

five hours via e-mails. It was estimated that the damage caused by the virus resulted

in a loss of nearly one billion dollars [30]. In the following year, “Code Red Worm”

spread over the Internet and more than 359,000 computers connected to the Internet

were infected with the worm in less than 14 hours. The damage caused by this worm

was estimated to be $2.6 billion [35].

Software vulnerabilities have been prevalent in applications since 1960s [14].

Figure 1 shows the number of security alerts reported by CERT between 1995 and

2005. A total of 22,716 vulnerabilities were reported within the 10-year period [13].

 2

0

1000

2000

3000

4000

5000

6000

7000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

V
u

ln
er

ab
ili

ti
es

Figure 1: Software vulnerabilities reported to CERT

One common technique employed by these malwares is known as buffer

overflows. The core of this security vulnerability lies in the use of programming

languages such as C and C++. These programming languages tend to compromise

safety of the application for efficiency. For instance, it is essential for any application

to ensure that every access to an element in an array is safe. However, the compilers

in these languages do not perform such checks automatically. In addition, the notions

between arrays and pointers to data structures are used interchangeably. This makes it

more difficult to monitor the violation of buffer limits in programs. Yet, due to legacy

as well as the continued popularity of these programming languages, the problem

cannot be solved easily by abandoning them in favour of safer ones.

Buffer overflow occurs when buffers allocated in a program overflow upon

copying data into the buffer of a size larger than its capacity. This results in the excess

data overwriting the adjacent memory locations. In this way, if critical control

information was stored in the adjacent memory locations, a well-crafted data can

overwrite the memory locations and cause the program to deviate from its execution

flow and in turn, execute any malicious code. Return addresses, frame pointers,

 3

Global Offset Table (GOT) entries, longjmp() buffer and function pointers are such

vulnerable critical information that resides in the process memory.

A variant of buffer overflow attack is the format string attack. Format string

vulnerability is based on the lack of safety checks by the C compilers (as mentioned

earlier) and on the implementation of some functions in the standard C library. The

standard C library provides a list of functions known as format functions, which

accept a variable number of arguments. One of these arguments is the format string.

These functions evaluate the format string and convert the arguments following the

format string into a suitable form to be passed into the output stream. However, these

functions do not check the attributes of the arguments. Moreover, they do not validate

if the function parameters are indeed passed by the caller. There is also a lack of

control mechanism to prevent any procedure that evaluates the format string from

accessing erroneous memory locations. This vulnerability is manifested mainly in

interactive computer systems. Apart from format functions, a number of other

functions implemented in the standard C library are also vulnerable to buffer overflow

attacks.

This situation raises a serious cause of concern because applications that utilize

these library functions become vulnerable to attacks and this in turn compromises the

security of the computer system, which executes these applications. Hence, methods

that protect computer systems from becoming vulnerable because of such applications

are vital. This research paper introduces a runtime security mechanism, which I refer

to as Transparent RUntime Security Suite (henceforth, TRUSS). TRUSS provides a

set of techniques to protect computer systems against common types of buffer

overflow attacks and format string attacks in both Linux and Windows.

 4

1.1 Background

Buffer overflow attacks fundamentally aim to achieve two goals. Firstly, an adversary

has to inject a malicious code into the process memory. This is usually a small

sequence of instructions that can invoke a shell on the system and pass control to the

adversary with the privilege of the user. Secondly, the adversary has to change the

execution flow to point to the start of the malicious code residing in memory. An

attack is successful only when both the goals are achieved [57]. There is no major

security concern if only one of the goals is pulled off by the adversary. Malicious

code residing in the computer system does not cause any damage to the system unless

it is invoked.

There are five main types of buffer overflow attacks. The most common way to

perform a buffer overflow attack is by modifying return addresses. These addresses

are usually modified via stack smashing – a method to overwrite a buffer with data

more than the size of the buffer itself. Overflowed buffers will usually cause the

program to crash. However, adversaries can use well-crafted data to modify specific

location in the memory where the return address resides. This can change the

execution flow of the program and make the program counter (also known as

instruction pointer) to point to the start of the malicious code.

The second type of attack targets the stack frame pointer. This attack uses the

stack-smashing technique as well. The adversary has to insert a fake stack frame into

the process stack with a return address pointing to the start of the malicious code. The

overflowing data has to overwrite the value of a stored frame pointer with the address

of the fake stack frame. Hence, when a subroutine returns, control will be passed on to

the fake stack frame and it will perform a return again directing the flow of control to

the attack code.

 5

The next type of attack aims to redirect a function pointer in the program to point

to the attack code. This function pointer can be allocated in the stack or heap for the

attack to succeed. A buffer is overflowed until the memory location of the function

pointer is reached. The start address of malicious code is then copied to the function

pointer. Thus, when the function pointer is used in the program, it will direct the

execution flow to execute the attack code.

The fourth type of attack targets the GOT entries. The GOT is used by applications

in Linux to redirect function calls between the executable and a shared object or

between different shared objects. This is a point of control flow transfer and if an

adversary manages to hijack this data and overwrite it with the start address of any

malware, the malware will be successfully executed.

The last type of attack uses the setjmp() /longjmp() buffers. A setjmp() call

saves the environment information in a buffer. This data includes the contents of the

program counter, the stack pointer and the frame pointer. The program counter

contains the address of the instruction to be executed next. If an adversary manages to

modify the program counter to point to the start of attack code, control will be

transferred to the attack code when longjmp() restores the environment information

[14].

1.2 Objective

This paper presents TRUSS, which is to be used on applications that execute on Intel

x86 architecture. The main objective of TRUSS is to provide a defensive mechanism

that makes minimal modification to the original executable and incur low overheads

during runtime. In order to efficiently work on an application, TRUSS employs

 6

DynamoRIO, a binary instrumentation tool. DynamoRIO is a runtime code

manipulation system and TRUSS functions within this system. DynamoRIO is an IA-

32 implementation of the original PA-RISC based Dynamo Project [5]. It supports

efficient, transparent and comprehensive manipulation of applications running on

Windows or Linux operating systems. DynamoRIO provides APIs to hook each basic

block in the application before the block gets executed. This provides ideal opening to

analyze the instructions and to implement defensive measures.

The suite of safety techniques presented in this research paper is to provide

efficient runtime protection for applications, inclusive of those without any source

code. The primary aim of this research paper is to present a defense suite that protects

existing applications from return address modification attacks, format string attacks,

stack smashing attacks, GOT attacks, heap buffer attacks, longjmp() buffer attacks

and attacks that take advantage of the vulnerable functions in the standard C library

with considerably low overhead.

1.3 Roadmap

In Chapter 2, I will look at the two different types of executable file formats used in

Linux and Windows operating systems. Chapter 3 will review some of the related

work in this field. In Chapter 4, I will look at the underlying tool, DynamoRIO, upon

which TRUSS is built. Chapter 5 will explain the security modules included in

TRUSS. In Chapters 6 and 7, I will analyze the security performance and overhead

incurred by TRUSS respectively and I will conclude in Chapter 8.

 7

Chapter 2

Executable File Formats

In this chapter, I will briefly describe the Executable and Linkable File (ELF) format

and the Microsoft Portable Executable (PE) file format utilized by binaries in Linux

and Windows respectively. Understanding these formats is essential as most of the

information used by TRUSS is extracted from the binaries.

2.1 Executable And Linkable File (ELF) Format

ELF [33] defines a binary interface that allows the linking of several object files and

creates a process image during execution. There are three main types of object files.

� A relocatable file stores code and data suitable for linking with other object

files in order to create an executable or a shared object file.

� An executable file contains a program suitable for execution.

� A shared object file stores code and data suitable for two functions:

o First, the link editor may process it with other relocatable and shared

object files to create another object file.

o Second, the dynamic linker may combine it with an executable file and

other shared objects to create a process image.

The ELF object file provides a dual view of the file’s contents - linking view and

execution view. While linking view is required to build the program and it divides the

 8

file content into sections that contain the text, data and other information such as the

symbol tables and relocation tables; execution view is needed to form the program

image. It describes how the various parts of the file should be mapped into the

memory to form the process image. Execution view divides the content into segments

with differing permissions (e.g. read/write/executable) assigned to them.

 The ELF file stores the ELF header at the beginning of the file and this header

holds a roadmap that describes the file's organization. In addition, the ELF file

contains a program header table and a section header table. The program header

describes the ELF file’s execution view while the section headers describe the ELF

file’s link view. The program header instructs the system on creating a process image.

Only ELF files that are used to build a process image have a program header table.

Relocatable ELF files do not need one. Each program header describes a segment in

the ELF file. A segment can contain one or more sections. Sections with similar

access permissions can be grouped into the same segments. Each segment

corresponds to a segment in the virtual address space. The process image is made up

of segments of memory that hold code, data and stack.

 The section header table is an array of section header structures. Each section

header contains information describing the file's sections. Every section in the ELF

file occupies a contiguous block of memory and no two sections overlap. The sections

in ELF are pre-defined and hold program and control information. These sections are

used by the operating system and have different types and attributes for different

operating systems. An illustration of the dual view of an ELF file is depicted in

Figures 2 and 3.

 9

ELF Header
Program Header Table

Optional
Section 1

…
Section n

…
…

Section Header Table
Figure 2: Linking view of the ELF file

ELF Header
Program Header Table

Segment 1

Segment 2

…
Section Header Table

Optional
Figure 3: Execution view of the ELF file

Linking two files essentially means to resolve the symbols defined in one object file

and used in another. This process uses a number of sections. To facilitate linking, the

ELF file contains two symbol tables that store a list of all the symbols used or

globally defined in an object file. The dynamic linker exclusively uses the dynamic

symbol table and the static linker uses the other symbol table. Each symbol entry

contains information regarding the name, value and section index as depicted in

Figure 4.

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

st_name This member holds an index into the object file's
symbol strin g table, which holds the character
representations of the symbol names.

st_value This member gives the value of the associated symbo l.
Depending on the context, this may be an absolute
value, an address, and so on.

st_size Many symbols have associated si zes. For example, a data
object's size is the number of bytes contained in t he
object. This member holds 0 if the symbol has no si ze
or an unknown size.

st_info This member specifies the symbol's type and binding
attributes.

st_other This member currentl y holds 0 and has no defined
meaning.

st_shndx Every symbol table entry is defined in relation to some
section. This member holds the relevant section hea der
table index.

Figure 4: Symbol table entry information

 10

Relocation is the process of connecting symbolic references to symbolic

definitions. For example, when a program calls a function, the associated call

instruction must transfer control to the proper destination address during execution. In

other words, relocatable files must contain information that describes how to modify

their section contents, thus allowing executable and shared object files to hold the

right information for a process's program image. In the ELF file, relocations are

needed because the virtual address of all the symbols is only available at runtime. The

virtual address of a function or a data item inside a shared library is not known until

the program starts to execute. The ELF file thus makes use of the GOT to store all the

symbols that have to be resolved at runtime. Each entry in the GOT specifies a

symbol and the first time a symbol is used in the program, the dynamic linker is

invoked to go through all the loaded libraries and to perform the specified relocation

[3].

2.1.1 Accessing Symbols In Shared Library

In Linux, instructions in dynamically linked libraries are not bound to the executable

at link time. Dynamic linking defers much of the linking process until a program

starts running. Therefore, it is not possible to know the addresses of functions defined

in shared libraries before the program begins execution. In Linux, however, a

programming interface is provided to dynamic linking loader. This interface allows

shared libraries to be loaded explicitly via the dlopen() call.

dlopen() loads a dynamic library and returns a handle for it. If the absolute path

for the library is not provided, the library is searched for in the following locations:

� A list of directories in the user's LD_LIBRARY_PATH environment variable.

 11

� The list of libraries cached in /etc/ld.so.cache.

� /lib directory, followed by /usr/lib directory.

If library filename is a NULL pointer, a handle for the main program is returned.

External references in the library are resolved using the libraries in the library's

dependency list and any other libraries previously opened with the RTLD_GLOBAL

flag. If the executable was linked with the flag -rdynamic , the global symbols in the

executable will also be used to resolve references in a dynamically linked library.

dlopen() has to load the dynamic library with the flag RTLD_NOW. This will

resolve all undefined symbols before dlopen() returns. Optionally, RTLD_GLOBAL

may be added to flag, in which case, the external symbols defined in the library will

be made available to subsequently loaded libraries. dlsym() accepts the handle of a

dynamic library returned by dlopen() and the symbol name. It returns the address

where that symbol is loaded. If the symbol is not found, dlsym() returns a null

value. TRUSS employs this technique to obtain the address of functions defined in

shared libraries in order to intercept them.

2.2 Microsoft Portable Executable (PE) Format

Microsoft PE files [36] are intended for a paged environment. Pages from a PE file

are usually mapped directly into memory and executed, similar to an ELF executable.

There are two types of PE files.

� EXE programs

� DLL shared libraries (known as dynamic-link library)

 12

The format of the two files is the same. Only a status bit differentiates the two PEs.

Both types of files can contain a list of exported functions and data that can be used

by other PE files loaded into the same address space. A list of imported functions and

data that has to be resolved from other PEs at load time can also be found in the PE

files. However, the EXE files do not export functions.

 In addition, there exists another type of file known as COFF. COFF is the Common

Object File Format. This is the type of an object file under Microsoft Windows. The

structure of the COFF is similar to the ELF relocatable file. The layouts of the

Microsoft PE file and COFF file are illustrated in Figures 5 and 6.

 Figure 5: PE file layout

 Figure 6: COFF file layout

The PE file header consists of a Microsoft MS-DOS stub, the PE signature, the COFF

file header and an optional header. A COFF object file header consists of a COFF file

header and an optional header. In both cases, the section table follows the file headers

immediately. Each row of the section table is a section header, which describes a

particular section. Each section is physically aligned on a disk block boundary and

MS-DOS 2.0 Compatible
EXE Header

unused

OEM Identifier
OEM Information

Offset to PE Header

MS-DOS 2.0 Stub Program
 and

Relocation Table
Unused

PE Header
(aligned on 8-byte boundary)

Section Headers
Image Pages:
import info
export info

base relocations
resource info

Microsoft COFF Header

Section Headers

Raw Data:

code
data

debug info
relocations

 13

logically aligned on a memory page boundary (4096 on the x86). The linker creates a

PE file for a specific target address at which the file will be mapped [36].

2.2.1 Accessing Symbols In Shared Library

Unlike Linux, Microsoft Windows does not provide an interface that can be used to

retrieve the address of imported functions. However, the PE file does contain an

imported function table that stores the names of imported functions and the libraries

where the functions are defined. This table is known as the Import Address Table

(IAT). I will now explain the process of accessing the addresses of functions from the

IAT.

In order to work with the Microsoft PE, a handle to the executable has to be

obtained. The Win32 API provides a GetModuleHandle() call to retrieve a module

handle, known as HMODULE, for the specified module. This function returns a handle

to the file used to create the calling process when parameter is NULL. The base of the

module, which contains the DOS header is then retrieved from the HMODULE handle.

The optional header in the PE is then accessed to obtain the data directory, which

contains the various sections in the PE. The import descriptor entry is then accessed

from the data directory. This is the section that contains the information about the

imported libraries.

The import descriptor entry contains two data thunks - OriginalFirstThunk

and FirstThunk . The import information is in fact stored in two tables. The

OriginalFirstThunk contains a reference to the Import Name Table for the

module and FirstThunk contains a reference to the Import Address Table for the

module. The two tables contain entries of IMPORT_BY_NAME structure. This structure

 14

contains both the address and the name of the imported function and hence, the

desired function address can be retrieved from the PE once the program is loaded. The

Import Name Table and the Import Address Table are merely two copies of the same

table. The PE loader, which maps the function names to addresses when loading the

PE, uses these two tables. Since the addresses of the various functions are unknown at

compile time, the loader performs the resolution and replaces each entry in the Import

Address Table with the actual address of the function. If there arises a need to know

which function an address corresponds to, the Import Name Table can then be used.

TRUSS employs this technique to obtain the address of standard C functions defined

in shared libraries in Windows.

 15

Chapter 3

Previous Work

Security modules that provide protection to applications can be employed at three

different levels in computer systems. Firstly, it is possible to modify the hardware of

the existing systems or add hardware modules to the systems to monitor applications.

Some systems include an additional processor solely to perform security checks. This

is a fast but rather expensive method. Secondly, security measures can be included

into compilers. Compilers can insert additional instructions into the applications to

perform checks and prevent any violations. This would require recompilation of the

source code but to most legacy applications, the source code is not available. Thirdly,

defensive measures can be applied simultaneously on the applications that are

executed in the system. This, however, requires additional tools to decode and analyze

the instructions in the applications and it is likely to incur higher time overhead than

the earlier methods.

In this chapter, I will briefly review the currently available tools that claim to

protect systems against the attacks under discussion.

3.1 Techniques

I will review tools built for Linux operating system followed by tools built for

Windows operating system. I will then review tools that are able to operate on both

Linux and Windows.

 16

3.1.1 Tools For Linux

SmashGuard [40] is a hardware solution that protects function return addresses in the

process stack from buffer overflow attacks. This technique modifies the semantics of

call and return instructions in the instruction set architecture. This modification

enables functions to store a copy of the return addresses in a memory segment during

calls and to perform comparison with the stored return addresses upon return

instructions. In an event where the return address in the stack does not match with the

stored copy, the processor raises a hardware exception and terminates the execution.

Modern CPUs contain a considerable amount of memory on the chip itself.

SmashGuard utilizes this memory space to create a data stack. This is used for storing

function return addresses. Hence, by modifying the instruction set architecture,

SmashGuard is able to provide protection to applications without modifying the

application.

StackGuard [19] is a compiler extension that enhances the executable produced by

the compiler so that the executable is protected against stack-based buffer overflow

attacks. This technique specifically targets the return addresses of the functions in the

stack. StackGuard can detect changes to active return addresses before a function

returns. In order to prevent changes to active return addresses, StackGuard stores a

canary (known 4-byte value) adjacent to the return address in the stack. When the

function returns, checks are carried out to ensure that the canary is unaltered. The

values of the canary are selected randomly so that adversaries will not be able to skip

or simulate the canary. In addition, StackGuard uses of MemGuard to prevent any

modification to the return address. MemGuard write-protects pages and generates

exceptions when protected pages are accessed. Thus, StackGuard write-protects pages

 17

containing the stack but restores write privilege to the topmost page to allow the

program to access the stack variables.

StackShield [55] is a compiler extension implemented by Vendicator. It can work

with GCC compiler to provide protection for applications that are compiled with it.

During compilation, StackShield inserts instructions into the program to make copies

of function return addresses and saves them in a data segment known as

Global_Ret_Stack . These instructions are inserted after call instructions and

before return instructions. During execution of the program, when a function call is

invoked, the function return address is stored into Global_Ret_Stack and before a

return instruction is executed, the return address in the process stack and the copy in

the data segment are compared. An alert is raised if the addresses do not match.

StackShield, however, will only protect an application if the application is compiled

with it. Hence, the source code of the application is necessary in order to utilize

StackShield. This, however, is not possible for many legacy applications where only

the binaries are available.

Return Address Defender (RAD) [14] is another compiler extension which

provides a compile-time solution to buffer overflow attacks targeting return addresses.

Like StackShield, RAD automatically adds instructions into applications that are

compiled with it. Protection code is inserted into the function prologues and

epilogues. Hence, when a program is executed, any function invocation will copy the

return address to a memory segment called Return Address Repository . When

return instructions are executed, the return address on the process stack is compared

against the stored copy. A mismatch would raise an exception. In addition, RAD

marks the Return Address Repository as read-only to ensure the credibility of

the return addresses stored in the memory segment. It also has the option of marking

 18

only the neighbouring pages of the Return Address Repository as read-only;

this causes less performance degradation compared to the previous method. However,

like StackShield, RAD too requires the source code of the program in order to provide

protection.

Libsafe [54] uses a technique that can intercept invocations of most standard C

functions and performs safety checks on the arguments. If the checks pass, either the

original functions or the equivalent alternatives get executed. Suppose the check fails,

the Libsafe will log the necessary information and terminate the application. Libsafe

functions as a dynamically linked library that is activated by explicitly specifying

itself in the LD_PRELOAD environment variable. By doing so, the library is loaded

even before the program begins execution. When Libsafe intercepts a C library

function, it performs frame pointer checks and frame span checks. Frame pointer

check ensures that “%n” format specifier does not modify any return addresses or

frame pointers. Frame span check ensures that no buffer is overflowed beyond the

current frame pointer in the process stack. The advantage of Libsafe is that it does not

require the source code of the application; neither does it modify any part of the

application.

Guarded Memory Move (GMM) [34] is a technique that functions in a similar way

to Libsafe. GMM also functions as a dynamically linked library that is activated by

explicitly specifying itself in the LD_PRELOAD environment variable. During dynamic

symbol resolution, the loader checks libraries in the LD_PRELOAD variable and the

functions found in GMM library are executed instead of the C library functions.

GMM’s alternative C functions store content of some memory locations above the

current stack frame and three previous return addresses into private location during a

call instruction. When the subroutine returns, the existing memory content is

 19

compared with the stored data. A violation is signalled if a mismatch is found. In this

way, the safety of the application is assured. Just like Libsafe, GMM does not require

source code and it does not modify any part of the application. Both LibSafe and

GMM provide safe versions of format functions. Hence, these applications can also be

considered as format string defense tools.

Libverify [6] is a proposed solution that works on binaries at runtime to provide

protection against buffer overflow attacks that target function return addresses. It

works on Linux operating system. Libverify works as a dynamically linked library

that is activated by explicitly specifying it in the LD_PRELOAD environment variable.

By doing so, the library is loaded even before the program begins execution. The

_init() function in Libverify will modify the application such that every function

invocation and return instruction will invoke the checking functions in its library.

Libverify copies every function instruction to the heap and appends a branch

instruction to an entry wrapper function. This entry wrapper function stores a copy of

the return address in a canary stack (which resides in the heap memory) and then

branches back to the original function. Likewise, the return instructions are replaced

with an exit wrapper function, which in turn verifies the return address in the process

stack with the corresponding value stored in the canary stack. Upon a match, the

process will execute the return instruction and continue with its execution flow. Any

mismatch will create a syslog entry, output an error message and terminate the

process. Libverify provides dynamic protection to executables. Its ability to work on

binaries without the source code is a major advantage. However, this software has not

been released.

FormatGuard [17] employs a defense mechanism that prevents exploitations due to

format strings. In order to prevent format string attacks, FormatGuard compares the

 20

number of actual arguments provided for format functions against the number of

arguments specified in the format string. If the number of arguments called for were

more than the number of arguments passed to the functions, FormatGuard would

classify the case as an attack. It will log the attempt and abort the program. Counting

the actual number of arguments that are passed to format functions is a difficult task.

This is because the arguments are passed as a variable list that does not provide any

counting mechanism. FormatGuard counters this problem by using CPP variable

argument syntax for argument counting and this function is inserted into the stdio.h

file. FormatGuard is packaged as a modified implementation of glibc 2.2 libraries.

Thus, applications have to be complied with the modified libraries to utilize

FormatGuard’s protection. In addition, the CPP syntax deployed in FormatGuard may

cause compatibility problems when executing some C programs.

White listing [49] is a technique used to control memory modification via format

functions. It maintains a list of memory address ranges that allow memory

modification. This list is referred to as the white list. During runtime, the technique

inserts and removes memory address ranges to the white list and from it. Hence, a

format function can check with the white list to verify whether a valid integer pointer

is being modified, when handling a ‘%n’ format specifier. The white listing scheme

proves to be rather flexible in that it is possible to enforce different policies - one at a

time - using the same technique. Firstly, removing all memory addresses from the

white list can enforce a ‘no memory write’ scheme. Secondly, ‘write anywhere’ can

be put in place by specifying all possible address ranges in the white list. Lastly,

adding a user specified range of addresses into the white list can enforce a ‘restricted

write’. White listing can automatically register the address range before a format

function and unregister it after the function. Hence, when a format function

 21

encounters a ‘%n’ specifier, it will always scan the white list to check if the memory

addresses to be written to is safe for a write operation. White listing uses the C

Intermediate Language System (CIL) to implement its defense mechanism. CIL

provides the tools that permit easy analysis and source-to-source transformation of C

programs. Hence, the C program is transformed into the intermediate language, after

which the additional instructions for protection are inserted. As such, this technique

requires the source code of the application.

C Range Error Detector (CRED) [51] is a safe C compiler. It uses an object tree,

containing the memory ranges occupied by all the buffers used in a program. When an

object is created, it is added to the tree and when it is destroyed or goes out of scope,

it is removed from the tree. A pointer operation is considered illegal if a memory

location that is not within the tree is accessed. Moreover, CRED does not change the

representation of pointers within the application. As such the instrumented code can

interoperate with the unchecked code. Limitations in CRED include interchangeable

use of structures and arrays and unverified accesses within library functions.

LibSafePlus [3] is a dynamically loadable library and it is an extension to LibSafe.

LibSafePlus includes heap protection in addition to LibSafe’s stack protection. It

contains wrapper functions for unsafe standard C functions. These wrapper functions

determine the target buffer sizes in any operation that writes to a buffer and ensures

that the operation does not result in an overflow. Type Information Extractor and

Depositor (TIED) is a tool that can extract debugging information from a program and

can enhance the program with additional information regarding the sizes of all the

buffers used in the program. LibSafePlus uses TIED to prevent buffer overflows.

LibSafePlus requires the program to be compiled with the debugging option ‘-g ’.

This provides the executable with additional debugging sections. TIED can thus

 22

examine this debugging information and extract the starting addresses and sizes of

buffers used in the program. The wrapper function in LibSafePlus uses this

information to protect the unsafe functions in standard C library so as to buffer

overflows.

Transparent Runtime Randomization (TRR) [58] proposes an idea to randomize

runtime locations of critical data in the application in order to make it difficult for an

adversary to determine the location of the data through experimentation. TRR

essentially modifies the dynamic loader to relocate the user stack, shared libraries,

user heap and the GOT to different memory locations. This technique handles both

position dependent memory region and position independent memory region. User

stack, user heap and shared libraries are position independent, as these regions do not

have complex inherent relationship with other parts of the application. The GOT is a

position dependent region because this region is fixed inside the program’s data

segment and any uncoordinated relocation will break references within the

application. The random offsets used to relocate the critical data regions are chosen in

a way that the memory regions do not overlap but have sufficient space to grow. The

randomizations in this technique do make it more difficult for attacks to succeed but

do not completely thwart attacks because the relocated memory regions are not

protected in any way.

PointGuard [18] is a pointer protection technique that encrypts pointers when they

are stored in memory and decrypts them when they are loaded into CPU registers.

PointGuard is implemented as a compiler extension that modifies the intermediate

syntax tree to insert encryption and decryption code. However, encryption only

provides confidentiality. It does not guarantee the integrity of the encrypted values. In

addition, although PointGuard imposes very small performance overhead for most

 23

applications, it only protects the code pointers (function pointers and pointers in

longjmp() buffers) and data pointers. It does not offer any protection for other

program objects.

Propolice [22] is a compiler extension that can protect executables from stack

smashing attacks. It places canaries in memory location between the frame pointers

and local variables and ensures that the memory locations adjacent to the canary are

not altered. In addition, Propolice reorders the location of stack variables. It places

local pointers below arrays. Pointers from the arguments are placed before the local

variables. Having local pointers placed below arrays prevents attacks that attempt to

overflow the arrays in order to modify the pointers. Placing pointers from the

arguments before the local variables makes it more likely for the buffer overflow

attacks to be detected.

One point to note is that GCC 4.1 incorporates a modified version of IBM ‘s

ProPolice Stack Detector. This version includes more run-time and compile-time

optimizations and function analysis. Hence, applications compiled with GCC 4.1 will

include stack protection instructions by default.

Another class of defense techniques include those which support non-executable

mappings on platforms. These techniques assign data segments such as the stack and

heap as non-executable. In this way, any malicious code that resides in these data

region will be denied execution privileges. Examples of such techniques are the

Solaris/SPARC Non-Executable Stack Protection and NetBSD 2.0 Non-executable

Stack and Heap Protection.

 24

3.1.2 Tools For Windows

DOME [47] is a technique for detecting several classes of malicious code in

applications. It uses static analysis to identify and to store locations of Win32 API

calls within the application. It then monitors the executable to verify that all API calls

are made from the observed addresses. DOME utilizes Detours [27] to intercept every

API functions in an application. Detours is a library for intercepting Win32 functions

on x86 machines. It intercepts functions by inserting additional code into the binary

during execution. It can divert calls to Win32 functions so as to pass control to the

user. It can also allow the original function to be invoked if needed. The underlying

idea is to prevent any Win32 API invocation from unverified location, thus preventing

the malicious code from invoking any API function.

Binary rewriting defense [44] is a binary level solution to foil buffer overflow

attacks. This technique does not require the source code of the application. It protects

the function return addresses by adding protection code at every function invocation

in the binaries. This is done by static analysis without disturbing the procedure’s

execution flow. This technique requires tools to analyze the binary in order to identify

each instruction. Binary rewriting method uses dissemblers to accurately trace the

location of function invocations in the binary. In order to store copies of the return

addresses, the binary rewriting method employs similar technique used in RAD.

Function return addresses are stored in a repository upon function calls and a

comparison is done before return instructions are executed. However, in contrast to

previously mentioned techniques, binary rewriting method inserts additional

protection code only for ‘interesting functions’; these functions contain instructions to

allocate and to free the memory for local variables. Thus, functions that do not contain

any local variables are considered safe functions as stack based buffer overflow

 25

cannot succeed in functions without local variables. However, static analysis of

binaries cannot provide protection for dynamically linked libraries and Position

Independent Code (PIC). Moreover, static analysis of binaries using dissemblers is

not 100% accurate and it is still possible to miss vulnerable functions even after using

it.

3.1.3 Tools That Operate In Linux And Windows

HeapShield [8] is a memory management approach that can prevent heap overflows.

It basically modifies the free-list based heap as typically used in Linux and Windows

to segregated-fits ‘Big Bag of Pages’ (BiBOP) style heap. The heap allocator divides

memory into chunks that are multiples of the system page size. Objects of different

sizes are allocated in different chunks. Object sizes and other metadata are stored

either at the beginning of the chunks or in a page directory. This type of heap

organization allows efficient calculation of available free space in allocated buffers

and thus thwarts heap overflow attacks.

Secure execution via program shepherding [29] is a software technique that thwarts

all attempts to hijack a program’s control flow using security policies and binary

rewriting techniques. It monitors control flow transfers during program execution. It

employs the use of three techniques to enforce security policies. Program shepherding

can restrict execution privileges based on code origins. It can restrict control transfer

based on instruction class, source and target. In addition, program shepherding can

place a sandbox on any type of application. Program shepherding has been built as an

extension to a dynamic optimizer called RIO. RIO is built upon an IA32 version of

 26

Dynamo. RIO is implemented for both Linux and Windows and it can execute large

desktop applications and multi-threaded applications.

The No eXecute (NX) bit is a technology used to distinguish areas of memory for

instructions storage and data storage. Any memory segment assigned with the NX bit

will mean that it can only be used for storing data. No instructions can be executed

from regions assigned with the NX bit. The general technique is known as executable

space protection. It is used to prevent malicious software from taking over computers

by inserting their code into another program's data storage area and running their own

code from within this section.

In this thesis, I am introducing a new tool called TRUSS. TRUSS is a software

technique that operates in both Windows and Linux. It aims to thwart common forms

of buffer overflow attacks and it includes novel techniques to protect the GOT and

heap buffers without modifying any part of the application. I employ a dynamic

binary rewriting tool, DynamoRIO, to implement TRUSS. It is to be noted that this is

the same tool that has been used in Program Shepherding. However, the DynamoRIO

application used in this project has been modified to support self-modifying code.

 27

Chapter 4

DynamoRIO Operations

The protection provided by TRUSS consists essentially of rather straightforward

ideas. However, the major challenge is to provide an efficient method to perform

binary instrumentation and to insert minimal checking instructions while bringing

down the performance overhead. TRUSS uses DynamoRIO as its implementation

platform.

DynamoRIO is a runtime code manipulation tool that supports code

transformations in an application during the application’s execution. Its operating

procedure is illustrated in Figure 7. DynamoRIO maintains a code cache where it

stores a copy of the application instructions. These instructions are stored in units of

basic blocks such that each basic block ends with a control transfer instruction. The

basic blocks in the code cache are used for execution. Hence, DynamoRIO constantly

transfers control between instrumentation of basic blocks from the application code

and execution of the basic blocks. DynamoRIO includes an important optimization

technique to improve the application’s performance. It contains a cache that stores a

copy of contiguous sequences of basic blocks known as traces. These are basic blocks

that are executed more than a default number of times. The control transfer

instructions in these blocks are replaced with frequently used targets of indirect

branches (inlined into the traces); these also include a check to verify the target of the

branch instruction [11]. Traces improve the application’s performance by allowing a

processor’s instruction decoder and a branch predictor to work more efficiently.

 28

Figure 7: Operations of DynamoRIO [11]

4.1 Basic Block Cache

DynamoRIO begins its execution by copying the first basic block of an application

into its basic block cache. This basic block extends across unconditional branch

instructions and call instructions. The block ends with an indirect branch instruction

or a conditional instruction. This block is then executed until the target address of the

indirect branch or conditional instruction is resolved. Upon resolving the target

address, the cache is searched for basic blocks with starting address corresponding to

the target address. If a match is found, the target address is replaced with the start of

that basic block. If no match is found, the target address is modified so as to return

control to DynamoRIO. DynamoRIO would then continue to build a new basic block,

starting at the target address. When this new block is added to the cache, the target

address of the indirect branch or the conditional instruction is modified to point to the

start of this basic block.

 29

4.2 Trace Cache

Traces provide optimization within the DynamoRIO framework and also organize a

sequence of commonly executed basic blocks into a single contiguous piece of code.

This improves the efficiency of indirect branches and achieves a better code layout.

The creation of a trace begins by looking for a suitable trace head. A trace head is

either the target basic block of a backward branch or an exit from an existing trace.

Each trace head is associated with a counter that gets incremented each time the block

is executed. When the counter exceeds a threshold number, the sequence of basic

blocks that follows the trace head is concatenated to the trace head. The trace

terminates when a backward branch or a basic block that is part of another trace is

reached [11]. During execution, the trace cache is searched first for matching traces

before the basic block cache is.

4.3 DynamoRIO Interface

DynamoRIO provides client hooks like dynamorio_basic_block() and

dynamorio_trace() , which are invoked whenever a basic block or a trace is to be

added to the basic block cache or the trace cache respectively. It also incorporates a

set of APIs that allows the basic blocks in the cache and the traces in the trace cache

to be analyzed and manipulated. It also allows a user to build a client program, using

the APIs, which can be attached to DynamoRIO so as to work on the application. The

client program is compiled as a shared library and is loaded before DynamoRIO

begins its routines. Hence, the defensive mechanism in the client program is able to

intercept the application at the appropriate instances. All these features come at a cost

 30

ranging from zero to thirty percent of time and memory overhead on both Windows

and Linux [11].

 31

Chapter 5

Security Modules

In this chapter, I discuss some common buffer overflow exploits and the defensive

mechanisms incorporated in TRUSS to detect and to prevent such vulnerabilities and

their implementation details.

5.1 Return Address Defense

A common form of attack is by means of modifying control information in the

application address space and transferring the program control to any malicious code.

The function return address is among the most vulnerable control information that

resides in the process stack. Its role is to facilitate a function to continue executing the

correct instructions following a subroutine. It thus plays a vital role in ensuring

correct control flow within an application. However, no form of protection is provided

by the application or the operating system in order to prevent any unauthorized

modification of return addresses.

 During a program execution, when a call instruction gets executed, the process will

evaluate the address of the instruction that follows the subroutine. This evaluated

address will then be pushed into the process stack. Following this operation, most

subroutines will save the value of the frame pointer into the stack and assign it to the

location pointed by the stack pointer register. This location is the start of the

subroutine’s active stack frame. Moreover, if the subroutine requires arguments, they

 32

are saved in the process stack before the return address. Figure 8 shows the layout of

the stack frame in the process stack.

ret addr

frame ptr

local variable

…

…

param #

param #

format string

ret addr

frame ptr

Figure 8: Layout of an x86 process stack frame

Upon completion of the subroutine, the previous value is restored in the frame

pointer. This is usually performed explicitly by a leave or pop instruction.

Consequently, the top of the stack now contains the return address. Hence, when a

return instruction is executed, the instruction pointer is replaced with the value of the

return address and execution control is passed back to the caller.

5.1.1 Return Address Modification Exploit

The above described method of calling subroutines and returning from subroutines

assumes that the integrity of the stored return address was never violated. However,

this is a naive assumption because the subroutine could have altered the return address

illegally. This would in turn allow any malicious code (to which the return address

was altered) to be executed when the subroutine returns. To illustrate how this might

happen, consider the C function in Figure 9.

High address

Low address

 33

int foo(int a, int b)
{

char homedir[100];
...
strcpy(homedir,getenv(“HOME”));
...
return(1);

 }
Figure 9: Vulnerable C function - 1

If the result from getenv() is of a size that is larger than the local variable

homedir , then strcpy() will overwrite the memory locations adjacent to homedir ,

including the return address of the subroutine foo() . Consequently, when the

subroutine is completed and it performs a return to pass control back to the caller

function, the execution flow will be passed to the value that lies in the return address

storage location. Usually, such situations will result in “segmentation fault” or “bus

error” messages. However, adversaries can place a well-crafted value to replace the

return address in order to redirect execution to the location of their choice.

A buffer overflow in a stack requires data that contains executable code, followed

by enough repetitions of its address (in memory). The purpose of this is to redirect the

program’s execution flow to the inserted code. This is with the assumption that the

inserted code is small enough to fit into the local buffer. However, such an attack

requires the adversary to predetermine the exact starting address of the inserted code

to replace the return address. Adversaries can get around this requirement by

appending a sequence of NOP instructions before the executable code. Concatenating

the sequence of NOP instructions creates a ramp. The modified return address, by

pointing anywhere in the ramp, can enable a successful attack. While it still takes

some effort to find the proper range, an adversary only needs to make a close guess.

A successful return address modification attack allows an adversary to execute

instructions with the same privileges as that of the compromised program. If the

 34

compromised program was running with the super-user privilege, the adversary can

inject code to spawn a super-user shell and subsequently take control of the machine.

In the case of worms, a copy of the worm program can get installed with super-user

privilege and the system begins looking for more machines to infect [31].

5.1.2 Preventing Return Address Attack In TRUSS

TRUSS intercepts every call instruction and return instruction in a program to insert

protection code. It uses the dynamorio_basic_block() function to interrupt the

application. This is performed after DynamoRIO creates a basic block and before the

block gets executed. In this function, TRUSS scans through every instruction in the

basic block to identify the call and return instructions. When call and return

instructions are encountered, TRUSS redirects the basic blocks to two different

modules where additional instructions are inserted into them.

Following call instructions, TRUSS inserts instructions to calculate the return

address from the basic block and store it into a separate memory segment. The return

address is calculated by adding the address of the call instruction to the length of the

instruction. This addition will give the address of the instruction that follows the call

instruction in the caller function. The memory segment is dynamically allocated and

is known as the shadow_stack . TRUSS also stores the location of the return address

in the stack into the shadow_stack . Both the location and the value of the return

address are stored in the same memory segment for space efficiency. Upon

encountering return instructions, TRUSS inserts instructions before these to retrieve

the return address and its locations. It also retrieves the corresponding addresses

stored in the shadow_stack, after which, it performs a comparison. The comparison

 35

is to ensure that the return addresses and the locations match. Otherwise, an error

signal is raised and the application is terminated.

For instance, if an adversary attempts to overwrite a function return address with

the start address of a malicious code, he will have to inject such a code into the stack

or the heap. When a subroutine is called, shadow_stack will store a copy of both the

subroutine’s return address and its corresponding location. During the subroutine’s

execution, the adversary by some means modifies the return address in the process

stack. In a native program, such a scenario will cause the instruction pointer to be set

to the modified return address in the process stack and this will result in the execution

of the malicious code. However, with TRUSS in place, before a return instruction is

executed, the return addresses in the process stack and the shadow_stack will be

compared. In a case where the locations match and the return addresses do not match,

an error will be signalled and the application will be terminated. In this way, TRUSS

protects every function return address used in an application. This technique is similar

to those discussed in other tools such as SmashGuard, StackShield and RAD.

However, TRUSS differs from these tools because unlike the other tools which add

additional checking instructions during compilation or through hardware

modification, TRUSS inserts the checking instructions at runtime. This is clearly an

advantage when protecting legacy applications without source code.

5.2 Base Pointer Defense

The base pointer (also known as frame pointer) is another piece of vulnerable

information that also resides in the process stack. The main function of the frame

pointer is to represent the start of each stack frame. In x86 architecture, whenever a

 36

subroutine is invoked, a new stack frame is allocated in the process stack to the

subroutine and when the subroutine completes, the process stack is freed. The frame

pointer is saved in the process stack during every call instruction and is restored

during each return instruction. This is illustrated in Figure 8. The frame pointer

facilitates efficient access to current stack frame and keeps track previous stack

frames. The value is maintained in a register for fast access. In addition, when

applications are complied without the GCC option -fomit-frame-pointer ,

subroutine parameters and local variables are usually referenced relative to the frame

pointer.

5.2.1 Base Pointer Modification Exploit

One technique to attack a system by compromising the frame pointer is via a dummy

stack frame. As illustrated in Figure 8, when a function is invoked, the return address

of the function is pushed into the stack. This is followed by saving the frame pointer

value in the stack and then updating the frame pointer register with the stack pointer

register. When an adversary attempts to modify the frame pointer, it will be rather

easy for the adversary to access the frame pointer if parameters are passed to the

function. In x86 machines, the frame pointer will be at an offset of 8 bytes with

respect to the last parameter.

For instance, consider the vulnerable code fragment in Figure 9. The exploit

illustrated in Section 5.1.1 modifies a return address to execute a sequence of

malicious instructions. Although it will be easier to modify the return address directly,

some protection techniques prevent direct modification of return addresses. Hence,

using a dummy stack frame is a way to bypass those protections. The local buffer

 37

(used in Figure 9) is overflowed up to and including the previous frame pointer. The

data used for overflowing will be constructed in a manner resembling a stack frame. It

will contain the start address of a sequence of malicious instructions followed by a

memory location with an arbitrary stack address. The current frame pointer is

overwritten with the address of the location of the arbitrary stack address. The

purpose of such an action is for the frame pointer to be replaced with modified frame

pointer when the subroutine completes and performs a return. Consequently, when

another return instruction is executed, the address of the malicious code will replace

the instruction pointer and in turn gets executed. Since none of the return addresses

are altered directly, protection techniques that prevent return address modifications

will not be able to detect such an attack.

5.2.2 Preventing Base Pointer Attack In TRUSS

The protection of the frame pointers is similar to the technique carried out for the

return addresses. Following a call instruction, the frame pointer is saved in a buffer

and before a return instruction, the frame pointer value is compared with the

corresponding value in the stack. The storage of the frame pointer values is in fact

done with the same shadow_stack (as mentioned in Section 5.1.2) for efficiency.

5.3 Global Offset Table Defense

Dynamic linking is used by applications to resolve shared symbols. In order to carry

out dynamic linking, the dynamic linker primarily uses two processor-specific tables,

the Global Offset Table (GOT) and the Procedure Linkage Table (PLT) as mentioned

in Section 2.1. The dynamic linkers support position-independent code through the

 38

GOT in each shared library. The GOT contains absolute addresses to all of the static

data referenced in the program and it provides direct access to a shared symbol

without compromising position-independence. Since the executable file and shared

objects have separate GOTs, a symbol may appear in several tables. The dynamic

linker processes all the GOT relocations before giving control to any code in the

process image, thus ensuring that the absolute addresses are available during

execution. The PLT is used to redirect function calls between the executable and a

shared object or between different shared objects. It converts position-independent

function calls to their absolute locations. The PLT contains many entries and allows

procedure addresses to be resolved when they are called for the first time.

Suppose, there is a call to printf() in an application, this will correspond to a

call to the PLT entry of printf() in the executable. This call will then make an

indirect branch to the printf() entry in the GOT. If the GOT entry contains the

absolute address of printf() , the instructions of printf() are executed. If the

GOT entry has not been resolved, the dynamic linker is then invoked to resolve the

absolute address of printf() .

PLT0: pushl GOT + 4

 jmp *GOT + 8

 PLTn: jmp *GOT + m

 push #reloc_offset

 jmp PLT0

Figure 10: Procedure linkage table

The GOT stores pointers to all the global data that is addressed by the executable

file. At load time, the dynamic linker stores two values at the memory locations

*GOT + 4 and *GOT + 8. These two addresses, in fact, refer to the second and third

 39

word in the GOT respectively. In the second word, the dynamic linker stores a code

that identifies a particular library. In the third word, the dynamic linker stores the

address of the symbol resolution routine.

As shown in Figure 10, the first entry in the PLT is PLT0. This is a routine to call

the symbol resolution routine. In each of the other entries in the PLT, the instructions

begin with an indirect jump to the GOT. Before any function is resolved, the target of

the GOT entry refers to the next instruction in the PLT entry. When a function is

called for the first time, the PLT routine is invoked and because the actual address of

the function is yet to be resolved, the indirect jump executes the next instruction. The

push instruction saves an offset into the process stack. This offset value is obtained

from the executable’s relocation table and it identifies both the symbol to be resolved

and its corresponding GOT entry. The next jump instruction calls PLT0. Here the

library identifier is pushed into the process stack and the dynamic linker’s symbol

resolution routine is invoked. Upon resolving the symbol, the linker stores the

function’s absolute address in the GOT entry. Hence, subsequent calls to the PLT

entry will jump directly to the function itself without invoking the dynamic linker

[33].

5.3.1 Global Offset Table Modification Exploit

The GOT entry is a point where a transfer in the program’s execution flow occurs.

This information is not protected in the executable and is vulnerable to attacks. One

way to exploit the GOT entry is to overwrite the entry with the address of a sequence

of malicious instructions. Thus, when the entry is utilized by the application, the

 40

malicious code gets executed. In this section, I will explain how such an attack can be

carried out. Consider the vulnerable code in Figure 11.

int main(int argc, char* argv[]) {
 int* ptr;

char homedir[100];
...
ptr = homedir;
...
strcpy(ptr,argv[1]);
...
strcpy(ptr,argv[2]);
printf(“Hello World!\n”);
...
return(1);

 }
Figure 11: Vulnerable C function - 2

If the result from argv[1] is of a size that is larger than the local variable homedir ,

then, the first strcpy() will overwrite the memory locations adjacent to homedir

including the integer pointer ptr . However, before a successful attack can be carried

out, the adversary has to obtain some information from the system.

 Firstly, the memory location of the GOT entry for printf() has to be determined.

It is relatively easy to deduce this information from an unstripped binary. Suppose an

executable is named example1 . Then, one can utilize the objdump package in Linux

to dump the dynamic relocations of the binary as follows:

 objdump --dynamic-reloc ./example1 | grep printf

This command will output the desired address. Secondly, malicious code appended

with NOP instructions has to be prepared. This piece of malicious code is usually

referred to as shellcode. This data has to be constructed in a manner such that it

overflows homedir and overwrites the memory location of ptr with GOT entry of

printf() .

 41

 During the second strcpy() , an approximate start address of the shellcode has to

be provided. This will, hence, be written to the memory location pointed to by ptr –

in this case, the GOT entry of printf() . Therefore, when the program executes

printf() after this strcpy() , the malicious code will be executed.

5.3.2 Preventing Global Offset Table Attack In TRUSS

TRUSS can protect applications that are vulnerable to the above-mentioned attack. It

directs the dynamic linker to resolve all GOT entries during the initial start-up

operations, after all the shared libraries have been loaded into the memory but before

transferring control to the main program. This is achieved by declaring the

environment variable LD_BIND_NOW. When DynamoRIO begins execution, it invokes

dynamorio_init() hook function. In this function, the application’s executable is

examined and the addresses and sizes of the GOT and PLT are extracted. Following

this, each entry of the GOT is stored into a separate buffer, GOT_BUF, with the

corresponding GOT address. When DynamoRIO copies the application code into a

basic block, the basic block is scanned for a call to a PLT entry and an indirect branch

to a GOT entry following immediately. Upon detection, the indirect branch target

address is used to retrieve the actual address of the function from GOT_BUF and a

direct branch to the actual address replaces the indirect branch instruction. In this

way, the application does not have to use the GOT during its execution and thus will

bypass any GOT modification attack. An example involving a call to printf() is

depicted in Figure 12. The basic block on the left illustrates the usual way of invoking

a printf() . The basic block on the right is one which has been modified by TRUSS.

 42

 ……
……
……

call plt_printf

jmp *got_printf

� � �

 ……
……
……

call plt_printf

jmp printf

It has to be noted that GOT attacks may be detected via other techniques as well

because it involves overflowing data buffers .

Figure 12: Copy of basic block in code cache

5.4 Format String Defense

The essence of the format string attacks utilizes the vulnerability in some standard C

functions that use the format string argument. In C programming language, it is

possible to declare the functions that take in a variable number of arguments. A

format function is a special kind of C function taking in variable number of

arguments, of which one is a format string. This function evaluates the format string

argument by accessing the parameters that follow. These parameters, which could be

of varying types, are converted into a suitable form and then, passed to the output

stream. The signatures of widely used format functions are as follows:

� int printf(const char* format, ...)

� int fprintf(FILE* stream, const char* format, ...)

� int sprintf(char* str, const char* format, ...)

� int snprintf(char* str, size_t size, const char* format, ...)

� int vprintf(const char* format, va_list ap)

� int vfprintf(FILE* stream, const char* format, va_list ap)

 43

� int vsprintf(char* str, const char* format, va_list ap)

� int vsnprintf(char* str, size_t size, const char* format, va_list ap)

The format string can contain additional information that determines the format of the

output. These include flag characters, field width, precision and length modifiers.

The format string also carries information on the number of parameters that

supposedly follow it. This information can be observed by counting the number of

format specifiers present in the format string argument. Format functions become

vulnerable due to the fact that when the format functions evaluate the format string, it

has to access the parameters that follow. However, these functions do not ensure that

the parameters are indeed sent by the caller function. Their evaluation is based on the

assumption that the caller function has pushed the parameters into the process stack

and that the evaluation routine is accessing a valid argument. This lack of validation

on the memory locations accessed by format functions might result in a series of

security breaches.

5.4.1 Reading The Stack

Many applications commonly use a user-supplied input as format string argument

when format functions are invoked. However, when a call to a format function

contains format specifiers without the corresponding argument, the function will

continue to read values from the stack and print them to the output stream. The format

function will not check if the argument accessed on the process stack is within a

caller’s stack frame. This makes the format function vulnerable because an adversary

can supply a bogus format string argument as input. An example is illustrated in

Figure 13.

 44

printf(“%08x.%08x.%08x.%08x.%08x.%08x\n”);

Figure 13: Bogus format string

The printf() function in Figure 13 will not check whether any parameter is passed.

Instead, it will assume that all memory accesses are valid and will read values from

the stack. Hence, return addresses and other such critical values in the program

memory can be displayed.

Moreover, it is also possible to use of the format string vulnerability to read values

from any arbitrary memory location in the text segment, data segment or the heap of

the process. When string arguments are passed to a subroutine, only a reference to the

string is pushed into the stack. The actual string can be located in the heap, the text

segment or the data segment. Suppose an adversary wants to read a string stored at the

address (eg. 0xbfffff00), he has to start by finding the location of the format string in

the process stack. Only a reference to the format string is pushed into the stack; so the

adversary has to read down the stack to find the actual location of the format string. A

number of ‘%x’ specifiers can do this.

printf(“AAAA_%x_%x_%x_%x_%x_%x_%x);

Figure 14: Detecting position of format string in x86 process stack

The printf() function shown in Figure 14 will output the content stored in the

process stack. By adding sufficient ‘%x’ to the format string, the function will

 45

eventually output the format string. When the output starts with ‘41414141_...’1, it is

an indication that the format string argument has been reached. Now, the adversary

can read the data at the address 0xbfffff00 by replacing AAAA with \x00\xff\xff\xbf

(little endian format) and the last ‘%x’ specifier with ‘%s’ specifier in the format string

as illustrated in Figure 15.

printf(“\x00\xff\xff\xbf _%x_%x_%x_%x_%x_%x_%s);

Figure 15: Reading content at arbitrary memory location

5.4.2 Writing Into Arbitrary Memory Locations

The format string argument, moreover, gives the format function the privilege to write

to memory locations with the use of ‘%n’ format specifier. This format specifier writes

the number of bytes output by the format function to a memory location that is

specified in the argument. Figure 16 illustrates this.

 int i;

 printf(“12345%n”, &i);

Figure 16: Proper use of ‘%n’ format specifier

The code fragment portrayed in Figure 16 will write the value 5 into the memory

location referred to by the integer i . However, the ‘%n’ format specifiers can be

abused to perform a write operation to any arbitrary location in memory. With such

capability, an adversary can overwrite critical values like return addresses and

function pointers to refer to a location of his choice. The use of the code segment

1 41 is ascii code for ‘A’

 46

illustrated in Figure 16 can achieve such an attack. Say an adversary wants a memory

address (eg. 0xbfffff00) to contain the value 0x44f660, he has to execute the code

illustrated in Figure 14 to find the memory address of the format string argument.

Subsequently, performing the code in Figure 17 will overwrite the desired memory

location with the desired value.

 printf(“\x00\xff\xff\xbf_%.4519518x_%n”)

Figure 17: Overwriting content of desired memory location

The two underscores will be output in addition to 0x44f65e symbols, which in total

will write the integer 0x44f660 to the memory location 0xbfffff00. Thus, the ‘%n’

specifier can result in serious security implications.

5.4.3 Format String Exploit

Format functions have the ability of reading and writing into arbitrary memory

locations. This poses a threat to critical program information that resides in memory.

Format functions that accept user-supplied input do not have the ability to discern

between a normal input and a malicious input. The absence of such a check allows an

adversary to capitalize on this vulnerability. An attack using format strings is

described in Figure 18.

 47

foo(){

 1.char text[200];
 2.FILE *input;

 ...
 3. input = stdin;
 4. fgets(text,sizeof(text),input);
 5. printf(text);
 ...

 }
Figure 18: Vulnerable C function - 3

Consider the code fragment in Figure 18. Such a code fragment will usually be used

to print out the user inputs. The user input is read-in via stdin and the input is copied

to a local buffer before it is displayed on the screen. The problem with this code

fragment is due to the printf() function. The correct use will be as follows:

printf(“%s”, text);

However, by forgoing the format specifiers, the program can be compromised by

means of a format string attack.

When the program reaches line 3, it will wait for the user to provide it with some

input. An adversary can take advantage of such a situation and provide a bogus format

string to take control of the system. An example of a bogus format string that will

work in this situation is as follows:

"%33\$344p%34\$n%33\$386p%35\$n%33\$277p%36\$n%33\$ 464p%37\$nA

A\x01\x00\x00\x00\xec\x98\x04\x08\xed\x98\x04\x08\x ee\x98\x04\

x08\xef\x98\x04\x08"

The core idea of the attack is to save the shellcode in an environment variable, A

(0xbfefda58), and overwrite the starting address of the DTOR deconstructor section –

found within all GNU compiled binaries – with the address of A. In this case, the

address of DTOR is 0x080498ec.The DTOR section contains a pointer to a function

 48

that will be called when the program exits. This section allows write operations.

Hence, when the program exits, the DTOR deconstructor will be invoked and thus the

shellcode will get executed. The beginning of the bogus format string –

 %33\$344p%34\$n%33\$386p%35\$n%33\$277p%36\$n%33\$4 64p%37\$n

– is derived from the address of environment variable, A. The address of A is firstly

converted into little endian format. A saturating counter approach is then employed to

convert each byte of the address to a value such that printf() outputs the correct

number of bytes to leave the lower byte equal to the memory address of A. The

saturating counter approach is illustrated in Figure 19. The specifier, %33\$344p, will

print out the 33rd argument in printf() ’s stack frame with padding that is of size

344 bytes and the specifier, %34\$n, will write that number to the location of

printf() ’s 34th argument.

mem1p = mem1 + 256
mem2p = ((256 - mem1) + mem2)%256 + 256)
mem3p = ((256 - mem2) + mem3)%256 + 256)
mem4p = ((256 - mem3) + mem4)%256 + 256)

Figure 19: Saturating counter approach

Following the pairs of ‘%p’ and ‘%n’, the format string contains some padding. The

padding is necessary to ensure that the following values and addresses get copied to

the 33rd and subsequent arguments. The padding used here is the character ‘A’. The

value 0x00000001 follows the padding. This value is included to represent a dummy

argument. This will be the 33rd argument. Following this value, the 4-byte addresses

of the DTOR deconstructor section is appended. It is necessary to include all 4 byte-

addresses because the ‘%n’ specifier writes to 1 byte memory. Consequently, when the

bogus format string is passed as input, the address of the DTOR deconstructor section

 49

gets overwritten and when the program exits, the shellcode stored in the environment

variable A gets executed [43].

5.4.4 Preventing Format String Attack In TRUSS

In order to monitor an application, TRUSS passes control to the user via the

dynamorio_init() function. This function is part of the client program that has to

be loaded before DynamoRIO begins execution. The dynamorio_init() function

allows the user to set up the environment to facilitate the monitoring of the

application. In TRUSS, the dynamorio_init() function resolves and stores the

addresses of the format functions even before they are invoked in the application.

These addresses are subsequently used to intercept every invocation of the functions.

The interception is done at the basic block level. The interception details are as

discussed in Section 5.1. The dynamorio_basic_block() function allows the

manipulation of a newly created basic block before it is executed. Hence, every

instruction in the block is scanned for calls to format functions. Each time a call to a

format function is identified, a call to a hook function is placed before the original

call. In this way, the hook function can check the arguments of the format function

before the format function uses them.

In addition, a parallel stack is maintained to keep track of the previous frame

pointer values when a function is invoked. This list is updated dynamically at every

call and return instruction. A stack pointer address is pushed into the parallel stack

during a call and an entry is popped from the stack before a return instruction. For

efficiency, information in the shadow_stack is used.

 50

During the execution of the application, the hook functions are called before the

format functions. The core idea in the hook functions is to prevent reading from or

writing to any memory location including and beyond the current stack frame pointer.

The hook functions access the arguments (including the format string argument) of

the format functions from the process stack. The format string argument is parsed to

observe the number of format specifiers present in it. This number must not be more

than the total memory space between the address that stores the format string in the

process stack and the stack frame pointer. This policy ensures that the safety of the

critical information such as the frame pointers and return addresses are not

compromised.

The above-mentioned technique will work for printf() , vprintf() ,

fprintf() and vfprintf() functions. The sprintf() , vsprintf() ,

snprintf() and vsnprintf() functions, however, do more than just to access

arguments in the stack to evaluate the format string. These functions store the

evaluated output in a buffer. If the output data is larger than the buffer’s size, the

buffer will be overflowed.

In order to prevent buffer overflow due to sprintf() , vsprintf() ,

snprintf() and vsnprintf() functions, a separate parser is used to evaluate the

format string argument. This parser scans the format string for format specifiers and

accumulates the total size of the parameters accessed. Integer and double arguments

will respectively add four and eight to the accumulator. String arguments, however,

will continuously increase the accumulator by one until a ‘/0 ’ escape character is

encountered. In addition, the precision and the field width options in the format string

have to be taken into account. While the precision option defines the maximum

number of characters to be printed to the output, the field width defines the minimum

 51

number of characters. This value has to be added to the accumulator, which will then

be checked against the memory space between the memory location (where the buffer

resides) and the stack frame pointer. This technique ensures that calls to sprintf() ,

vsprintf() , snprintf() and vsnprintf() functions are safely executed.

5.5 Vulnerable C Library Functions Defense

In the standard C library, there exist a few functions (other than format functions) that

are vulnerable to buffer overflow as well. These functions also handle buffers in an

insecure manner and they do not have any mechanism to prevent buffer overflow. The

signatures of the commonly used functions that face this problem are as follows:

� char *strncat(char *, const char *, size_t)

� char *strcat(char *, const char *)

� char *stpcpy(char *dest, const char *src)

� char *strncpy(char *, const char *, size_t)

� char *strcpy(char *, const char *)

� void *memcpy(void *s1, const void *s2, size_t n)

� wchar_t *wcscpy(wchar_t *, const wchar_t *)

� wchar_t *wcscat(wchar_t *, const wchar_t *)

� wchar_t *wcpcpy(wchar_t *dest, const wchar_t *src)

� int *_IO_vfscanf(_IO_FILE *s, const char *f, _IO_va_list argptr, int *errp)

In Section 5.1.1, I discussed a return address exploit. Although, the target of the

exploit was the return address, it was through the vulnerability of the

 52

strcpy() function that such an exploit was possible. Hence, it is necessary to provide

some form of security mechanism to such standard C functions.

5.5.1 Preventing Vulnerable C Library Functions Attack In TRUSS

The security mechanism for the list of functions basically employs a technique similar

to the one used for the security of sprintf() , vsprintf() , snprintf() and

vsnprintf() . However, unlike those functions, this group of functions does not

have to handle any format string argument.

Functions like strcpy() , stpcpy() , wcscpy() and wcpcpy() are invoked with

two buffers. These functions aim to copy the content of a source buffer to a

destination buffer. To prevent any buffer overflow, the content of the input buffer is

measured using the strlen() function. This size will be considered against the

memory space between the memory location where the destination buffer resides and

the stack frame pointer. If the size of the source buffer is larger than the space

allocated to the destination buffer, then an error message is signalled and the

application will be terminated.

Functions such as strncpy() and memcpy() perform the same work as

strcpy() , stpcpy() , wcscpy() and wcpcpy() . But these functions accept an

additional argument that specifies the size of the content that has to be copied from

the source buffer to the destination buffer. Hence, here, the size comparison (as

mentioned earlier) is used again.

strcat() and wcscat() also copies the content of the source buffer to the

destination buffer. However, for these functions, the content of the source buffer is

 53

appended to the destination buffer. Hence, to prevent any overflow, the size of the

destination buffer and the size of the source buffer must be less than the permissible

size. strncat() accepts an additional argument that specifies the size of the source

buffer to be copied onto the destination buffer. As before, the size of the destination

buffer and the size passed by the application must be less than the permissible size.

Unlike the functions discussed up to this point, the scanf() family of functions

works in a different manner. It accepts the input from the user and then, writes the

received input to the corresponding arguments (that are passed as parameters). These

functions cannot be intercepted before the routine’s execution because the safety of

these functions depends on the user inputs. Furthermore, it can be observed that the

scanf() family of functions invokes the _IO_vfscanf() subroutine to perform its

task. Thus, in order to check the functions for buffer overflows, these are intercepted

upon their return from the subroutine. Although by this time, the buffer might have

already overflowed, the effect can only be felt when one of the scanf() family of

functions returns to the caller.

Before the subroutine _IO_vfscanf() is invoked, the process stack content,

referred by the addresses stored in the parallel stack, is saved. Upon returning from

the subroutine, the content of the process stack is compared with the saved values.

Any mismatch would signal an error and terminate the application. This technique

will effectively prevent any form of stack smashing attacks. TRUSS is therefore able

to protect applications from being violated via unsafe standard C library calls.

 54

5.5.2 Vulnerable C Library Functions BSS/DATA/HEAP Overflow Exploit

The techniques in Section 5.5.1 are effective only if the buffer, handled by the unsafe

functions, is allocated in the stack. The defense mechanism basically prevents any

data beyond the frame pointer to be modified. In addition to this, the buffers used in

the list of functions can be global buffers or buffers allocated in the heap. In this

section, I will describe one such instance - a heap overflow exploit.

The GNU standard C library employs a memory allocator, dlmalloc, implemented

by Doug Lea [32]. This memory allocator handles applications’ dynamic memory

requests and freed memory. dlmalloc’s memory management is based on chunks –

memory blocks that consist of usable regions and additional information. The

structure of such a chunk is shown in Figure 20.

 struct malloc_chunk {
 INTERNAL_SIZE_T prev_size;
 INTERNAL_SIZE_T size;
 struct malloc_chunk *bk;
 struct malloc_chunk *fd;
 };

Figure 20: Heap memory chunks

The additional information is stored at the beginning of each chunk and it stores the

sizes of the current and the previous chunks. This information facilitates coalescing of

two sequential and unallocated chunks into one larger chunk. Moreover, all chunks

contain two pointers. These pointers are utilized when the chunks are unallocated.

Memory chunks that are unallocated in the application are maintained in bins

according to their sizes. Bins that store chunks of sizes smaller than 512 bytes hold

chunks of exactly one size. Bins that store chunks larger than 512 bytes hold chunks

of a size range that increase logarithmically. When a process requests for dynamic

memory, the search for the suitable chunk starts at the appropriate bin depending on

 55

the memory size requested and then, it is processed in smallest-first, best-fit order.

Within each bin the chunks are maintained as a doubly linked list known as free-list.

Two pointers – forward (fd) and backward (bk) – are used to traverse this list in both

directions.

However, the use of the fd and bk pointers to link available chunks in bins exposes

libc’s memory management routines to security vulnerability. If an adversary is able

to overflow a dynamically allocated block of memory, he can effectively overwrite

the next contiguous chunk header in memory. When the overflowed chunk is freed

and stored in a bin’s double-linked list, the adversary can control the values of that

chunk’s fd and bk pointers. Consider the macro in Figure 21.

 #define unlink(P, BK, FD) { \
 [1] FD = P->fd; \
 [2] BK = P->bk; \
 [3] FD->bk = BK; \
 [4] BK->fd = FD; \
 }

Figure 21: Memory management macro

This macro is used to remove a chunk from the free list. P is the chunk to be removed.

In order to carry out an attack, an adversary has to store the address of a function

pointer in P→fd and the desired value in P→bk. The function pointer is with a minus

12 bytes so that FD→bk points to the function pointer. This macro will cause the

function pointer to point to the desired value. When the function pointer is invoked in

the program, the code at the desired location gets executed [50]. An analogous attack

is illustrated in Figure 22.

 56

 main(int argc, char* argv[]) {
1. char *buf0 = (char*)malloc(16);
2. char *buf1 = (char*)malloc(16);
3. char *buf2;

4. ...
5. free(buf1);
6. ...
7. strcpy(buf0, argv[1]);
8. ...
9. buf2 = (char*)malloc(16);
10. printf(“\bin\sh”);

 }
Figure 22: Vulnerable C program - 4

In Figure 22, lines 1 and 2 allocate 2 buffers in the heap. These buffers are of the

same size and hence, they will be allocated in contiguous memory blocks. In line 5,

when the buffer, buf1 , is unallocated, it is placed back in its free bin. The strcpy()

function in line 7 can overflow buf0 and overwrite the header information of chunk

buf1 . For instance, if an adversary provides an input as follows –

“AAAAAAAAAAAAAAAA\x00\x00\x00\x00\x00\x00

 \x00\x10\x64\x96\x04\0x08\xb0\x65\x69\x00”

– the sequence of ‘A’ will overflow the buf0 . The following values are 0 and 16 in 4

byte hexadecimal format. These values will overwrite the previous and current chunk

sizes respectively. Following these sizes is the GOT location corresponding to

printf() . This address is subtracted by 12 bytes. The next address is the absolute

address of system() . Hence, the buf1 ’s fd and bk pointers are overwritten with

these addresses respectively. When line 9 is executed, the macro in Figure 21 is

executed before the overflowed chunk is allocated. This macro will, therefore, copy

the address of system() to the GOT location of printf() . This will, in turn,

execute a system(“\bin\sh”) instead of printf(“\bin\sh”) and spawn a shell

with the privilege of the vulnerable program.

 57

5.5.3 Preventing BSS/DATA/HEAP Overflow Attack In TRUSS

In Linux, initialized data buffers are allocated in the .DATA segment and the

uninitialized data buffers are allocated in the .BSS segments. These segments are

present in the ELF file. The symbol table present in the ELF file holds an array of

symbols used in the executable. For each entry, the name, size, and section numbers

are stored. The data structure of the ELF symbol table is shown in Figure 23.

typedef struct {
 Elf32_Word st_name; /* Symbol name */
 Elf32_Addr st_value;/* Symbol value */
 Elf32_Xword st_size; /* Size of object (e.g., common) */
 unsigned char st_info; /* Type and Binding attri butes */
 unsigned char st_other;/* Reserved */
 Elf32_Half st_shndx;/* Section table index */
} Elf32_Sym;

Figure 23: Symbol structure

In order to ensure that the vulnerable C functions do not overflow BSS/DATA/HEAP

buffers, TRUSS maintains a list of global variables with its corresponding sizes.

When dynamorio_init() is invoked by DynamRIO, the binary file is analyzed to

retrieve the .DATA and .BSS sections. The limits for these sections and the section

numbers are then stored. The symbol table is then scanned through for symbols

belonging to the .DATA and .BSS sections. The symbols’ addresses and the

respective sizes are saved in a global buffer in DynamRIO. Thus, when a buffer from

either section is utilized by the vulnerable functions, the size of the buffer can be

obtained from the global buffer and this aids in ensuring that the limits of these

buffers are not overflowed.

Buffers allocated in the heap can also be used by the vulnerable functions. In order

to prevent the limits of these buffers from being violated, the sizes of these buffers

have to be stored. It is safe to assume that buffers in the heap are allocated via calls to

malloc() , calloc() , realloc() and the memory is released via call to free() .

 58

Hence, every call to malloc() , calloc() , realloc() and free() are intercepted

using the technique that was used to intercept the format functions. The requested

sizes are stored in a buffer and upon completion of the malloc() , calloc() and

realloc() functions, the start address of the memory space allocated is stored in the

same buffer. During a free() call, the buffer is removed from the list. In this way, I

maintain a list of buffer addresses and sizes. This list can be used to verify whether

any buffer in the heap is overflowed. In C++ program, the new operator can also

allocate heap buffers. In addition, functions such as brk() , sbrk() and mmap() can

be used to allocate memory in the heap. Hence, in TRUSS, I restrict the defense to

heap buffers allocated via malloc() , calloc() and realloc() .

This technique is only implemented in Linux and protection of buffers in the

.DATA and .BSS sections are only applicable if the executable is not stripped. A

stripped executable will not contain the symbol table. Thus, it is impossible to retrieve

the information regarding the global buffers. In Microsoft PE files, the symbol

information is present in the COFF file, .obj , and is not found in the executable,

.exe . Thus, it will be difficult to monitor these buffers in Windows.

5.6 Longjmp Buffer Defense

Another avenue through which control transfer information can be altered is via

setjmp() and longjmp() functions. These are standard C functions that typically

provide a crude form of exception handling. setjmp() function stores the context

information for the current stack frame into a jmp_buf buffer. By using longjmp() ,

a program can jump out of many levels of nested function calls. The data structure of

the jmp_buf buffer is shown in Figure 24.

 59

 #define _JBLEN 9
 typedef struct { int _jb[_JBLEN + 1]; } jmp_bu f[1];

 jmb_buf[] = {ebx, esi, edi, ebp,
 esp, eip, return_val}

Figure 24: Setjmp/Longjmp buffer

The context information of an application depends completely on the contents of its

memory and the contents of its registers. The content of the registers includes the

stack pointer (esp), frame pointer (ebp), and program counter (eip). setjmp()

essentially saves the contents of the registers. When a longjmp() function is

invoked and a jmp_buf buffer is passed as a parameter, this function restores the

context of the application to the state of the program when setjmp() was called. An

example of how a pair of setjmp() and longjmp() works is depicted in Figure 25.

1. /* Global "environment" variable; this must be in scope if longjmp is to be called. */
2. char buf [16];
3. jmp_buf g_env;

4. /* A function that exits abnormally via longjmp */
5. void function(void){
6. printf("(calling longjmp)\n");
7. longjmp(g_env,1);
8. printf("This is not reachable because of the longjmp above.\n");
9. }

10. int main(int argc, char *argv[])
11. {
12. int i = setjmp(g_env);
13. /* This is where execution resumes when longjmp is called: */
14. ...
15. strcpy(buf, argv[1]);
16. ...
17. /* setjmp returns 0 only when it is first called; never after a longjmp */
18. if(i = = 0){
19. printf("(calling function)\n");
20. function();
21. printf("This is never reached!\n");
22. }
23. return 0;
24. }

Figure 25: Setjmp/Longjmp example

 60

In the code fragment in Figure 25, when setjmp() function is invoked in line 12, the

context information is saved in g_env . The setjmp() instruction returns a 0 when it

is called the first time. Subsequent calls to setjmp() after a longjmp() will return

a non-zero value (which depends on the value passed to longjmp()). The execution

follows from line 12 until line 20 where function() is invoked. The execution

continues until the longjmp() invocation. Here, the program context information,

which was stored in line 12, will be restored and line 12 will be executed again. Now,

setjmp() will return a non-zero value (1 in this case) and thus the program

terminates after line 23.

5.6.1 Longjmp Buffer Modification Exploit

It is essential to note that the setjmp() function stores the program counter and the

frame pointer in the jmp_buf buffer. Thus, the integrity of the contents in jmp_buf

buffer is vital because these are the information used during a longjmp() .

In Figure 25, the code fragment contains a strcpy() function that accepts a user

input (in line 15). This is the program’s vulnerable point. The technique used to attack

such a program is to save a shellcode in an environment variable, A, and overwrite the

value of the program counter in the jmp_buf buffer with the address of A. In order to

overwrite the program counter in the jmp_buf buffer, sufficient padding followed by

the address of the environment variable, A, has to be provided at line 15 by the

adversary. The padding is to fill up buf and the other members of the jmp_buf

buffer until the program counter. Following this, the program counter gets overwritten

with the value of A. Hence, when a longjmp() function is invoked at line 7, the

shellcode gets executed.

 61

5.6.2 Preventing Longjmp Buffer Modification Attack In TRUSS

An adversary can perform a return address modification by altering the program

counter information or perform a frame pointer modification by altering the frame

pointer value in the jmp_buf buffer. In order to prevent such attacks, TRUSS stores

the jmp_buf buffers in a buffer named setjmp_buf in DynamoRIO. When the

application executes a setjmp() instruction, the address jmp_buf buffer is

recorded. Upon completion of the setjmp() function, the content of the jmp_buf

buffer at the recorded address is stored in setjmp_buf .

When a longjmp() function is invoked, this function is intercepted using the

technique mentioned in Section 5.4. The address of the parameter (jmp_buf buffer) is

retrieved from the stack and the current content of the jmp_buf buffer is compared

with the saved contents. Any alteration to content will signal an error and the

application will be terminated.

5.7 Function Pointer Defense

A function pointer is a type of pointer in the C and C++ programming languages. It

points to a function. Function pointers are used to eliminate giant switch statements

and in addition, they allow a programmer to dynamically modify a function to be

called. Memory space for the function pointers can be allocated in stack or heap. If an

adversary is able to identify a function pointer in a program, then he can modify the

address referenced by the function pointer to some malicious code. The use of

function pointers can be identified in the assembly code by a special characteristic in

applications compiled with GCC. When a function is invoked via a function pointer,

the address referenced by the function pointer is loaded to a general register followed

 62

by a call instruction whose target address is the one in the register. An example is

shown in Figure 26. Overflowing adjacent buffers and modifying the address referred

to by the pointer can alter function pointers.

 mov 0xbffffff0, %eax //0xbffffff0 is the targ et address
 call %eax

Figure 26: Function pointer assembly code

5.7.1 Function Pointer Modification Exploit

Function pointers are used to store control transfer information and thus its credibility

is vital during a program execution. However, when function pointers are declared

adjacent to any buffers, it will be possible to overwrite the location referenced by the

function pointer via overflowing the adjacent buffer. Figure 27 illustrates such an

example.

main(int argc, char* argv[])
 {

1. static char buf [16];
2. //declare function pointer
3. static void (*funptr) (void);

4. ...
5. funptr = (void (*) (void)) goodfunction;
6. ...
7. strcpy(buf, argv[1]);
8. ...
9. (void) (*funptr) (void);
10. ...

}

void goodfunction()
{

 ...
 }

Figure 27: Vulnerable C program - 5

 63

In the code fragment depicted in Figure 27, a function pointer is declared adjacent to a

buffer. Similar to the exploit mentioned in Section 5.6.1, a shellcode can be stored in

an environment variable, A. In order to carry out the attack, a user-input consisting of

16 character ‘A’s followed by the address of A (little endian format) has to be

provided. This will overwrite the address referenced by the function pointer.

Subsequently, when the function pointer is used in the application, the shellcode will

get executed.

5.7.2 Preventing Function Pointer Modification Attack In TRUSS

To prevent function pointer modifications, when there is an indirect call instruction

that uses a register, the checking function is inserted prior to the call. The checking

function retrieves the address in the register and ensures that this does not lie within

any data region. In this way, the malicious code injected into data buffers will not be

executed. This technique prevents any execution of data. Currently, this technique is

only implemented for Linux.

 64

Chapter 6

Security Evaluations

This chapter discusses the security tests that have been used to evaluate TRUSS.

6.1 Security Evaluation With John Wilander’s Testbed Of Twenty

Buffer Overflow Attacks

TRUSS’s ability to prevent buffer overflow attacks has been tested using John

Wilander’s testbed of twenty buffer overflow attacks [56]. This testbed of attacks

works on both Linux and Windows. Attacks illustrated in the testbed will either

overflow the buffer all the way to the attack target or overflow a buffer to redirect a

pointer to the target. The attacks are targeted at the stack, heap, .BSS and .DATA

sections. The main targets in the testbeds are the return addresses, old frame pointers,

function pointers and function parameters. The evaluation of TRUSS is shown in

Table 1 and 2.

 65

No ATTACKS TRUSS
1 Buffer overflow on stack all the way to parameter function pointer DETECTED
2 Buffer overflow on stack all the way to parameter longjmp buffer DETECTED
3 Buffer overflow on stack all the way to return address DETECTED
4 Buffer overflow on stack all the way to old base pointer DETECTED
5 Buffer overflow on stack all the way to function pointer DETECTED
6 Buffer overflow on stack all the way to longjmp buffer DETECTED
7 Buffer overflow on heap/BSS all the way to function pointer DETECTED
8 Buffer overflow on heap/BSS all the way to longjmp buffer DETECTED
9 Buffer overflow of pointer on stack and point to parameter function pointer DETECTED
10 Buffer overflow of pointer on stack and point to parameter longjmp buffer DETECTED
11 Buffer overflow of pointer on stack and point to return address DETECTED
12 Buffer overflow of pointer on stack and point to old base pointer DETECTED
13 Buffer overflow of pointer on stack and point to function pointer DETECTED
14 Buffer overflow of pointer on stack and point to longjmp buffer DETECTED
15 Buffer overflow of pointer on heap/BSS and parameter function pointer DETECTED

16
Buffer overflow of pointer on heap/BSS and point to parameter longjmp
buffer

DETECTED

17 Buffer overflow of pointer on heap/BSS and point to return address DETECTED
18 Buffer overflow of pointer on heap/BSS and point to old base pointer DETECTED
19 Buffer overflow of pointer on heap/BSS and point to function pointer DETECTED
20 Buffer overflow of pointer on heap/BSS and point to longjmp buffer DETECTED

Table 1: Security performance on John Wilander’s testbed of twenty buffer overflow attacks in Linux

No ATTACKS TRUSS
1 Buffer overflow on stack all the way to parameter function pointer DETECTED
2 Buffer overflow on stack all the way to parameter longjmp buffer DETECTED
3 Buffer overflow on stack all the way to return address DETECTED
4 Buffer overflow on stack all the way to function pointer UNDETECTED

5
Buffer overflow of pointer on stack and point to parameter function
pointer

UNDETECTED

6
Buffer overflow of pointer on stack and point to parameter longjmp
buffer

DETECTED

7 Buffer overflow of pointer on stack and point to return address DETECTED
8 Buffer overflow of pointer on stack and point to function pointer UNDETECTED
9 Buffer overflow of pointer on stack and point to longjmp buffer DETECTED
10 return-to-libc system("echo Attack Successful") DETECTED

Table 2: Security performance on John Wilander’s testbed of buffer overflow attacks in Windows

The undetected cases occur because function pointer monitoring is not included in

TRUSS for Windows.

6.2 Security Evaluation With BASS

Moreover, I have also used the Benchmark Suite for Evaluating Architectural Security

Systems, BASS [43] to test TRUSS’s ability to prevent buffer overflow attacks. The

 66

attacks in this suite target the stack, heap, BSS and dtor sections. The main targets in

this suite are the return addresses, old frame pointers, function pointers and function

parameters. This test suite is implemented only for Linux. The result of TRUSS’s

performance on these benchmarks is summarized in Table 3.

No. Benchmark
Program Vulnerability Attack / End Result Location TRUSS

1. Lottery
Buffer
overflow

overwrite function pointer
/manipulate instruction flow

BSS DETECTED

2. Lottery
Buffer
overflow

overflow variable /
modify bank account total

BSS DETECTED

3. Message_wall
Buffer
overflow

overflow file pointer /
add malicious root account

Heap DETECTED

4. Small_finger
Buffer
overflow

overflow return address /
spawn root shell

Stack DETECTED

5. Secure_log Format string
read memory location /
access cryptographic key

Data DETECTED

6. Secure_log Format string
write memory location /
modify cryptographic key

Data DETECTED

7. Secure_log Format string
overwrite deconstructor /
spawn root shell

Dtors DETECTED

Table 3: Security performance on BASS in Linux

As it can be seen from Table 3, TRUSS is able to successfully detect and prevent all

the attacks in BASS.

6.3 Security Evaluation With Libsafe Exploits

In addition, TRUSS in Linux was tested with the exploit code provided by Libsafe in

its distribution package. The test cases were included in the Libsafe package to verify

the functioning of Libsafe. Table 4 shows how TRUSS and Libsafe perform against

the test cases. It can be observed that TRUSS successfully detects all the attacks. The

surprising result is that Libsafe is unable to detect its own exploit code.

Further inspection of Libsafe showed that the application is based on the

assumption that every global C function will be dynamically resolved via the PLT.

However, this is not the case at all times. This oversight can be observed during the

 67

execution of canary-exploit . Libsafe protects the fprintf() function by

intercepting the vfprintf() function. vprintf() is invoked by fprintf() . In

newer Linux versions, the fprintf() functions make direct internal call to

vfprintf() without calling the PLT entry. Hence, Libsafe’s version of safe

vfprintf() is never invoked. This is why the canary-exploit is successful on

Libsafe. t6 succeeds because of a similar reason. TRUSS does not face this problem

because it intercepts the function fprintf() only after the first basic block for the

function is built by DynamoRIO.

No Attack TRUSS Libsafe
1 canary-exploit DETECTED UNDETECTED
2 exploit-non-exec-stack DETECTED DETECTED
3 t1 DETECTED DETECTED
4 t1w DETECTED DETECTED
5 t3 DETECTED DETECTED
6 t3w DETECTED DETECTED
7 t4 DETECTED DETECTED
8 t4w DETECTED DETECTED
9 t5 DETECTED DETECTED
10 t6 DETECTED UNDETECTED

Table 4: Security performance on Libsafe exploit code in Linux

6.4 Security Evaluation With cOntext’s GOT Attack

The GOT defense in TRUSS has been tested with the exploit code depicted in [16].

This code attacks an application that contains

 printf(“Array …”);

The exploit creates an executable named Array , which contains one instruction:

 system(“/bin/sh”);

This executable will invoke a new shell. The exploit code subsequently overwrites the

GOT entry of printf() with the absolute address of system() . Hence, when the

 68

application is executed, the printf() statement will execute the Array executable

and a new shell is invoked with the privilege of the application.

When the application is executed with TRUSS’s defense in place, the attack does

not succeed because the modified entry in the GOT is never used. Thus, TRUSS is

able to thwart any attack that uses GOT modification to execute malicious code.

6.5 TRUSS vs Four Different Tricks To Bypass StackShield And

StackGuard Protection

StackShield and StackGuard, as reviewed earlier, protect applications against stack

smashing attacks. However, in [48], four techniques that can bypass the protection

provided (StackShield and StackGuard) have been described. I will analyze these

techniques against TRUSS in this section.

� Technique 1

In standard compiled C code, functions’ arguments are pushed into the stack before

the return address as shown in Figure 8. When a stack based buffer overflows, an

adversary may be able to control the function’s arguments and this can turn a

protected program into a vulnerable program. If StackGuard is used, the canary death

handler will be called and several library functions such as openlog() or _exit()

will be invoked. Overwriting these functions’ GOT entries will allow the adversary to

hook the execution flow.

 69

TRUSS’s solution

In TRUSS, the GOT technique as described in Section 5.3 will bypass any

modification made to the GOT entries and hence will foil Technique 1.

� Technique 2

This technique is one version of frame pointer attack. Upon a return instruction, the

frame pointer gets modified and before the second return, control over the stack

pointer is gained. Hence, the adversary can control the location where the function

returns.

TRUSS’s solution

This technique attempts to modify both frame pointers and return addresses.

However, TRUSS can successfully detect any alteration of frame pointers and return

addresses and thus will thwart this kind of attacks.

� Technique 3

In standard C code, compiled without the GNU-equivalent of the -fomit-frame-

pointer option, all local variables are accessed relative to the frame pointer. Thus, if

an adversary has control over the frame pointer, he will be able to manipulate the

caller’s local variables and arguments. In this attack, an ‘off-by-one’ overflow, where

the least significant byte of the saved frame pointer is altered to 0, is used. It then goes

on to overwrite the GOT entries.

 70

TRUSS’s solution

TRUSS can detect any alteration of frame pointer attacks and GOT entries. Therefore,

it will prevent any attacks that utilize Technique 3.

� Technique 4

This technique extends Technique 3 and performs a few different kinds of attacks.

Firstly, it exploits a printf() to show the memory content. It can make a pointer

refer to some critical data such as the environment variables or modify the content of

some variables. This is typically a format string attack. This technique can also

modify GOT entries.

TRUSS’s solution

The format string protection provided by TRUSS will not allow the adversary to

access any memory content beyond the stack frames. Although the local variables will

be vulnerable to alterations, this is unlikely to have any serious effect. In addition, the

GOT protection will bypass any GOT entry modification.

 71

Chapter 7

Experiments

This chapter discusses the performance tests that have been used to evaluate TRUSS.

7.1 Experimental Setup

All experiments were executed on a Dell Optiplex GX280 Pentium 4 530 running at

3.0 GHz with 1 GB RAM. The operating systems used are Microsoft Windows XP

Professional SP2 and Linux Fedora Core 3.

7.2 Performance Test With DynamoRIO’s Profiling

Firstly, profiling was carried out to measure the overhead caused by the additional

protection code. Profiling facilities provided by DynamoRIO in Linux showed that

more than 95% of the time, the application code and the protection code are being

executed. The execution of SPEC CINT2000 [53] programs crafty , twolf and

parser with profiling showed that protection code was present in 14%, 9% and 17%

of the profiling samples collected respectively. This implies that TRUSS does incur

moderate overheads.

7.3 Performance Test With SPEC CINT2000 Benchmark Programs

SPEC CINT2000 programs were used on both Windows and Linux to examine the

performance of TRUSS. In order to evaluate the performance, I collected three sets of

 72

execution times in each operating system. First, the benchmark programs were

executed natively with no modifications. These results serve as a baseline to measure

TRUSS’s performance. Then, the benchmarks were executed on DynamoRIO without

any client programs. This will measure the overhead due to DynamoRIO’s

instrumentations. Lastly, TRUSS is loaded and its performance is recorded. The

results of the tests are shown in Figure 28 and Figure 29. The overheads shown in the

results include the time for analysis of the binaries, insertion of the protection code

and execution of the protection code.

BenchMark Native DynamoRIO TRUSS %overhead
Gzip 180.336 199.129 211.742 17.415
Vpr 207.795 218.077 241.471 16.206
Gcc 80.929 208.766 287.211 254.893
Mcf 192.308 193.163 193.782 0.766
Crafty 118.144 169.434 209.785 77.567
Parser 218.046 268.165 326.996 49.967
Eon 212.979 261.007 369.775 73.620
Perlbmk 164.114 255.084 334.879 104.053
Gap 91.037 122.692 153.889 69.040
Vortex 159.618 317.307 363.284 127.596
Bzip 183.703 197.595 227.042 23.592
Twolf 329.834 372.113 411.403 24.730
AVERAGE 178.237 231.878 277.605 55.750

Table 5: Performance of SPEC CINT2000 benchmark programs on Linux

0
50

100
150
200
250
300
350
400
450

G
zip Vpr

G
cc M

cf

Cra
fty

Par
se

r
Eon

Per
lb
m
k

G
ap

Vor
te

x
Bzip

Tw
ol
f

ti
m

e(
se

c)

Native DynamoRIO (plain) TRUSS

Figure 28: Performance of SPEC CINT2000 benchmark programs on Linux

 73

BenchMark Native DynamoRIO TRUSS %overhead
Gzip 183.718 193.516 295.39 60.784
Vpr 192.515 197.538 365.765 89.993
Gcc 84.077 179.104 308.781 267.26
Mcf 201.171 202.514 324.343 61.228
Crafty 125.453 189.406 410.156 226.94
Parser 221.812 258.468 738.015 232.721
Eon 141.952 168.937 474.5 234.268
Perlbmk 148.283 271.843 569.125 283.81
Gap 102.093 125.687 370.265 262.674
Vortex 141.218 217.64 602.86 326.9
Bzip 226.64 240.596 415.046 83.13
Twolf 332.187 362.622 520.781 56.773
AVERAGE 175.093 217.323 449.586 156.769

Table 6: Performance of SPEC CINT2000 benchmark programs on Windows

0
100
200
300
400
500
600
700
800

Gzip Vpr
Gcc M

cf

Cra
fty

Par
se

r
Eon

Per
lbm

k
Gap

Vor
te

x
Bzip

Twolf

ti
m

e(
se

c)

Native DynamoRIO (plain) TRUSS

Figure 29: Performance of SPEC CINT2000 benchmark programs on Windows

In Windows, TRUSS incurs an average overhead of 156% in execution time. In

Linux, TRUSS incurs an average overhead of 55% in execution time. One reason for

such a significant variation in Linux and Windows is that in Linux the eflags were not

saved and restored at every check. The eflags essentially contain the zero, carry, sign,

parity, adjust, trap, interrupt, direction and overflow flags. In Linux the applications

can execute correctly without saving and restoring the eflags. However, in Windows,

few applications produced incorrect results when the eflags were ignored. Hence, in

Windows the eflags were saved and restored at every check. The SPEC CINT2000

benchmarks gcc , vortex and perlbmk exhibited significant overheads in both

operating systems. But it has to be noted that gcc , vortex and perlbmk perform

 74

badly on DynamoRIO without TRUSS. These are programs which contribute to the

exceptionally high overhead in Windows.

7.4 Performance Test With Bapco Sysmark Benchmark Programs

In addition, I have used 4 benchmarks from the Bapco Sysmark to evaluate the

performance in Windows. These 4 benchmarks use popular Microsoft Office

applications such as WinWord, Excel, Access and Powerpoint. The results of these

tests are summarized in Figure 30.

Benchmark Native DynamoRIO TRUSS %overhead
Access 302.18 307.69 311.99 3.246
Excel 569.58 566.24 573.49 0.686

Powerpoint 365.22 364.25 369.9 1.281
WinWord 260.65 263.44 265.35 1.803
Average 374.407 375.405 380.182 1.542

Table 7: Performance of Sysmark benchmark programs on Windows

0

100

200

300

400

500

600

700

Access Excel Powerpoint Word

ti
m

e(
se

c)

Native DynamoRIO (plain) TRUSS

Figure 30: Performance of Sysmark benchmark programs on Windows

Figure 30 showed no significant slowdown due to TRUSS on the Microsoft Office

benchmarks. One possible reason why the overheads differed so drastically between

the SPEC CINT2000 benchmarks and the Bapco Sysmark benchmarks is that the

number of call and return instructions in the SPEC CINT2000 benchmarks are very

much larger than those in Bapco Sysmark benchmarks. This means that fewer

 75

instructions are added and executed for return address checks and frame pointer

checks. The number of call and return instructions observed in both benchmarks are

shown in Tables 8 and 9. Note that in the Microsoft Office suite, calls and returns do

not match up well. Many of the returns were replaced by jump instructions.

Benchmark Call-return pairs
Gzip 1,970
Vpr 2,589
Gcc 1,393
Mcf 2,053
Crafty 3,958
Parser 4,021
Eon 5,320
Perlbmk 5,755
Gap 3,980
Vortex 6,747
Bzip 3,209
Twolf 2,308

Table 8: Number of call and return pairs (in millions) in SPEC CINT2000 benchmark programs for
Windows

Benchmarks call instructions return instructions
Access 1.81 1.72
Excel 4.76 4.25
Powerpoint 2.55 2.43
WinWord 1.27 1.20

Table 9: Number of call and return instructions (in millions) in Sysmark benchmark programs for
Windows

7.5 Performance Of LibSafe And StackShield With SPEC CINT2000

Benchmark Programs

As a comparison, Table 10 shows the overhead of Libsafe on the SPEC CINT2000

benchmarks running in Linux. The average overhead incurred is negligible. It is rather

obvious that Libsafe performs very much better than TRUSS. This is because Libsafe

does not maintain a dynamic list of frame pointers. Instead, it invokes a GCC inbuilt

function, __builtin_frame_address . The signature of this function is:

void * __builtin_frame_address (unsigned int LEVEL)

 76

This method accepts an integer input that represents the level of the nested functions.

However, the method is not safe for checking purposes because it assumes that the

frame pointer will be in the memory location pointed to by the register %EBP. Some

applications do not save %EBP in the process stack but rather use this register for

their computational purposes. This means that the checking done using

__builtin_frame_address does not guarantee that any buffer overflow will not

exceed the frame pointer.

Table 11 shows the overhead of StackShield (the compiler approach) on the SPEC

CINT2000 benchmarks running in Linux. The benchmark programs – gcc ,

perlbmk , gap – crashed. Moreover, eon could not be compiled with shieldg++

compiler as this program requires newer version of g++ compilers. The average

overhead was 60%. Furthermore, StackShield does not support the GCC compiler

optimization options such as –fomit-frame-pointer and -funroll-all-

loops .

Benchmarks Native Libsafe %overhead
Gzip 180.336 182.933 1.44
Vpr 207.795 205.523 -1.09
Gcc 80.929 81.864 1.155
Mcf 192.308 193.147 0.436
Crafty 118.144 119.092 0.802
Parser 218.046 220.82 1.272
Eon 212.979 214.884 0.894
Perlbmk 164.1136 165.937 1.111
Gap 91.037 91.388 0.386
Vortex 159.618 165.608 3.753
Bzip 183.703 184.258 0.302
Twolf 329.834 346.692 5.111
AVERAGE 178.237 181.012 1.557

Table 10: Performance of LibSafe with SPEC CINT2000 benchmarks in Linux

 77

Benchmarks Native StackShield %overhead
Gzip 180.336 298.607 65.584
Vpr 207.795 287.484 38.350
Gcc 80.929 Crash -
Mcf 192.308 239.384 24.479
Crafty 118.144 180.9 53.118
Parser 218.046 233.191 6.946
Eon 212.979 Cannot compile -
Perlbmk 164.1136 Crash -
Gap 91.037 Crash -
Vortex 159.618 251.211 57.383
Bzip 183.703 315.318 71.646
Twolf 329.834 487.221 47.717
AVERAGE 178.237 286.6645 60.833

Table 11: Performance of StackShield-0.7 with SPEC CINT2000 benchmarks in Linux

 78

Chapter 8

Conclusion

Today’s world is at a stage where it cannot function without computer systems. And a

computer system loses its viability when its security is compromised. As such, the

field of computer security has attracted great interests and investments. My work on

TRUSS adds on to current research in the area of IT security and specifically, in the

field of systems security.

The purpose of this thesis was to present a transparent, efficient and unified

runtime solution for preventing a wide variety of known buffer overflow attacks,

namely the return address attacks, format string attacks, vulnerable C function attacks,

stack smashing attacks, heap overflows and GOT modifications. These attacks allow

adversaries to intrude into systems and either steal critical information from the

systems illegally or take control of the systems at privileged levels to perform

unauthorized operations. Therefore, it is essential for computer systems to incorporate

a defensive mechanism to thwart such attacks. Furthermore, it will be ideal if the

mechanism makes minimal modification to the original executable and allows the

application to execute normally. TRUSS is such a runtime security tool. It makes

minimal alteration to the binary to ensure safe execution of the application. TRUSS

has been implemented as a client program in DynamoRIO. The techniques

incorporated in TRUSS are simple, robust and furthermore portable to other binary

rewriting tools. Working only with binary executables, TRUSS can protect code

running on both Linux and Windows without requiring any special hardware, access

to the source code or even patches to the operating systems.

 79

The performance overhead involved is among the major concerns of any runtime

scheme. The performance evaluation of TRUSS has shown that its overhead is

dependent on the application and operating systems and it is within a range that would

be deemed acceptable to most users.

8.1 Limitations

Nevertheless, no single method of security is omnipotent. TRUSS, for instance, is not

effective against buffer overflow of local variables allocated in the stack. It is rather

difficult to extract the size of a local buffer from the binary. Thus, monitoring such

buffers at runtime is not an easy task. Similarly, the Windows PE files do not carry

information about the global variables. These are instead stored in the COFF file,

which is usually not provided with the executables. Therefore, TRUSS does not have

sufficient information from the binary to monitor these buffers as well.

 Function pointer defense in TRUSS makes use of GCC specific code sequence

to identify function invocations via function pointers. This is a limitation as this

technique will be effective only in applications compiled with GCC compilers.

Another limitation to be noted is that TRUSS does not allow instructions that are

stored in the heap to be executed. Storing instructions in the heap and subsequently

executing them may be legal in some applications. In such applications, TRUSS will

raise false alarm.

 80

8.2 Future Research

Future research can focus on eliminating the current limitations that TRUSS faces. In

addition, more defense techniques can be included into TRUSS to strengthen its

ability to protect applications. Such additional techniques can be incorporated into

TRUSS to make it a comprehensive runtime security tool.

 81

References

1. ANDREWS, M. HEAT: Runtime Interception of Win32 Functions. Technical

Report CS-2003-1, 2003.

2. ARORA, D., RAVI, S., RAGHUNATHAN, A., AND JHA, N., K. Secure

Embedded Processing through Hardware-Assisted Run-Time Monitoring. In

Proceedings of the Conference on Design, Automation and Test in Europe,

Volume 1. Design, Automation, and Test in Europe. IEEE Computer Society,

Washington, DC, pages 178-183, 2005.

3. AVIJI, K., GUPTA, P., AND GUPTA, D. TIED, LibsafePlus: Tools for runtime

buffer overflow protection. In USENIX Security Symposium, pages 45-55, 2004.

4. BAIN, C., FAATZ, D. B., FAYAD, A., AND WILLIAMS, D. Diversity as a

defense strategy in information systems. Does evidence from previous events

support such an approach?. In Proceedings of the IFIP TC11/WG11.5 Fourth

Working Conference on Integrity, Internal Control and Security in Information

Systems: Connecting Governance and Technology (November 15 - 16, 2001). M.

GERTZ, E. GULDENTOPS, AND L. STROUS, Eds. IFIP Conference

Proceedings, Volume 211. KLUWER B.V., Deventer, The Netherlands, pages 77-

94. 2001.

5. BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo: a transparent

dynamic optimization system. In Proceedings of the ACM SIGPLAN 2000

 82

Conference on Programming Language Design and Implementation (Vancouver,

British Columbia, Canada, June 18 - 21, 2000). PLDI '00. ACM Press, New York,

NY, pages 1-12. 2000.

6. BARATLOO, A., SINGH, N., AND TSAI, T. Transparent run-time defense

against stack smashing attacks. In Proceedings of the 2000 USENIX Technical

Conference, San Diego, CA, June 2000.

7. BARRANTES, E. G., ACKLEY, D. H., PALMER, T. S., STEFANOVIC, D.,

AND ZOVI, D. Randomized instruction set emulation to disrupt binary code

injection attacks. In Proceedings of the 10th ACM Conference on Computer and

Communications Security (Washington D.C., USA, October 27 - 30, 2003). CCS

'03. ACM Press, New York, NY, pages 281-289. 2003.

8. BERGER, D., E. HeapShield: Library-Based Heap Overflow Protection for Free.

UMass CS TR 06-28. 2006.

9. BHATKAR, S., DUVARNEY, D. AND SEKAR, R. Address obfuscation: an

efficient approach to combat a broad range of memory error exploits. In

Proceedings of the USENIX Security Symposium. USENIX. 2003.

10. BHATKAR, S., DUVARNEY, D. AND SEKAR, R. Efficient techniques for

comprehensive protection from memory error exploits. In Proceedings of the 14th

USENIX Security Symposium, Baltimore, MD, August 2005.

 83

11. BRUENING, D. Efficient, Transparent, and Comprehensive Runtime Code

Manipulation. PhD thesis, Massachusetts Institute of Technology, September

2004. http://www.cag.csail.mit.edu/rio/.

12. Business Applications Performance Corporation. SYSmark 2004 SE.

 http://www.bapco.com/products/sysmark2004se.

13. CERT/CC.CERT Advisories.

http://www.cert.org/stats/cert_stats.html

14. CHIUEH, T. AND HSU, F.H. RAD: A compile-time solution to buffer overflow

attacks. In Proceedings of the 21st International Conference on Distributed

Computing Systems, Mesa, AZ, April 2001.

15. CIFUENTES, C., WADDINGTON, T., AND MIKE VAN EMMERIK. Computer

Security Analysis through Decompilation and High-Level Debugging. In

Proceedings of the Eighth Working Conference on Reverse Engineering (Wcre'01)

(October 02 - 05, 2001). WCRE. IEEE Computer Society, Washington, DC, 375.

2001.

16. C0NTEXT. How to hijack the global offset table with pointers for root shells,

September 2005. http://www.opensecurity.org/texts/6

17. COWAN, C., BARRINGER, M., BEATTIE, S., KROAH-HARTMAN, G.,

FRANTZEN, M., LOKIER, J. FormatGuard: Automatic Protection From printf

 84

Format String Vulnerabilities. In Proceedings of the 2001 USENIX Security

Symposium, Washington DC. 2001.

18. COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P. PointGuard:

Protecting pointers from buffer overflow vulnerabilities. In Proceedings of the

12th USENIX Security Symposium, 2003.

19. COWAN, C., PU, C., MAIER, D., HINTON, H., BAKKE, P., BEATTIE, S.,

GRIER, A., WAGLE, P., AND ZHANG, Q. StackGuard: Automatic adaptive

detection and prevention of buffer-overflow attacks. In Proceedings of the Seventh

USENIX Security Conference, San Antonio, TX, January 1998.

20. Determina Inc. http://www.determina.com/

21. ENBODY, J., R. AND PIROMSOPA, K. Secure Bit: Transparent, Hardware

Buffer-Overflow Protection. IEEE Transactions on Dependable and Secure

Computing, Volume 3, No. 4. pages 365-376. October 2006.

22. ETOH, H. AND YODA, K. ProPolice: Improved stack-smashing attack detect on.

IPSJ SIGNotes Computer Security, 014(025), October 2001.

http://www.trl.ibm.com/projects/security/ssp

23. FORREST, S., SOMAYAJI, A., AND ACKLEY, D. Building Diverse Computer

Systems. In Proceedings of the 6th Workshop on Hot Topics in Operating Systems

 85

(Hotos-Vi) (May 05 - 06, 1997). HOTOS. IEEE Computer Society, Washington,

DC, 67. 1997.

24. FOSTER, J. C., VITALY, O., NISH, B., NIELS, H. Buffer overflow attacks:

Detect, Exploit, Prevent. Syngress Publishing, Inc, USA, 2005.

25. FRANTZEN, M. AND SHUEY, M. Stackghost: Hardware facilitated stack

protection. In Proceedings of the 10th USENIX Security Symposium, Washington

D.C., August 2001.

26. HASTINGS, R. AND JOYCE, B. Purify: Fast detection of memory leaks and

access errors. In Proceedings of the Winter USENIX Conference, Usenix

Association, pages 125-136, 1992

27. HUNT, G. AND BRUBACHER, D. Detours: Binary Interception of Win32

Functions. USENIX Technical Program - Windows NT Symposium 99, 1999.

28. JESSE, R., ROGER, K., SCOTT, L., ROBERT, C. Detection of injected,

dynamically generated, and obfuscated malicious code. In Proceedings of the

2003 ACM workshop on Rapid malcode, October 27, 2003, Washington, DC,

USA, 2003.

29. KIRIANSKY, V., BRUENING D., AMARASINGHE, S.P. Secure Execution via

Program Shepherding. In Proceedings of the 11th USENIX Security Symposium,

August 05-09, pages 191-206, 2002.

 86

30. KOCHER, P., LEE, R., MCGRAW, G., AND RAGHUNATHAN, A. Security as

a new dimension in embedded system design. In Proceedings of the 41st Annual

Conference on Design Automation (San Diego, CA, USA, June 07 - 11, 2004).

DAC '04. ACM Press, New York, NY, pages 753-760, 2004.

31. KUPERMAN, B. A., BRODLEY, C. E., OZDOGANOGLU, H., VIJAYKUMAR,

T. N., AND JALOTE, A.. Detection and prevention of stack buffer overflow

attacks. Communications of the ACM 48, 11, pages 50-56. November 2005.

32. LEA, D. A memory allocator. http: //gee.cs.oswego.edu/dl/html/malloc.html.

33. LEVINE, J. R. Linkers and Loaders. 1st. Morgan Kaufmann Publishers Inc. 1999.

34. LIBENZI, D. Guarded Memory Move (GMM) Buffer Overflow Detection And

Analysis. http://www.infosecwriters.com/text_resources/pdf/gmm.pdf

35. MOORE, D., SHANNON, C., AND CLAFFY, K. Code-Red: a case study on the

spread and victims of an internet worm. In Proceedings of the 2nd ACM

SIGCOMM Workshop on internet Measurment (Marseille, France, November 06 -

08, 2002). IMW '02. ACM Press, New York, NY, 273-284. 2002.

36. Microsoft Portable Executable and Common Object File Format Specification.

 87

37. MYERS, D. AND BAZINET, A. Intercepting Arbitrary Functions on Windows,

UNIX, and Macintosh OS X Platforms. Technical Report, CS-TR-4585

38. NANCE, J. Product Review: Insure++. Linux J. 1998, 51es, 14. July 1998.

39. NECULA G. C., MCPEAK, S., WEIMER, W. CCured: type-safe retrofitting of

legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, January 16-18, 2002, Portland, Oregon,

pages 128-139, 2002.

40. OZDOGANOGLU, H., BRODLEY, C., VIJAYKUMAR, T., JALOTE, A., AND

KUPERMAN, B. SmashGuard: A Hardware Solution to Prevent Security Attacks

on the Function Return Address. Tech. Rep. TR-ECE 03-13, Purdue University

School of Electrical and Computer Engineering, November 2003.

www.smashguard.org/.

41. PIROMSOPA, K. AND ENBODY, R. Buffer-Overflow Protection: The Theory.

In Proceedings of the 6th IEEE International Conference on Electro/Information

Technology, East Lansing, Michigan, 2006.

42. PIROMSOPA, K. AND ENBODY, R. Arbitrary Copy: Bypassing Buffer-

Overflow Protections. In Proceedings of the 6th IEEE International Conference

on Electro/Information Technology, East Lansing, Michigan, 2006.

 88

43. POE, J. AND LI, T. BASS: A benchmark suite for evaluating architectural

security systems. SIGARCH Computer Architecture News, Volume 34, No. 4,

pages 26-33. September 2006.

44. PRASAD, M. AND CHIUEH, T. A binary rewriting defense against stack-based

buffer overflow attacks. In Proceedings of the 2003 USENIX Annual Technical

Conference, San Antonio, TX, June 2003.

45. PU, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C., INOUYE, J.,

KETHANA, L., WALPOLE, J., AND ZHANG, K. Optimistic incremental

specialization: streamlining a commercial operating system. In Proceedings of the

Fifteenth ACM Symposium on Operating Systems Principles (Copper Mountain,

Colorado, United States, December 03 - 06, 1995). M. B. Jones, Ed. SOSP '95.

ACM Press, New York, NY, pages 314-321. 1995.

46. PU, C., BLACK, A., COWAN, C., AND WALPOLE, J. A specialization toolkit

to increase the diversity of operating systems. In Proceedings of the 1996 ICMAS

Workshop on Immunity-Based Systems, Nara, Japan, December 1996.

47. RABEK, J. C., KHAZAN, R. I., LEWANDOWSKI, S. M., AND

CUNNINGHAM, R. K. Detection of injected, dynamically generated, and

obfuscated malicious code. In Proceedings of the 2003 ACM Workshop on Rapid

Malcode (Washington, DC, USA, October 27 - 27, 2003). WORM '03. ACM

Press, New York, NY, pages 76-82. 2003.

 89

48. RICHARTE, G., Four different tricks to bypass StackShield and StackGuard

protection. 2002. Tech. rep., Core Security Technologies, April 2002.

49. RINGENBURG, M.F. AND GROSSMAN, D. Preventing format-string attacks

via automatic and efficient dynamic checking. In Proceedings of the 12th ACM

conference on Computer and communications security, November 07-11, 2005,

Alexandria, VA, USA, 2005.

50. ROBERTSON, W., KRUEGEL, C., MUTZ, D., AND VALEUR, F. Run-time

detection of heap-based overflows. In Proceedings of the 17th Large Installation

Systems Administrators Conference, San Diego, California, U.S.A., USENIX

Association. pages 51-60, Oct. 2003.

51. RUWASE, O. AND LAM, M. A practical dynamic buffer overflow detector. In

Network and Distributed System Security Symposium (NDSS), pages 159-169,

February 2004.

52. SHANKAR, U., TALWAR, K., FOSTER, J. S., WAGNER D. Detecting format

string vulnerabilities with type qualifiers. In Proceedings of the 10th USENIX

Security Symposium. USENIX, Washington, DC, pages 201-220. 2001.

53. Standard Performance Evaluation Corporation. SPEC CPU2000 benchmark suite.

http://www.spec.org/osg/cpu2000/.

 90

54. TSAI, T. AND SINGH, N. Libsafe 2.0: Detection of format string vulnerability

exploits. White paper, Avaya Labs, February 2001.

55. VENDICATOR. Stackshield: A "stack smashing" technique protection tool for

Linux. http://www.angelfire.com/sk/stackshield/.

56. WILANDER, J. AND KAMKAR, M. A Comparison of Publicly Available Tools

for Dynamic Buffer Overflow Prevention, In Proceedings of the 10th Network and

Distributed System Security Symposium. San Diego, California, February 6-7,

2003. Reston, VA: Internet Society, pages 149-162. 2003.

57. XU, J., KALBARCZYK, Z., PATEL, S., AND IYER, R. Architecture support for

defending against buffer overflow attacks. In Proceedings of the 2002 Workshop

on Evaluating and Architecting System dependability (EASY-2002) University of

Illinois at Urbana-Champaign, October 2002.

58. XU, J., KALBARCZYK, Z., AND IYER, R. K. Transparent runtime

randomization for security. Technical report, Center for Reliable and Higher

Performance Computing, University of Illinois at Urbana-Champaign, May 2003.

59. XU, J. AND NAKKA, N. Defeating Memory Corruption Attacks via Pointer

Taintedness Detection. In Proceedings of the 2005 international Conference on

Dependable Systems and Networks (Dsn'05) - Volume 00 (June 28 - July 01,

2005). DSN. IEEE Computer Society, Washington, DC, pages 378-387, 2005.

 91

60. YOUNANA, Y., POZZAB, D., PIESSENSA, F. AND JOOSENA, W. Extended

Protection against Stack Smashing Attacks without Performance Loss. In

Proceedings of the 22nd Annual Computer Security Applications Conference

(ACSAC'06). Miami, pages. 429-438, December 2006.

61. ZHANG, C. AND JACOBSEN, H. A. TinyC2 - towards a dynamic weaving

aspect language based on C. In Foundation of Aspect Oriented Languages (FOAL)

jointly held with the 2nd International Conference on Aspect Oriented Systems

and Design, Boston, MA, March 2003.

62. ZHIVICH, M., LEEK, T. AND LIPPMANN, R. Dynamic Buffer Overflow

Detection. Workshop on the Evaluation of Software Defect Detection Tools, 2005.

