21,189 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Efficient Synthesis of Room Acoustics via Scattering Delay Networks

    Get PDF
    An acoustic reverberator consisting of a network of delay lines connected via scattering junctions is proposed. All parameters of the reverberator are derived from physical properties of the enclosure it simulates. It allows for simulation of unequal and frequency-dependent wall absorption, as well as directional sources and microphones. The reverberator renders the first-order reflections exactly, while making progressively coarser approximations of higher-order reflections. The rate of energy decay is close to that obtained with the image method (IM) and consistent with the predictions of Sabine and Eyring equations. The time evolution of the normalized echo density, which was previously shown to be correlated with the perceived texture of reverberation, is also close to that of IM. However, its computational complexity is one to two orders of magnitude lower, comparable to the computational complexity of a feedback delay network (FDN), and its memory requirements are negligible

    Waveguide physical modeling of vocal tract acoustics: flexible formant bandwidth control from increased model dimensionality

    Get PDF
    Digital waveguide physical modeling is often used as an efficient representation of acoustical resonators such as the human vocal tract. Building on the basic one-dimensional (1-D) Kelly-Lochbaum tract model, various speech synthesis techniques demonstrate improvements to the wave scattering mechanisms in order to better approximate wave propagation in the complex vocal system. Some of these techniques are discussed in this paper, with particular reference to an alternative approach in the form of a two-dimensional waveguide mesh model. Emphasis is placed on its ability to produce vowel spectra similar to that which would be present in natural speech, and how it improves upon the 1-D model. Tract area function is accommodated as model width, rather than translated into acoustic impedance, and as such offers extra control as an additional bounding limit to the model. Results show that the two-dimensional (2-D) model introduces approximately linear control over formant bandwidths leading to attainable realistic values across a range of vowels. Similarly, the 2-D model allows for application of theoretical reflection values within the tract, which when applied to the 1-D model result in small formant bandwidths, and, hence, unnatural sounding synthesized vowels
    • …
    corecore