1,120 research outputs found

    A graph-based signal processing approach for low-rate energy disaggregation

    Get PDF
    Graph-based signal processing (GSP) is an emerging field that is based on representing a dataset using a discrete signal indexed by a graph. Inspired by the recent success of GSP in image processing and signal filtering, in this paper, we demonstrate how GSP can be applied to non-intrusive appliance load monitoring (NALM) due to smoothness of appliance load signatures. NALM refers to disaggregating total energy consumption in the house down to individual appliances used. At low sampling rates, in the order of minutes, NALM is a difficult problem, due to significant random noise, unknown base load, many household appliances that have similar power signatures, and the fact that most domestic appliances (for example, microwave, toaster), have usual operation of just over a minute. In this paper, we proposed a different NALM approach to more traditional approaches, by representing the dataset of active power signatures using a graph signal. We develop a regularization on graph approach where by maximizing smoothness of the underlying graph signal, we are able to perform disaggregation. Simulation results using publicly available REDD dataset demonstrate potential of the GSP for energy disaggregation and competitive performance with respect to more complex Hidden Markov Model-based approaches

    Pitfalls in Language Models for Code Intelligence: A Taxonomy and Survey

    Full text link
    Modern language models (LMs) have been successfully employed in source code generation and understanding, leading to a significant increase in research focused on learning-based code intelligence, such as automated bug repair, and test case generation. Despite their great potential, language models for code intelligence (LM4Code) are susceptible to potential pitfalls, which hinder realistic performance and further impact their reliability and applicability in real-world deployment. Such challenges drive the need for a comprehensive understanding - not just identifying these issues but delving into their possible implications and existing solutions to build more reliable language models tailored to code intelligence. Based on a well-defined systematic research approach, we conducted an extensive literature review to uncover the pitfalls inherent in LM4Code. Finally, 67 primary studies from top-tier venues have been identified. After carefully examining these studies, we designed a taxonomy of pitfalls in LM4Code research and conducted a systematic study to summarize the issues, implications, current solutions, and challenges of different pitfalls for LM4Code systems. We developed a comprehensive classification scheme that dissects pitfalls across four crucial aspects: data collection and labeling, system design and learning, performance evaluation, and deployment and maintenance. Through this study, we aim to provide a roadmap for researchers and practitioners, facilitating their understanding and utilization of LM4Code in reliable and trustworthy ways

    Big data, modeling, simulation, computational platform and holistic approaches for the fourth industrial revolution

    Get PDF
    Naturally, the mathematical process starts from proving the existence and uniqueness of the solution by the using the theorem, corollary, lemma, proposition, dealing with the simple and non-complex model. Proving the existence and uniqueness solution are guaranteed by governing the infinite amount of solutions and limited to the implementation of a small-scale simulation on a single desktop CPU. Accuracy, consistency and stability were easily controlled by a small data scale. However, the fourth industrial can be described the mathematical process as the advent of cyber-physical systems involving entirely new capabilities for researcher and machines (Xing, 2017). In numerical perspective, the fourth industrial revolution (4iR) required the transition from a uncomplex model and small scale simulation to complex model and big data for visualizing the real-world application in digital dialectical and exciting opportunity. Thus, a big data analytics and its classification are a problem solving for these limitations. Some applications of 4iR will highlight the extension version in terms of models, derivative and discretization, dimension of space and time, behavior of initial and boundary conditions, grid generation, data extraction, numerical method and image processing with high resolution feature in numerical perspective. In statistics, a big data depends on data growth however, from numerical perspective, a few classification strategies will be investigated deals with the specific classifier tool. This paper will investigate the conceptual framework for a big data classification, governing the mathematical modeling, selecting the superior numerical method, handling the large sparse simulation and investigating the parallel computing on high performance computing (HPC) platform. The conceptual framework will benefit to the big data provider, algorithm provider and system analyzer to classify and recommend the specific strategy for generating, handling and analyzing the big data. All the perspectives take a holistic view of technology. Current research, the particular conceptual framework will be described in holistic terms. 4iR has ability to take a holistic approach to explain an important of big data, complex modeling, large sparse simulation and high performance computing platform. Numerical analysis and parallel performance evaluation are the indicators for performance investigation of the classification strategy. This research will benefit to obtain an accurate decision, predictions and trending practice on how to obtain the approximation solution for science and engineering applications. As a conclusion, classification strategies for generating a fine granular mesh, identifying the root causes of failures and issues in real time solution. Furthermore, the big data-driven and data transfer evolution towards high speed of technology transfer to boost the economic and social development for the 4iR (Xing, 2017; Marwala et al., 2017)

    Energy and performance-aware scheduling and shut-down models for efficient cloud-computing data centers.

    Get PDF
    This Doctoral Dissertation, presented as a set of research contributions, focuses on resource efficiency in data centers. This topic has been faced mainly by the development of several energy-efficiency, resource managing and scheduling policies, as well as the simulation tools required to test them in realistic cloud computing environments. Several models have been implemented in order to minimize energy consumption in Cloud Computing environments. Among them: a) Fifteen probabilistic and deterministic energy-policies which shut-down idle machines; b) Five energy-aware scheduling algorithms, including several genetic algorithm models; c) A Stackelberg game-based strategy which models the concurrency between opposite requirements of Cloud-Computing systems in order to dynamically apply the most optimal scheduling algorithms and energy-efficiency policies depending on the environment; and d) A productive analysis on the resource efficiency of several realistic cloud–computing environments. A novel simulation tool called SCORE, able to simulate several data-center sizes, machine heterogeneity, security levels, workload composition and patterns, scheduling strategies and energy-efficiency strategies, was developed in order to test these strategies in large-scale cloud-computing clusters. As results, more than fifty Key Performance Indicators (KPI) show that more than 20% of energy consumption can be reduced in realistic high-utilization environments when proper policies are employed.Esta Tesis Doctoral, que se presenta como compendio de artículos de investigación, se centra en la eficiencia en la utilización de los recursos en centros de datos de internet. Este problema ha sido abordado esencialmente desarrollando diferentes estrategias de eficiencia energética, gestión y distribución de recursos, así como todas las herramientas de simulación y análisis necesarias para su validación en entornos realistas de Cloud Computing. Numerosas estrategias han sido desarrolladas para minimizar el consumo energético en entornos de Cloud Computing. Entre ellos: 1. Quince políticas de eficiencia energética, tanto probabilísticas como deterministas, que apagan máquinas en estado de espera siempre que sea posible; 2. Cinco algoritmos de distribución de tareas que tienen en cuenta el consumo energético, incluyendo varios modelos de algoritmos genéticos; 3. Una estrategia basada en la teoría de juegos de Stackelberg que modela la competición entre diferentes partes de los centros de datos que tienen objetivos encontrados. Este modelo aplica dinámicamente las estrategias de distribución de tareas y las políticas de eficiencia energética dependiendo de las características del entorno; y 4. Un análisis productivo sobre la eficiencia en la utilización de recursos en numerosos escenarios de Cloud Computing. Una nueva herramienta de simulación llamada SCORE se ha desarrollado para analizar las estrategias antes mencionadas en clústers de Cloud Computing de grandes dimensiones. Los resultados obtenidos muestran que se puede conseguir un ahorro de energía superior al 20% en entornos realistas de alta utilización si se emplean las estrategias de eficiencia energética adecuadas. SCORE es open source y puede simular diferentes centros de datos con, entre otros muchos, los siguientes parámetros: Tamaño del centro de datos; heterogeneidad de los servidores; tipo, composición y patrones de carga de trabajo, estrategias de distribución de tareas y políticas de eficiencia energética, así como tres gestores de recursos centralizados: Monolítico, Two-level y Shared-state. Como resultados, esta herramienta de simulación arroja más de 50 Key Performance Indicators (KPI) de rendimiento general, de distribucin de tareas y de energía.Premio Extraordinario de Doctorado U
    corecore