122 research outputs found

    Cooperative Collision Avoidance in a Connected Vehicle Environment

    Full text link
    Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles. It leverages the Vehicle to Everything (V2X) communication technology to create a real-time implementable collision avoidance algorithm along with decision-making for a vehicle that communicates with other vehicles. Four distinct collision risk environments are simulated on a cost effective Connected Autonomous Vehicle (CAV) Hardware in the Loop (HIL) simulator to test the overall algorithm in real-time with real electronic control and communication hardware

    Novel design and position control strategy of a soft robot arm

    Get PDF
    This article presents a novel design of a continuum arm, which has the ability to extend and bend efficiently. Numerous designs and experiments have been done to different dimensions on both types of McKibben pneumatic muscle actuators (PMA) in order to study their performances. The contraction and extension behaviour have been illustrated with single contractor actuators and single extensor actuators, respectively. The tensile force for the contractor actuator and the compressive force for the extensor PMA are thoroughly explained and compared. Furthermore, the bending behaviour has been explained for a single extensor PMA, multi extensor actuators and multi contractor actuators. A two-section continuum arm has been implemented from both types of actuators to achieve multiple operations. Then, a novel construction is proposed to achieve efficient bending behaviour of a single contraction PMA. This novel design of a bending-actuator has been used to modify the presented continuum arm. Two different position control strategies are presented, arising from the results of the modified soft robot arm experiment. A cascaded position control is applied to control the position of the end effector of the soft arm at no load by efficiently controlling the pressure of all the actuators in the continuum arm. A new algorithm is then proposed by distributing the x, y and z-axis to the actuators and applying an effective closed-loop position control to the proposed arm at different load conditions

    Home-based rehabilitation of the shoulder using auxiliary systems and artificial intelligence: an overview

    Get PDF
    Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.info:eu-repo/semantics/publishedVersio

    Kinematic Modelling and Motion Analysis of a Humanoid Torso Mechanism

    Get PDF
    This paper introduces a novel kinematic model for a tendon-driven compliant torso mechanism for humanoid robots, which describes the complex behaviour of a system characterised by the interaction of a complex compliant element with rigid bodies and actuation tendons. Inspired by a human spine, the proposed mechanism is based on a flexible backbone whose shape is controlled by two pairs of antagonistic tendons. First, the structure is analysed to identify the main modes of motion. Then, a constant curvature kinematic model is extended to describe the behaviour of the torso mechanism under examination, which includes axial elongation/compression and torsion in addition to the main bending motion. A linearised stiffness model is also formulated to estimate the static response of the backbone. The novel model is used to evaluate the workspace of an example mechanical design, and then it is mapped onto a controller to validate the results with an experimental test on a prototype. By replacing a previous approximated model calibrated on experimental data, this kinematic model improves the accuracy and efficiency of the torso mechanism and enables the performance evaluation of the robot over the reachable workspace, to ensure that the tendon-driven architecture operates within its wrench-closure workspace

    Modeling of Force and Motion Transmission in Tendon-Driven Surgical Robots

    Get PDF
    Tendon-based transmission is a common approach for transferring motion and forces in surgical robots. In spite of design simplicity and compactness that comes with the tendon drives, there exists a number of issues associated with the tendon-based transmission. In particular, the elasticity of the tendons and the frictional interaction between the tendon and the routing result in substantially nonlinear behavior. Also, in surgical applications, the distal joints of the robot and instruments cannot be sensorized in most cases due to technical limitations. Therefore, direct measurement of forces and use of feedback motion/force control for compensation of uncertainties in tendon-based motion and force transmission are not possible. However, force/motion estimation and control in tendon-based robots are important in view of the need for haptic feedback in robotic surgery and growing interest in automatizing common surgical tasks. One possible solution to the above-described problem is the development of mathematical models for tendon-based force and motion transmission that can be used for estimation and control purposes. This thesis provides analysis of force and motion transmission in tendon-pulley based surgical robots and addresses various aspects of the transmission modeling problem. Due to similarities between the quasi-static hysteretic behavior of a tendon-pulley based da Vinci® instrument and that of a typical tendon-sheath mechanism, a distributed friction approach for modeling the force transmission in the instrument is developed. The approach is extended to derive a formula for the apparent stiffness of the instrument. Consequently, a method is developed that uses the formula for apparent stiffness of the instrument to determine the stiffness distribution of the tissue palpated. The force transmission hysteresis is further investigated from a phenomenological point of view. It is shown that a classic Preisach hysteresis model can accurately describe the quasi-static input-output force transmission behavior of the da Vinci® instrument. Also, in order to describe the distributed friction effect in tendon-pulley mechanisms, the creep theory from belt mechanics is adopted for the robotic applications. As a result, a novel motion transmission model is suggested for tendon-pulley mechanisms. The developed model is of pseudo-kinematic type as it relates the output displacement to both the input displacement and the input force. The model is subsequently used for position control of the tip of the instrument. Furthermore, the proposed pseudo-kinematic model is extended to compensate for the coupled-hysteresis effect in a multi-DOF motion. A dynamic transmission model is also suggested that describes system’s response to high frequency inputs. Finally, the proposed motion transmission model was used for modeling of the backlash-like hysteresis in RAVEN II surgical robot

    Towards Mixed-Initiative Human–Robot Interaction: Assessment of Discriminative Physiological and Behavioral Features for Performance Prediction

    Get PDF
    The design of human–robot interactions is a key challenge to optimize operational performance. A promising approach is to consider mixed-initiative interactions in which the tasks and authority of each human and artificial agents are dynamically defined according to their current abilities. An important issue for the implementation of mixed-initiative systems is to monitor human performance to dynamically drive task allocation between human and artificial agents (i.e., robots). We, therefore, designed an experimental scenario involving missions whereby participants had to cooperate with a robot to fight fires while facing hazards. Two levels of robot automation (manual vs. autonomous) were randomly manipulated to assess their impact on the participants’ performance across missions. Cardiac activity, eye-tracking, and participants’ actions on the user interface were collected. The participants performed differently to an extent that we could identify high and low score mission groups that also exhibited different behavioral, cardiac and ocular patterns. More specifically, our findings indicated that the higher level of automation could be beneficial to low-scoring participants but detrimental to high-scoring ones, and vice versa. In addition, inter-subject single-trial classification results showed that the studied behavioral and physiological features were relevant to predict mission performance. The highest average balanced accuracy (74%) was reached using the features extracted from all input devices. These results suggest that an adaptive HRI driving system, that would aim at maximizing performance, would be capable of analyzing such physiological and behavior markers online to further change the level of automation when it is relevant for the mission purpose

    Kinematic modelling and motion analysis of a humanoid torso mechanism

    Get PDF
    This paper introduces a novel kinematic model for a tendon-driven compliant torso mechanism for humanoid robots, which describes the complex behaviour of a system characterised by the interaction of a complex compliant element with rigid bodies and actuation tendons. Inspired by a human spine, the proposed mechanism is based on a flexible backbone whose shape is controlled by two pairs of antagonistic tendons. First, the structure is analysed to identify the main modes of motion. Then, a constant curvature kinematic model is extended to describe the behaviour of the torso mechanism under examination, which includes axial elongation/compression and torsion in addition to the main bending motion. A linearised stiffness model is also formulated to estimate the static response of the backbone. The novel model is used to evaluate the workspace of an example mechanical design, and then it is mapped onto a controller to validate the results with an experimental test on a prototype. By replacing a previous approximated model calibrated on experimental data, this kinematic model improves the accuracy and efficiency of the torso mechanism and enables the performance evaluation of the robot over the reachable workspace, to ensure that the tendon-driven architecture operates within its wrench-closure workspace

    Design and Preliminary Testing of a Magnetic Spring as an Energy-Storing System for Reduced Power Consumption of a Humanoid Arm

    Get PDF
    The increasing use of robots in the industry, the growing energy prices, and higher environmental awareness have driven research to find new solutions for reducing energy consumption. In additional, in most robotic tasks, energy is used to overcome the forces of gravity, but in a few industrial applications, the force of gravity is used as a source of energy. For this reason, the use of magnetic springs with actuators may reduce the energy consumption of robots performing trajectories due their high-hardness magnetic properties of energy storage. Accordingly, this paper proposes a magnetic spring configuration as an energy-storing system for a two DoF humanoid arm. Thus, an integration of the magnetic spring system in the robot is described. A control strategy is proposed to enable autonomous use. In this paper, the proposed device is modeled and analyzed with simulations as: mechanical energy consumption and kinetic energy rotational and multibody dynamics. Furthermore, a prototype was manufactured and validated experimentally. A preliminary test to check the interaction between the magnetic spring system with the mechanism and the trajectory performance was carried out. Finally, an energy consumption comparison with and without the magnetic spring is also presented

    Mechatronic design solution for planar overconstrained cable-driven parallel robot

    Get PDF
    Cable-driven parallel robots (CDPRs) combine the successful features of parallel manipulators with the benefits of cable transmissions. The payload is divided among light extendable cables, resulting in an energy-efficient system that can achieve high end-effector acceleration over a huge workspace. A CDPR is formed by a set of actuation units, and a mobile platform, working as an end-effector (EE). The cables, driven by the actuation units, are guided inside the robot workspace using a guidance system and then connected to the mobile platform. The variation of cable lengths is responsible for the EE displacement throughout the robot workspace. These features result in easily reconfigurable systems where the workspace can be modified by relocating the actuation and guidance units. Nevertheless, the use of CDPRs in industrial environments is still limited, due to the drawbacks of employing flexible cables. Indeed, cables impose unilateral constraints that can only exert tensile forces and, consequently, the EE cannot withstand any arbitrary external action. To enhance the robot’s controllability, CDPRs can be overconstrained by employing a number of cables higher than the degrees of freedom of the EE. This allows cables to pull one against the other and to keep the overall system controllable over a wide range of externally applied loads. In this thesis, an eight-cable, planar, overconstrained CDPR is designed: the robot has the deployable and reconfigurable features required by the task. In particular, this CDPR has its actuation units installed into the EE mobile platform, and the frame anchor points can be rearranged to obtain a discrete reconfiguration. The cable arrangement, location of anchor points and mechanical design have been studied, by implementing a hybrid optimisation procedure. The genetic algorithm is combined with a local minimum optimiser, maximizing the CDPR volume index and deriving a mechanical design for the prototype
    • …
    corecore