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Copyright © 2018 Péter Baranyi.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The tensor product (TP) model transformation defines and numerically reconstructs the Higher-Order Singular Value
Decomposition (HOSVD) of functions. It plays the same role with respect to functions as HOSVD does for tensors (and SVD
for matrices). The need for certain advantageous features, such as rank/complexity reduction, trade-offs between complexity and
accuracy, and amanipulation power representative of the TP form, hasmotivated novel concepts in TS fuzzymodel basedmodelling
and control. The latest extensions of the TP model transformation, called the multi- and generalised TP model transformations,
are applicable to a set functions where the dimensionality of the outputs of the functions may differ, but there is a strict limitation
on the dimensionality of their inputs, which must be the same. The paper proposes an extended version that is applicable to a set
of functions where both the input and output dimensionalities of the functions may differ. This makes it possible to transform
complete multicomponent systems to TS fuzzy models along with the above-mentioned advantages.

1. Introduction

The appearance of the Singular Value Decomposition (SVD)
was one of the largest breakthroughs in matrix algebra [1].
Its applicability was extended to tensors in the form of the
Higher-Order SVD [2] around 2000. Recently, a further
extension of the SVD and HOSVD concept, known as the
tensor product (TP)Model Transformation,was proposed for
functions in control theory [3]. A comprehensive overview is
given in [4]. Various extensions of the TP model transforma-
tion such as the bilinear-, pseudo-, multi-, and generalised
TP model transformation, as well as the concept of HOSVD
canonical form of TS fuzzy or TP models, were proposed
in [4–7], with a special focus on TS fuzzy models in [8].
The approximation power of the TP model transformation
applied to TS fuzzy models is investigated in [9].

The above-mentioned extensions and variations of the
TP model transformation were primarily applied to fuzzy
model complexity reduction [10, 11] and in thewidely used TS
fuzzymodel based PDC (Parallel Distributed Compensation)
control theories [12–14]. But also, in general, it has been
applied to polytopic model, TP/TS fuzzy model, and LMI
(Linear Matrix Inequality [15]) based control theories. The
most important features of the TP model transformation

are guaranteed by the key transformation step whereby a
numerically reconstructed HOSVD structure is determined.
Key features of the transformation are as follows:

(i) It is executable on models given by equations or soft
computing based representations, such as fuzzy rules
or neural networks or other black-box models. The
only requirement is that the model must provide an
output for each input (at least on a discrete scale, see
Section 4, Step 1).

(ii) It will find the minimal complexity, namely, the
minimal number of rules of the TS fuzzy model. If
further complexity reduction is required, it provides
one of the best trade-offs between the number of rules
and approximation error.

(iii) It works like a principle component analysis, in that it
determines the order of the components/fuzzy rules
according to their importance.

(iv) It is capable of deriving the antecedent fuzzy sets
according to various constraints. For instance, it can
be used to define different convex hulls, a capability
which has recently been shown to play an important
role in control theory.
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(v) It is capable of transforming the given model to
predefined antecedent fuzzy sets (pseudo-TP model
transformation)

(vi) It is capable of transforming a set of models simul-
taneously, while common antecedent fuzzy sets are
derived for all models.

Based on the above, various theories and applications
have emerged using the TP model transformation. Further
computational improvements were proposed in [16, 17].
It has been proved in [5, 18–20] that LMI based control
design theories are very sensitive for convex hulls defined by
consequents (vertices) of TS fuzzy models. Thus, the convex
hull manipulation capability of the TP model transformation
is an important and necessary step in LMI based control
design. Very effective convex hull manipulation methods
were incorporated into the TP model transformation in
[21–23]. Further useful control approaches and applications
were published in the field of control theory [24–41]. Many
powerful approaches are published on the field of sliding
mode control in [29, 42, 43]. In physiological control the
usability of TPmodel transformation has been demonstrated
as well [44–49]. Various further theories and applications are
studied in [50–87].

One of the key advantages of the TP model transfor-
mation is that is capable of finding the minimal complexity
of all components of the system and guarantees the same
antecedent system for all components. This is a very typical
requirement in design or stability verificationmethodologies,
that is, the model, controller, and observer need to have
the same antecedent system, hence, convex representation.
Therefore, the simultaneousmanipulation of the components
with the multi-TP model transformation or the generalised
TP model transformation (that combines all variants of the
TP model transformation) yields further possibilities for
control performance optimisation [18–20].

Despite the above advantages, a crucial limitation of the
generalised TP model transformation is that it can only be
applied to a set of systems which have the same number of
inputs. For instance, consider four different systems given
with different representations, as shown in Figure 1. S1 is a
fuzzy logic model; S2 is neural network; S3 is given by an
equation; and S4 is a black-box model. All of these models
have the same inputs but may have different sized output
tensors. The multi-TP model transformation is capable of
simultaneously transforming all systems to TP or TS fuzzy
model form, such that the same antecedent sets are defined
on the inputs. The generalised TP model transformation can
also transform to predefined antecedent fuzzy sets.

A further generalisation proposed in this paper can be
applied to systems like in the example given in Figure 2.
Here each system may be given by different representations
(like in the above case) but may also have different numbers
of inputs. The transformation can simultaneously convert
all of the systems to TS fuzzy model form, such that the
antecedent fuzzy sets will either be the same or assume a pre-
defined structure. From all other perspectives, the proposed
TP model transformation inherits all of the advantageous
features of the previous TP-based approaches.
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Figure 1: Multi TP model transformation.
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Figure 2: Proposed extension of the TP model transformation.

Recenly proposed SOS-type (Sum-of-sqares) TS fuzzy
LPV models are also widely applied in fuzzy control theories
[88, 89]. The further extension of the TP model transforma-
tion to such systems is highly welcome in future works.

2. Notation and Concepts

2.1. Notation. The following notations are used in the paper:

(i) Scalar: 𝑎 is scalar.
(ii) Vector: a contains elements 𝑎𝑖.
(iii) Matrix: A contains elements 𝑎𝑖,𝑗.
(iv) Tensor:A contains elements 𝑎𝑖,𝑗,𝑘,....
(v) Set: A : {𝑎, 𝑏, 𝑐, . . .}, for example, 𝑎 ∈ A.
(vi) Index 𝑖: the upper bounds of the indices are denoted

by the uppercase letter, for example, 𝐼.
(vii) Index 𝑖 ∈ I denotes that index 𝑖 takes the elements of

set I ⊆ {1, 2, . . . , 𝐼} ⊂ N, respectively. I : {1, 2, . . . , 𝐼} is
understood as per default.

(viii) Interval: 𝜔 = [𝜔min, 𝜔max].
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(ix) Space: Ω : 𝜔1 × 𝜔2 × ⋅ ⋅ ⋅ × 𝜔𝑁 is an 𝑁 dimensional
hypercube.

(x) x ∈ Ω expresses the fact that vector x is within the
space Ω. The dimensions of x andΩ are the same.

(xi) ⊏ denotes a dimensionality reduced subset in general
as follows:

(a) In the case of spaces: Θ ⊏ Ω states that Θ is a
hypercube with the same sized intervals as Ω,
but has a smaller number of dimensions.

(b) In the case of vectors: a ⊏ b, where a ∈ Θ ⊂ R𝑁

and b ∈ Ω ⊂ R𝑀 means that 𝑁 < 𝑀 and Θ ⊏Ω.
(c) In the case of tensors: A ⊏ B means for

instance thatA is obtained by deleting complete
dimensions from tensorB.

(xii) Grid: 𝐺 : g1 × g2 × ⋅ ⋅ ⋅ × g𝑁 is a rectangular hyper
grid (tensor), where g𝑛 = [𝑔𝑛,1 < 𝑔𝑛,2 < ⋅ ⋅ ⋅ < 𝑔𝑛,𝑀𝑛]
defines the locations of the 𝑀𝑛 different grid points
in increasing order.

(xiii) Pair (Ω, 𝐺): space Ω ∈ R𝑁 and grid 𝐺 are in a pair,
meaning that ∀𝑛 ∈ N : 𝑔𝑛,1 = 𝜔𝑛,min and 𝑔𝑛,𝑀𝑛 =𝜔𝑛,max.

(xiv) Discretised function F𝐷(Ω,𝐺) of 𝑓(x) denotes the
sampling of 𝑓(x) over pair (Ω, 𝐺). Thus, it is a tensor
with the size of𝑀1 ×𝑀2 × ⋅ ⋅ ⋅ × 𝑀𝑁 and entries:

𝑓𝑚1,𝑚2,...,𝑚𝑁 = 𝑓 ([𝑔1,𝑚1 𝑔2,𝑚2 . . . 𝑔𝑁,𝑚𝑁]) . (1)

(xv) S ⊠
N
U𝑛 is the tensor product (TP); for details, refer

to [4, 5, 8]. A slight difference in notation here is
that N under the tensor product operation ⊠ is only
a set numbers 𝑛 ∈ N to which the product should be
applied.

(xvi) 𝑓(x) = S ⊠
N

w𝑛(𝑥𝑛) represents the TP function,

x ∈ R𝑁, where w𝑛(𝑥𝑛) = [𝑤𝑛,1(𝑥𝑛) 𝑤𝑛,2(𝑥𝑛) ⋅ ⋅ ⋅𝑤𝑛,𝐼𝑛(𝑥𝑛)] is called the weighting function system.
(xvii) Types of the weighting functions are as follows:

(a) SN: sum normalised
(b) NN: nonnegativeness
(c) NO: normalised
(d) CNO: close to normalised
(e) RNO: relaxed normalised
(f) INO: inverse normalised
(g) IRNO: inverse relaxed normalised.

For further details, refer to [4, 5].

3. The Proposed TP Model Transformation

Assume that a set of functions is given as Y𝑙 = 𝑓𝑙(x𝑙), x𝑙 ⊑
x ∈ Ω; thus x𝑙 ∈ Ω𝑙 ⊑ Ω ⊂ R𝑁, x𝑙 ∈ R𝑁𝑙 . The output
tensor Y𝑙 of each function 𝑓𝑙(x𝑙) may differ in the number
of dimensions and its size as Y𝑙 ∈ R𝑂1,𝑙×𝑂2,𝑙×⋅⋅⋅×𝑂𝐾𝑙,𝑙 , where𝐾𝑙 denotes the number of dimensions of the output and 𝑂𝑘
denotes the number of elements in dimension 𝑘.

The goal of the TP model transformation is to transform∀𝑙 : 𝑓𝑙(x𝑙) into TP function form as

Y𝑙 = 𝑓𝑙 (x𝑙) = S𝑙 ⊠N𝑙 w𝑙,𝑛 (𝑥𝑛) (2)

under the following constraints given on the weighting
functions.

(i) Unified Constraints for ∀𝑙 : 𝑓𝑙(x𝑙). All resulting TP
functions will have the same weighting function system on
each dimension defined by the set V ⊆ N (obviously, if the
function has that input dimension):

(a) Weighting function systems w𝑎(𝑥𝑎), 𝑎 ∈ A ⊆ V, are
predefined.

(b) Weighting function systems w𝑏(𝑥𝑏), 𝑏 ∈ B ⊆ V will
be derived by the transformation; only their types
are predefined (i.e., SN, NN, NO, CNO, RNO, INO,
and IRNO). Further the number of the weighting
functions are minimised.

(ii) Different Constraints for Each 𝑓𝑙(x𝑙). The resulting TP
functions have different weighting functions on dimensions
Z ⊆ N:

(a) Weighting function systems w𝑙,𝑐(𝑥𝑐), 𝑐 ∈ C ⊆ Z are
predefined of each 𝑓𝑙(x𝑙).

(b) The types (i.e., SN, NN, NO, CNO, RNL, INO, and
IRNO) of the weighting function systems w𝑙,𝑑(x𝑑) are
predefined for dimensions 𝑑 ∈ D ⊆ Z of each 𝑓𝑙(x𝑙).

Thus, (2) can be given as follows:

Y𝑙 = 𝑓𝑙 (x𝑙)
= S𝑙 ⊠A w𝑎 (𝑥𝑎) ⊠B w𝑏 (𝑥𝑏) ⊠C w𝑙,𝑐 (𝑥𝑐) ⊠D w𝑙,𝑑 (𝑥𝑑) . (3)

4. The Computation of the Proposed
TP Model Transformation

Step 1 (discretisation).
(i) Discretisation of all 𝑓𝑙(x𝑙) results in tensor F𝐷(Ω𝑙 ,𝐺𝑙)

𝑙
,

(𝐺𝑙 ⊑ 𝐺). The size ofF𝐷(Ω𝑙 ,𝐺𝑙)
𝑙

in dimension 𝑛 ∈ N𝑙 is𝑀𝑛.
(ii) Discretise the predefined weighting functions over

the dimensions ofΩ:
W
𝐷(𝜔𝑎 ,g𝑎)
𝑎 ,

W
𝐷(𝜔𝑐 ,g𝑐)
𝑙,𝑐

. (4)

Remark 1. This step is executed in the same way as in the case
of the original TP model transformation; see [4, 5, 8].

Step 2 (defining TP structures). Execute the following steps
in each dimension 𝑛 ∈ N:

(i) Lay out tensors F𝐷(Ω,𝐺)
𝑙

in dimensions 𝑛 if vector x𝑙
has the following dimension:

H𝑙 = (F𝐷(Ω𝑙 ,𝐺𝑙)
𝑙

)
(𝑛)

. (5)
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(ii) If 𝑛 ∈ B then create

T𝑛 = [H1 H2 ⋅ ⋅ ⋅ H𝐿] . (6)

Execute SVD onT𝑛 and SN, NN, NO, CNO and com-
plexity trade-off by discarding singular values in the
same way as in the original TPmodel transformation,
which results in

T𝑛 = U𝑛D𝑛V
𝑇
𝑛 . (7)

As a matter of fact, if nonzero singular values are
discarded then it is only an approximation. Let

W
𝐷(𝜔𝑛 ,g𝑛)
𝑛 = U𝑛. (8)

(iii) If 𝑛 ∈ D then execute SVD onH𝑙 as

H𝑙 = U𝑙D𝑙V
𝑇
𝑙 ; (9)

and, according to the conditions, execute SN, NN,
NO, CNO, and complexity trade-off by discarding
singular values in the same way as in the original TP
model transformation:

H𝑙 = U󸀠𝑙D
󸀠
𝑙V
󸀠𝑇

𝑙 . (10)

Again, if nonzero singular values are discarded then
it is only an approximation. Let

W
𝐷(𝜔𝑛 ,g𝑛)
𝑙,𝑛

= U󸀠𝑙. (11)

(iv) Finally,

S𝑙 = F
𝐷(Ω,𝐺)
𝑙 ⊠

𝑛∈A∪B
K𝑛 ⊠
𝑛∈C∪D

K𝑙,𝑛, (12)

where

K𝑛 = (W𝐷(𝜔𝑛,g𝑛)𝑛 )+ ,
K𝑙,𝑛 = (W𝐷(𝜔𝑛,g𝑛)

𝑙,𝑛
)+ , (13)

where (⋅)+ denotes the pseudoinverse.
Step 3 (reconstruction of the weighting functions). This step
is the same as in the multi-TP model transformation [4, 5, 8].
Having the result of the above steps, F𝐷(Ωl ,𝐺𝑙)

𝑙
and S𝑙, we

can recalculate the weighting functions at any point. We may
calculate the first two steps over a grid, which is not too
dense, but calculate the weighting function over a very dense
grid (as suggested in [5]), and then construct piecewise linear
functions. As a result we have wV(𝑥V) and w𝑙,𝑧(𝑥𝑧).

Then we achieved the goal. We have the TP model form
of all functions with the given constraints:

𝑓𝑙 (x𝑙) = S𝑙 ⊠N𝑙 w𝑙,𝑛 (𝑥𝑛) , (14)

or 𝑓𝑙 (x𝑙) ≈ S𝑙 ⊠N𝑙 w𝑙,𝑛 (𝑥𝑛) , (15)

if a complexity trade-off is executed (nonzero singular values
are discarded), where

∀𝑙 : w𝑙,𝑎 (x𝑙) = w𝑎 (x𝑙) ,
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Figure 3: System 3: neural network.

∀𝑙 : w𝑙,𝑏 (x𝑙) = w𝑏 (x𝑙) .
(16)

Or in other words,

𝑓𝑙 (x𝑙) = S𝑙 ⊠A w𝑎 (x𝑎) ⊠B w𝑏 (x𝑏) ⊠C w𝑙,𝑐 (x𝑙) ⊠D w𝑙,𝑑 (x𝑙) . (17)

Remark 2. The convex hull manipulation and the complexity
trade-off are done in the second step. Therefore the approxi-
mation accuracy is controlled here by the discarded nonzero
singular values. However, the discarded nonzero singular
values lead to approximation error. If the given weighting
function system is not sufficient (i.e., the number of the
weighting functions is less than the rank of that dimension)
then we arrive at an approximation only. The use of the
pseudoinverse guarantees, however, that it will be the best
approximation.

5. Example

5.1. The System. Consider a multicomponent system with
input vector x = [𝑥1 𝑥2 𝑥3], where x ∈ Ω = 𝜔1 × 𝜔2 ×𝜔3 ∈ R3 and 𝜔𝑛 = [0, 1]. The system has four subsystems,𝑙 ∈ L : {1, . . . , 4} as shown in Figure 1.

System 3. In order to have a systematic notation, we denote
the input vector of System 3 as x1 = x that is x1 ∈ Ω1 = Ω. It
is a neural network; see Figure 3:

𝑦1 = 𝑓𝑎( 3∑
𝑖=1

𝑓𝑎 (𝑥𝑖) 𝑏1,𝑖) ,

𝑦2 = 𝑓𝑎( 3∑
𝑖=1

𝑓𝑎 (𝑥𝑖) 𝑏2,𝑖) ,
(18)

where 𝑓𝑎(𝑧) is the activation function (let it be a very simple
one in the present case: 𝑓𝑎(𝑧) = 𝑧) of the neurons and 𝑏𝑗,𝑖 are
the weights connecting the 𝑖th input neuron to the 𝑗th output
neuron. Thus the output of the system is

y1 = 𝑓1 (x1) = [𝑦1𝑦2] . (19)

System 4. The input vector of System 4 is x2 = [𝑥2 𝑥3] ∈Ω2 = 𝜔2 × 𝜔3, where x2 ⊏ x andΩ2 ⊏ Ω.
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This system is given by formulas such as

Y2 = 𝑓2 (x2) = [ 𝑥22 2𝑥2
3𝑥−13 5 ] . (20)

System 5. The input vector of System 5 is x3 = 𝑥1 ∈ Ω3 = 𝜔1,
where x3 ⊏ x andΩ3 ⊏ Ω.

This is given by a fuzzy logicmodel. Assume that two rules
are given (𝑖 = 1, 2):

IF 𝐴 𝑖 THEN 𝐵𝑖.
Further assume that the membership functions are in

Ruspini partition:

𝜇𝐴1 (𝑥3) = 𝑥3;
𝜇𝐴2 (𝑥) = 1 − 𝑥3; (21)

and the consequent sets are singleton sets located at elements
5 and 6 of the output universe. It is a TS fuzzy model and,
therefore, the transfer function (product-sum-gravity) of the
model is

𝑦3 = 𝑓3 (x3) = 5𝑥3 + 6 (1 − 𝑥3) . (22)

System 6. The input vector of System 6 is x4 = [𝑥1 𝑥3] ∈Ω4 = 𝜔1 × 𝜔3, where x4 ⊏ x andΩ4 ⊏ Ω.
This is a black-boxmodel that can provide𝑦4 for any input𝑥1, 𝑥3.

𝑦4 = 𝑓4 (x4) . (23)

(In order to follow all computational steps of the example, let
us reveal what is the output of the black-box 𝑦4 = 3𝑥1 + 𝑥3.)
5.2. Conditions of the TP Model Transformation. The goal
of the example is to transform all the four systems to TS
fuzzy representations (or TP model if the resulting weighting
functions cannot be represented as antecedent fuzzy states),
with the following conditions:

(i) All systems must have the same antecedent function
system on the input interval of 𝑥1. The antecedent
functions must be in Ruspini partition, namely, in
SN and NN type. In order to have a complexity
minimised representation, a further requirement is
that the number of antecedent functions must be
minimal.

(ii) The same antecedent function system of variable 𝑥2 is
predefined for all systems:

w𝑝2 (𝑥2) = [𝑤2,1 (𝑥2) 𝑤2,2 (𝑥2) 𝑤2,3 (𝑥2)] , (24)

where “𝑝” denotes “predefined,” and
𝑤2,1 (𝑥2) = 0.5𝑥22;
𝑤2,2 (𝑥2) = 0.5 (1 − 𝑥2)2
𝑤2,3 (𝑥2) = 1 − (𝑤2,1 (𝑥2) + 𝑤2,2 (𝑥2)) .

(25)

(iii) The only requirement for the weighting function
system of the input 𝑥3 of each system is that theymust
be the singular functions of the HOSVD canonical
form (othonormed system ordered by the higher-
order singular values). These functions are not rep-
resentable as antecedent functions of fuzzy sets, since
they may take negative values as well. Obviously they
will not be the same for all systems.

5.3. Execution of the Proposed TPModel Transformation. It is
worth emphasizing again that the previous methods for TP
model representation cannot be applied in the present case,
since the elements of the input vectors are different.

Step 1.
(i) Let us define grid 𝐺 toΩ = [0, 1] × [0, 1] × [0, 1]:

g1 = g2 = g3 = [0 0.01 0.02 ⋅ ⋅ ⋅ 1] . (26)

Thus the number of points on the discretisation grid
is𝑀1 = 𝑀2 = 𝑀3 = 101.

(ii) Let us discretise the systems over the rectangular grid
defined by vectors g𝑛, 𝑛 = 1, 2, 3. The discretisation of
System 𝑙 results in F

𝐷(Ω𝑙 ,𝐺𝑙)

𝑙
, 𝑙 ∈ 𝐿. In case of System

3,

F
𝐷(Ω1 ,𝐺1)
1 ∈ R

𝑀1×𝑀2×𝑀3×2, (27)

where the first three dimensions are assigned to the
input variables and the last dimension is assigned to
the output vector.Thediscretisation of System4yields

F
𝐷(Ω2 ,𝐺2)
2 ∈ R

𝑀2×𝑀3×2×2, (28)

where the first two dimensions are assigned to the
input variables 𝑥2, 𝑥3 and the last two dimensions
are assigned to the output matrix. The discretisation
of System 5 yields the following vector:

F
𝐷(Ω3 ,𝐺3)
3 ∈ R

𝑀3 . (29)

The discretisation of System 6 results in

F
𝐷(Ω4 ,𝐺4)
4 ∈ R

𝑀1×𝑀3 , (30)

where the first two dimensions are assigned to the
input variables 𝑥1, 𝑥3 and the last dimension is
assigned to the output vector.

Let us discretise the predefined weighting function as well:

W
𝐷(𝜔2 ,g2)
2

= [[[[
[

𝑤2,1 (𝑔2,1) 𝑤2,2 (𝑔2,1) 𝑤2,3 (𝑔2,1)... ... ...
𝑤2,1 (𝑔2,𝑀2) 𝑤2,2 (𝑔2,𝑀2) 𝑤2,3 (𝑔2,𝑀2)

]]]]
]
. (31)
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Step 2.
(i) Dimension 𝑥1

Lay out tensors F𝐷(Ω𝑙 ,𝐺𝑙)
𝑙

, 𝑙 ∈ {1, 3, 4} in the dimen-
sion assigned 𝑥1:

H𝑙 = (F𝐷(Ω𝑙 ,𝐺𝑙)
𝑙

)
(1)

. (32)

Create

K = [H1 H3 H4] . (33)

Execute SVD on K incorporating SN and NN condi-
tion [4] (only nonzero singular values are kept):

K = U1D
󸀠V󸀠𝑇. (34)

The result of this step to be used later is U1.
(ii) Dimension 𝑥2

Let

U2 = W
𝐷(𝜔2 ,g2)
2 . (35)

(iii) Dimension 𝑥3
Lay out tensors F𝐷(Ω𝑙 ,𝐺𝑙)

𝑙
, 𝑙 ∈ {1, 2, 4} in the dimen-

sion assigned 𝑥3:
H𝑙 = (F𝐷(Ω𝑙 ,𝐺𝑙)

𝑙
)
(3)

. (36)

Then execute HOSVD on each H𝑙, 𝑙 ∈ {1, 2, 4} (only
the nonzero singular values are kept):

H1 = U3,1D1V
𝑇
1 .

H2 = U3,2D2V
𝑇
2 .

H4 = U3,4D4V
𝑇
4 .

(37)

The result of this step is U3,𝑙.
(iv) Reconstructing the core tensors

∀𝑙 : S𝑙 = F
𝐷(Ω𝑙 ,𝐺𝑙)
1 ⊠

Ω𝑙
(U𝑛)+ . (38)

Step 3. Let

W
𝐷(𝜔1 ,g1)
1 = U1,

W
𝐷(𝜔3 ,g3)
3,𝑙

= U3,𝑙, (39)

𝑙 : {1, 2, 4}.
Then having the discretised tensors and weighting func-

tions of all systems we can numerically reconstruct the
weighting functions [4, 5] as

W
𝐷(𝜔1 ,g1)
1 = U1 󳨀→ w1 (𝑥1) ,

W
𝐷(𝜔3 ,g3)
3,𝑙

= U3,𝑙 󳨀→ w3,𝑙 (𝑥3) , (40)

𝑙 : {1, 2, 4}.

Thus, we have achieved our goal:

𝑓1 (𝑥1, 𝑥2, 𝑥3) = S1×1w1 (𝑥1) ×2w𝑝2 (𝑥2) ×3w1,3 (𝑥3) ;
𝑓2 (𝑥2, 𝑥3) = S2×2w𝑝2 (𝑥2) ×3w2,3 (𝑥3) ;

𝑓3 (𝑥1) = S3×1w1 (𝑥1) ;
𝑓4 (𝑥1, 𝑥3) = S4×1w1 (𝑥1) ×3w4,3 (𝑥3) .

(41)

6. Conclusion

The proposed TP model transformation can be executed
on a set of models where the dimensionality of the inputs
may differ. The proposed TP model transformation has all
the advantages of the previous ones, including easy convex
hull manipulation, complexity trade-offs, pseudo TP model
transformation, and automatic and numerical execution.
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[61] Á. Takács, T. Haidegger, P. Galambos, J. Kuti, and I. J. Rudas,
“Nonlinear soft tissue mechanics based on polytopic Tensor
Productmodeling,” in Proceedings of the IEEE 14th International
Symposium on Applied Machine Intelligence and Informatics,
SAMI ’16, pp. 211–215, Slovakia, January 2016.

[62] B. Takarics and Y. Yam, “Robust Grid Point-Based Control
Design for LPV Systems via Unified TP Transformation,” in
Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, SMC ’15, pp. 2626–2631, Hong Kong,
October 2015.

[63] Z. He, M. Yin, and Y.-P. Lu, “Tensor product model-based
control of morphing aircraft in transition process,” Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 230, no. 2, pp. 378–391, 2016.

[64] J. Chen, R. Li, and C. Cao, “Convex polytopic modeling for flex-
ible joints industrial robot using TP-model transformation,” in
Proceedings of the IEEE International Conference on Information
and Automation, ICIA ’14, pp. 1046–1050, Hailar, China, July
2014.

[65] R.-E. Precup, C.-A. Dragos, S. Preitl, M.-B. Radac, and E. M.
Petriu, “Novel tensor product models for automatic transmis-
sion system control,” IEEE Systems Journal, vol. 6, no. 3, pp. 488–
498, 2012.

[66] K. K. Wu and Y. Yam, “Control stability of TP model transfor-
mation design via probabilistic error bound of plant model,”
in Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, SMC ’13, pp. 1259–1264, UK, October
2013.

[67] R.-E. Precup, L.-T. Dioanca, E. M. Petriu, M.-B. Rǎdac, S. Preitl,
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