3 research outputs found

    Effects of intermittent faults on the reliability of a Reduced Instruction Set Computing (RISC) microprocessor

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With the scaling of complementary metal-oxide-semiconductor (CMOS) technology to the submicron range, designers have to deal with a growing number and variety of fault types. In this way, intermittent faults are gaining importance in modern very large scale integration (VLSI) circuits. The presence of these faults is increasing due to the complexity of manufacturing processes (which produce residues and parameter variations), together with special aging mechanisms. This work presents a case study of the impact of intermittent faults on the behavior of a reduced instruction set computing (RISC) microprocessor. We have carried out an exhaustive reliability assessment by using very-high-speed-integrated-circuit hardware description language (VHDL)-based fault injection. In this way, we have been able to modify different intermittent fault parameters, to select various targets, and even, to compare the impact of intermittent faults with those induced by transient and permanent faults.This work was supported by the Spanish Government under the Research Project TIN2009-13825 and by the Universitat Politecnica de Valencia under the Project SP20120806. Associate Editor: L. Cui.Gracia-Morán, J.; Baraza Calvo, JC.; Gil Tomás, DA.; Saiz-Adalid, L.; Gil, P. (2014). Effects of intermittent faults on the reliability of a Reduced Instruction Set Computing (RISC) microprocessor. IEEE Transactions on Reliability. 63(1):144-153. https://doi.org/10.1109/TR.2014.2299711S14415363

    Análise automática da operação a tensões sub-limiares em circuitos digitais CMOS

    Get PDF
    The Internet of Things (IoT) paradigm is enabling easy access and interaction with a wide variety of devices, some of them self-powered, equipped with microcontrollers, sensors and sensor networks. Low power and ultra-low-power strategies, as never before, have a huge importance in today’s CMOS integrated circuits, as all portable devices quest for the never-ending battery life, but also with smaller and smaller dimensions every day. The solution is to use clever power management strategies and reduce drastically power consumption in IoT chips. Dynamic Voltage and Frequency Scaling techniques can be rewardingly, and using operation at subthreshold power-supply voltages can effectively achieve significant power savings. However, reducing power-supply voltages impose reduction of performance and, consequently, delay increase, in turn it makes the circuit more vulnerable to operational-induced delay-faults and transientfaults. What is the best compromise between power, delay and performance? This thesis proposes an automatic methodology and tool to perform power-delay analysis in CMOS gates and circuits, to identify automatically the best compromise between power and delay. By instantiating SPICE simulator, the proposed tool can automatically perform analysis such as: power-delay product, energy-delay product, power dissipation, or even dynamic and static power dissipations. The optimum operation point in respect to the power-supply voltage is defined, for each circuit or sub-circuit and considering subthreshold operation or not, to the minimum power-supply voltage where the delays do not increase too much and that implements a compromise between delay and power consumption. The algorithm is presented, along with CMOS circuit examples, all the analysis’ results are shown for typical benchmark circuits. Results indicate that subthreshold voltages can be a good compromise in reducing power and increasing delays.O aparecimento e a expansão de novas tendências da indústria electrónica fortemente direccionadas ao paradigma da Internet of Things (IoT) têm vindo a dar uma relevância cada vez maior à necessidade da evolução da electrónica, no sentido da interligação e intercomunicação entre equipamentos, no sentido da miniaturização em geral e, consequentemente, no sentido de uma melhor eficiência energética. Temos assim, na prática, vindo recentemente a assistir em diversas áreas ao surgimento progressivo de um número exponencial de pequenos dispositivos electrónicos, altamente compactos, com elevado grau de integração de funções e habitualmente interligados entre si em redes de dados. Habitualmente têm como missão genérica a recolha, processamento e transmissão de dados acerca do ambiente que os rodeia. Esta grande variedade de diferentes dispositivos habitualmente relacionados ao campo de IoT tem como principais funções a recolha e transdução de dados obtidos do ambiente circundante por sensores. Tem por isso geralmente uma muito limitada interação com o ambiente circundante, e nesse sentido, justifica-se que as suas principais características sejam as pequenas dimensões e fácil portabilidade. Justifica-se também que não é estritamente essencial que tenham elevada performance a nível de processamento. Sendo alimentados por baterias, ou nalguns casos alimentados por energia do ambiente, estes dispositivos precisam obrigatoriamente de consumir muito pouca energia, sendo os seus requisitos de energia de alimentação muito restritos. Dados os restritos requisitos de consumo energético, são tipos de circuitos muito adequados à aplicação das mais recentes e avançadas estratégias de gestão de potência destinadas a reduzir drasticamente a potência nos modernos circuitos integrados CMOs. Torna-se assim claro, que os mais importantes requisitos futuros de dispositivos na área de IoT, assim como de diversas famílias de dispositivos electrónicos em geral, serão tendencialmente a necessidade de redução de consumo energético, ainda que esta redução seja feita à custa de algum nível de redução em performance. Esta tendência baseia-se no crescimento de importância da temática da eficiência energética em circuitos, num momento em que a concentração de consumo energético e consequentemente de dissipação térmica, em áreas muito reduzidas de circuitos integrados CMOs atinge níveis muito elevados e preocupantes. Uma possível solução para enfrentar este complexo desafio, com crescentes requisitos e restrições para actuais e futuros circuitos CMOs, tendo em atenção princípios globais de eficiência energética, consiste em conjugar as habituais técnicas de gestão de potência dinâmica em circuitos, com as mais recentes e avançadas técnicas de alimentação em ‘ultra-low-power voltage’, tentando alcançar assim ganhos de potência muito consideráveis e significativos. Assim, associando as conhecidas técnicas de gestão de potência como por exemplo a Dynamic Voltage and Frequency Scaling (DVFS) com as mais recentes técnicas de ultra-low-power voltage como a recente técnica de operação em tensões de alimentação subthreshold pode potencialmente se revelar como a melhor solução para enfrentar este complexo problema e assim melhorar significativamente a eficiência energética em futuros circuitos CMOS. Contudo, quando aplicamos técnicas de potência de very-low-power ou ultra-lowpower, como as técnicas de operação a tensões subthreshold, existem algumas desvantagens e alguns efeitos adversos que devem ser cuidadosamente considerados e, se possível, contidos e minimizados. A mais importante destas consequências directas é a perda de performance do circuito que deriva naturalmente do aumento nos atrasos de propagação internos do circuito. As restantes desvantagens da utilização de técnicas de alimentação a níveis muito baixos derivam todas elas do facto do circuito se tornar em geral muito mais sensível a perturbações internas ou externas. Esta é claramente uma consequência natural para uma operação a este nível de reduzida energia. Como seria de esperar, pelo exposto, a operação a níveis de tensão ultra-low-voltage têm a consequência de torná-lo mais sensível a distúrbios e interferências, aumentado assim o risco de falhas operacionais, dado que o nível dos seus sinais internos de operação ao longo do circuito é muito reduzido. Alguns efeitos adversos afectos ao uso de técnicas de ultra-low-power em circuitos CMOs incluem, portanto, o aumento da vulnerabilidade do circuito a Single Event Upsets (SEUs), incluem também o aumento de vulnerabilidade a falhas induzidas de delay de operação, assim como um aumento de sensibilidade do circuito a falhas geradas por transientes. Tendo consciência do incremento de riscos operacionais envolvido em circuitos subthreshold, são necessários cuidados no sentido de conter e minimizar tanto quanto possíveis efeitos indesejados, por exemplo controlando cuidadosamente as condições operacionais do circuito e melhorando a sua blindagem a interferências. Considerando que o uso das técnicas de ultra-low-power pode ser provavelmente a melhor solução para cumprir rigorosos requisitos de eficiência energética para um circuito CMOs, é necessário considerar também que estas técnicas podem gerar uma considerável perda de performance, traduzida por um maior atraso interno. Assim, torna-se necessário estudar claramente, em subthreshold voltages, a evolução da perda de performance face aos grandes ganhos de energia quando caminhamos no sentido da redução da tensão de alimentação de um circuito CMO’s. Tendo como base um estudo custo/benefício da evolução de dois factores cruciais na operação de um circuito, como o factor energia e o factor performance, torna-se possível tentar alcançar uma solução de compromisso entre a potência dissipada (energia consumida) e o atraso de propagação, traduzido como a performance do circuito. O trabalho aqui apresentado propõe uma metodologia automatizada, capaz de enfrentar os desafios do estudo mencionado. Propõe ainda uma ferramenta de software desenhada para analisar em detalhe portas lógicas CMOs de uma livraria de portas existente, assim como circuitos completos composto por diversas portas lógicas. O software proposto analisa um circuito ou sub-circuito lógico, identificando automaticamente o melhor nível de alimentação de baixa tensão (ponto de operação óptimo) que permite obter o melhor compromisso entre potência e atraso, em termos gerais o melhor compromisso entre energia e performance. Como suporte e assistência à metodologia proposta esta ferramenta foi criada para acelerar os testes de simulação Hspice sobre portas lógicas e circuitos, executando cálculos rápidos sobre resultados de simulação e acelerando a obtenção de resultados de eficiência energética e de performance para análise. Através da instanciação directa do simulador Hspice, a ferramenta facilita a análise de importantes parâmetros de definição de portas lógicas e circuitos, como por exemplo: o atraso de propagação, o power-delay-product (PDP), o energy-delay-product (EDP), e a dissipação de potência total e parcial (estática e dinâmica). O desenvolvimento inicial da ferramenta permitiu realizar múltiplos testes e simulações e através da análise destes resultados desenvolver a metodologia low-power apresentada no trabalho, a posterior aplicação da metodologia pela ferramenta a um circuito CMO’s permite eficientemente identificar o seu ponto de operação óptimo para operação em baixo nível. Um ponto de operação óptimo de uma porta lógica é definido pelo método como o mais baixo nível de tensão de alimentação que não compromete a operação válida da porta, reduzindo por isso fortemente a potência dissipada. No entanto este ponto deve ainda minimizar (tanto quanto possível) os atrasos de propagação na porta. Assim, este ponto deriva de um compromisso ponderado para uma alimentação com consumo de energia muito baixo, que contudo não gere ainda atrasos na porta que provoquem significativas perdas em performance. Acima de tudo, o trabalho desenvolvido pretende apresentar uma abordagem clara e directa ao design e implementação de lógica digital em modo de subthreshold, aplicado ao contexto dos modernos circuitos de electrónica digital. Pretende-se estabelecer um conjunto de técnicas e métodos simples e claros, suportados num estudo incidente em regras teóricas e em simulações prácticas, que possam servir como normativos propostos para o design de circuitos adaptados ao funcionamento em modos de muito baixa energia. O objectivo final será enfrentar e a longo prazo tentar resolver o problema cada vez maior e mais importante da melhoria de eficiência energética em circuitos electrónicos genéricos

    Optimização dinâmica da tensão de alimentação e da frequência de operação em sistemas electrónicos digitais

    Get PDF
    À medida que a tecnologia de circuitos integrados CMOS é exposta à miniaturização, surgem diversos problemas no que diz respeito à fiabilidade e performance. Efeitos tais como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration) degradam os parâmetros físicos dos transístores CMOS e por sua vez alteram as propriedades eléctricas dos mesmos ao longo do tempo. Esta deterioração é chamada de envelhecimento e estes efeitos são cumulativos e têm um grande impacto na performance do circuito, especialmente se ocorrerem outras variações paramétricas, como as variações de processo, temperatura e tensão de alimentação. Estas variações são conhecidas por variações PVTA (variações no Processo de Fabricação do circuito integrado [P], na Tensão de Alimentação [V], na Temperatura [T] e variações provocadas pelo Envelhecimento dos circuitos [A]) e podem desencadear erros de sincronismo durante a vida do produto (circuito integrado digital). O trabalho apresentado nesta dissertação tem por objectivo primordial o desenvolvimento de um sistema que optimize a operação ao longo da vida de circuitos integrados digitais síncronos de forma dinâmica. Este sistema permite que os circuitos sejam optimizados de acordo com as suas necessidades: (i) Diminuir a dissipação de potência, por reduzir a tensão de alimentação para o valor mais baixo que garante a operação sem erros; ou (ii) Aumentar o desempenho/performance, por aumentar a frequência de operação até ao limite máximo no qual não ocorrem erros. A optimização dinâmica da operação ao longo da vida de circuitos integrados digitais síncronos é alcançada através de um controlador, um bloco de sensores globais e por vários sensores locais localizados em determinados flip-flops do circuito. A nova solução tem como objectivo utilizar os dois tipos de sensores atrás mencionados, globais e locais, para possibilitar a previsão de erros de performance de uma forma mais eficaz, que possibilite a activação de mecanismos que impeçam a ocorrência de erros durante o tempo de vida útil de um circuito, e dessa forma permitindo optimizar constantemente o seu funcionamento. Assim é exequível desenvolver circuitos que operem no limite das suas capacidades temporais, sem falhas, e com a utilização de margens de erro pequenas para admitir as variações de performance provocadas por variações no processo de fabrico, na tensão de alimentação, na temperatura ou o envelhecimento. Foi também desenvolvido um sistema de controlo que permite, depois da detecção de um potencial erro, desencadear um processo para diminuir a frequência do sinal de relógio do sistema, ou aumentar a tensão de alimentação, evitando que o erro ocorra. Apesar de existirem outras técnicas de controlo dinâmico da operação de circuitos integrados tais como DVS (Dynamic Voltage Scaling), de DFS (Dynamic Frequency Scaling), ou ambas (DVFS – Dynamic Voltage and Frequency Scaling), estas técnicas ou são de muito complexa implementação, ou apresentam margens de segurança elevadas, levando a soluções em que a operação do circuito não está optimizada. A solução desenvolvida neste trabalho, em que se utilizam sensores preditivos locais e globais os quais são sensíveis ao envelhecimento a longo prazo ocorrido nos circuitos, constitui uma novidade no estado da técnica relativamente ao controlo de sistemas de DVS e/ou DFS. Outro aspecto importante é que neste trabalho desenvolveu-se um método de ajuste da tensão de alimentação ou da frequência, o qual é sensível ao envelhecimento a longo prazo dos circuitos, utilizando sensores locais e globais. O controlador permite a optimização da performance dos circuitos através do aumento da frequência de operação até ao limite máximo que ainda evita a ocorrência de erros e a optimização de consumo de energia através da redução da tensão de alimentação (VDD) para o valor mínimo que ainda previne a ocorrência de erros. Através de uma análise de previsão de envelhecimento, são identificados os caminhos críticos, bem como os caminhos que envelhecem mais rápido e que se tornarão críticos com o envelhecimento do circuito. Uma vez identificados os caminhos críticos, irão ser inserido os sensores locais através da substituição dos flip-flops que terminam os caminhos críticos identificados por novos flip-flops que incluem sensores de performance e de envelhecimento. É de referenciar que estes sensores são preditivos, ou seja, que sinalizam precocemente os erros de performance, antes de eles ocorrerem nos flip-flops que capturam os caminhos críticos. A arquitectura dos sensores propostos é tal que as variações PVTA que ocorrem sobre eles fazem aumentar a sua capacidade de prever o erro, ou seja, os sensores vão-se adaptando ao longo da sua vida útil para aumentarem a sua sensibilidade. Os sensores locais têm como função realizar a calibração dos sensores globais, bem como realizar a monitorização constante dos atrasos nos caminhos mais longos do circuito, sempre que estes são activados. A função dos sensores globais é a realização da monitorização periódica ou quando solicitado dos atrasos no circuito digital. Ambos os tipos de sensores, os sensores globais como os locais podem desencadear ajustes na frequência ou na tensão de alimentação. Os sensores globais são compostos por uma unidade de controlo do sensor global, que recebe ordens do controlador do sistema para iniciar a análise ao desempenho do circuito e gera os sinais de controlo para a operação de análise global do desempenho e por duas cadeias de portas (uma com portas NOR e outra com portas NAND), com tempos de propagação superiores aos caminhos críticos que se esperam vir a ter no circuito durante a sua vida útil. Ambos os caminhos irão, presumivelmente, envelhecer mais que os caminhos críticos do circuito quando sujeitos ao efeito BTI (que influencia fortemente a degradação do Vth dos transístores [NBTI/NORs e PBTI/NANDs]). Ao longo das duas cadeias, diversos sinais à saída de algumas portas NOR e NAND são ligados a células de sensores globais, criando diversos caminhos fictícios com diferentes tempos de propagação. As saídas dos sensores das duas cadeias formam duas saídas de dados do sensor global. A fim de se alcançar a optimização do desempenho do circuito, são realizados testes de calibração dos sensores, onde são estimulados alguns caminhos críticos no circuito (através de um teste determinístico) e, simultaneamente é realizada a análise do desempenho pela unidade de sensores globais. Este procedimento, permite definir o limite máximo (mínimo) para frequência (tensão de alimentação) sem que os sensores locais sejam sinalizados. Esta informação da frequência (tensão) é guardada num registo do controlador (registo V/F) e corresponde à frequência (tensão) normal de funcionamento. Este teste também permite determinar quais os caminhos fictícios nas duas cadeias que apresentam tempos de propagação semelhantes aos caminhos críticos do circuito. Esta informação também é guardada em dois registos no controlador do sistema (registos GSOsafe), que indicam o estado das saídas dos controladores globais para a operação optimizada do circuito. Durante a vida útil do circuito, o controlador do sistema de optimização procede ao ajuste automático da frequência (ou da tensão de alimentação) do circuito, caso o controlador dos sensores globais detecte uma alteração em relação à operação correcta em memória, alterando o conteúdo do registo que guarda a frequência (tensão) de trabalho. Se por ventura ocorrer a sinalização de um sensor local e não existir nenhuma sinalização para alteração do desempenho pelos sensores globais, quer dizer que o circuito pode ter envelhecido mais que os caminhos fictícios dos sensores globais, pelo que a frequência (tensão de alimentação) de funcionamento deve ser alterada, mas também deve existir uma actualização nos registos que guardam a saída correcta dos sensores globais. É de salientar que, se os caminhos fictícios envelhecem mais do que o circuito, as margens de segurança (time slack) existentes vão sendo aumentadas ao longo da vida do circuito, tratando-se de uma segurança positiva. Mas, se existir a possibilidade do envelhecimento ser maior nos caminhos do circuito, a existência dos sensores locais a monitorizar a todo o tempo o desempenho do circuito, garantem que o sistema pode aprender com as sinalizações e adaptar-se às novas condições de operação ao longo da vida útil do circuito. Enquanto a monitorização efectuada pelo bloco de sensores globais fornece uma avaliação grosseira do estado de funcionamento do circuito, a monitorização efectuada pelos sensores locais, quando activados, fornece uma avaliação fina sobre qual a performance do circuito para que não ocorram erros funcionais. As novidades apresentadas neste trabalho são no mecanismo de controlo que permite a optimização dinâmica da tensão ou da frequência, e na arquitectura e funcionamento do sensor global a inserir no circuito. No que diz respeito ao mecanismo de controlo do sistema de optimização dinâmica, as novidades são: (i) na utilização conjunta de sensores locais e globais para garantir níveis de optimização elevados, (ii) na utilização de sensores preditivos (globais e locais) que previnem os erros de ocorrerem e (iii) na utilização de sensores sensíveis ao envelhecimento do circuito ao longo da sua vida útil. Em relação ao sensor global para monitorização de variações PVTA a novidade consiste (iv), na apresentação de sensores para a degradação nos transístores PMOS e de sensores para a degradação nos transístores NMOS. Este método de optimização e as topologias apresentadas podem ser desenvolvidas e utilizadas com outros tipos de flip-flops, ou empregando outros tipos de sensores, ou outros caminhos fictícios nos sensores globais, sem prejuízo do método global de optimização que conjuga os dois tipos de sensores, globais e locais, para optimizar a tensão de alimentação e a frequência de operação. É proposta uma nova arquitectura para um flip-flop com correcção de erros de atraso (DFC-FF / AEPDFC-FF) com e sem previsão de erros adaptativa para realizar a correcção/monitorização e correcção on-line da perda de performance a longo prazo de sistemas digitais CMOS, independentemente da sua causa. O DFC-FF integra um FF do tipo TG-MSFF (Transmission Gate Master Slave Flip-Flop) e um sensor de correcção de erros (CES) dos quais são apresentados duas propostas. O AEPDFC-FF é composto por DFC-FF e um sensor de envelhecimento. A variabilidade tornou-se na principal causa de falha dos circuitos digitais quando a tecnologia evoluiu para as escalas nanométricas. As reduzidas dimensões físicas dos novos transístores e o aumento na complexidade dos circuitos integrados tornou os novos circuitos mais susceptíveis a variações no processo de fabrico, nas condições de operação e operacionais, tendo como consequência o fabrico de dispositivos mais frágeis, com maior probabilidade de falharem nos primeiros meses de vida, e com tempos de vida útil esperados inferiores aos das tecnologias anteriores. Face a outras propostas, uma das principais vantagens do DFC-FF é que a a perda de performance do próprio sensor melhora a sua capacidade de correcção de erros. Os efeitos do envelhecimento, do aumento de temperatura e da diminuição na tensão de alimentação (VTA), aumentam a janela de correcção, permitindo que o DFC-FF possa estar sempre ligado sem comprometer o seu funcionamento. O conceito, estudado e desenvolvido em tecnologia de 65nm, pode ser transportado posteriormente para nanotecnologias mais recentes, usando MOSFETs de menor dimensão, uma vez que a arquitectura do sensor é transversal a toda a tecnologia CMOS.Universidade do Algarve, Instituto Superior de Engenhari
    corecore